Stat 5101 Notes: Brand Name Distributions

Charles J. Geyer

February 25, 2019

Contents

1	Discrete Uniform Distribution	2
2	General Discrete Uniform Distribution	2
3	Uniform Distribution	3
4	General Uniform Distribution	3
5	Bernoulli Distribution	4
6	Binomial Distribution	5
7	Hypergeometric Distribution	6
8	Poisson Distribution	7
9	Geometric Distribution	8
10	Negative Binomial Distribution	9
11	Normal Distribution	10
12	Exponential Distribution	12
13	Gamma Distribution	12
14	Beta Distribution	14
15	Multinomial Distribution	15

16 Bivariate Normal Distribution	18
17 Multivariate Normal Distribution	19
18 Chi-Square Distribution	21
19 Student's t Distribution	22
20 Snedecor's F Distribution	23
21 Cauchy Distribution	24
22 Laplace Distribution	25
23 Dirichlet Distribution	25

1 Discrete Uniform Distribution

Abbreviation DiscUnif(n).

 $\mathbf{Type}\quad \mathrm{Discrete}.$

Rationale Equally likely outcomes.

Sample Space The interval 1, 2, ..., n of the integers.

Probability Mass Function

$$f(x) = \frac{1}{n}, \qquad x = 1, 2, \dots, n$$

Moments

$$E(X) = \frac{n+1}{2}$$
$$var(X) = \frac{n^2 - 1}{12}$$

2 General Discrete Uniform Distribution

Type Discrete.

Sample Space Any finite set S.

Probability Mass Function

$$f(x) = \frac{1}{n}, \qquad x \in S,$$

where n is the number of elements of S.

3 Uniform Distribution

Abbreviation Unif(a, b).

Type Continuous.

Rationale Continuous analog of the discrete uniform distribution.

Parameters Real numbers a and b with a < b.

Sample Space The interval (a, b) of the real numbers.

Probability Density Function

$$f(x) = \frac{1}{b-a}, \qquad a < x < b$$

Moments

$$E(X) = \frac{a+b}{2}$$
$$var(X) = \frac{(b-a)^2}{12}$$

Relation to Other Distributions Beta(1,1) = Unif(0,1).

4 General Uniform Distribution

Type Continuous.

Sample Space Any open set S in \mathbb{R}^n .

Probability Density Function

$$f(x) = \frac{1}{c}, \qquad x \in S$$

where c is the measure (length in one dimension, area in two, volume in three, etc.) of the set S.

5 Bernoulli Distribution

Abbreviation Ber(p).

Type Discrete.

Rationale Any zero-or-one-valued random variable.

Parameter Real number $0 \le p \le 1$.

Sample Space The two-element set $\{0, 1\}$.

Probability Mass Function

$$f(x) = \begin{cases} p, & x = 1\\ 1 - p, & x = 0 \end{cases}$$

Moments

$$E(X) = p$$
$$var(X) = p(1 - p)$$

Addition Rule If X_1, \ldots, X_k are IID Ber(p) random variables, then $X_1 + \cdots + X_k$ is a Bin(k, p) random variable.

Degeneracy If p = 0 the distribution is concentrated at 0. If p = 1 the distribution is concentrated at 1.

Relation to Other Distributions Ber(p) = Bin(1, p).

6 Binomial Distribution

Abbreviation Bin(n, p).

Type Discrete.

Rationale Sum of n IID Bernoulli random variables.

Parameters Real number $0 \le p \le 1$. Integer $n \ge 1$.

Sample Space The interval 0, 1, ..., n of the integers.

Probability Mass Function

$$f(x) = \binom{n}{x} p^x (1-p)^{n-x}, \qquad x = 0, 1, \dots, n$$

Moments

$$E(X) = np$$
$$var(X) = np(1 - p)$$

Addition Rule If $X_1, ..., X_k$ are independent random variables, X_i being $Bin(n_i, p)$ distributed, then $X_1 + \cdots + X_k$ is a $Bin(n_1 + \cdots + n_k, p)$ random variable.

Normal Approximation If np and n(1-p) are both large, then

$$Bin(n,p) \approx \mathcal{N}(np, np(1-p))$$

Poisson Approximation If n is large but np is small, then

$$Bin(n, p) \approx Poi(np)$$

Theorem The fact that the probability mass function sums to one is equivalent to the **binomial theorem**: for any real numbers a and b

$$\sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k} = (a+b)^n.$$

Degeneracy If p = 0 the distribution is concentrated at 0. If p = 1 the distribution is concentrated at n.

Relation to Other Distributions Ber(p) = Bin(1, p).

7 Hypergeometric Distribution

Abbreviation Hypergeometric (A, B, n).

Type Discrete.

Rationale Sample of size n without replacement from finite population of B zeros and A ones.

Sample Space The interval $\max(0, n - B), \ldots, \min(n, A)$ of the integers.

Probability Mass Function

$$f(x) = \frac{\binom{A}{x} \binom{B}{n-x}}{\binom{A+B}{n}}, \qquad x = \max(0, n-B), \dots, \min(n, A)$$

Moments

$$E(X) = np$$
$$var(X) = np(1-p) \cdot \frac{N-n}{N-1}$$

where

$$p = \frac{A}{A+B}$$

$$N = A+B$$
(7.1)

Binomial Approximation If n is small compared to either A or B, then

Hypergeometric
$$(n, A, B) \approx Bin(n, p)$$

where p is given by (7.1).

Normal Approximation If n is large, but small compared to either A or B, then

Hypergeometric(
$$n, A, B$$
) $\approx \mathcal{N}(np, np(1-p))$

where p is given by (7.1).

Theorem The fact that the probability mass function sums to one is equivalent to

$$\sum_{x=\max(0,n-B)}^{\min(A,n)} \binom{A}{x} \binom{B}{n-x} = \binom{A+B}{n}$$

8 Poisson Distribution

Abbreviation $Poi(\mu)$

Type Discrete.

Rationale Counts in a Poisson process.

Parameter Real number $\mu > 0$.

Sample Space The non-negative integers $0, 1, \ldots$

Probability Mass Function

$$f(x) = \frac{\mu^x}{x!}e^{-\mu}, \qquad x = 0, 1, \dots$$

Moments

$$E(X) = \mu$$
$$var(X) = \mu$$

Addition Rule If $X_1, ..., X_k$ are independent random variables, X_i being $Poi(\mu_i)$ distributed, then $X_1 + \cdots + X_k$ is a $Poi(\mu_1 + \cdots + \mu_k)$ random variable.

Normal Approximation If μ is large, then

$$Poi(\mu) \approx \mathcal{N}(\mu, \mu)$$

Theorem The fact that the probability mass function sums to one is equivalent to the Maclaurin series for the exponential function: for any real number \boldsymbol{x}

$$\sum_{k=0}^{\infty} \frac{x^k}{k!} = e^x.$$

9 Geometric Distribution

Abbreviation Geo(p).

Type Discrete.

Rationales

- Discrete lifetime of object that does not age.
- Waiting time or interarrival time in sequence of IID Bernoulli trials.
- Inverse sampling.
- Discrete analog of the exponential distribution.

Parameter Real number 0 .

Sample Space The non-negative integers $0, 1, \ldots$

Probability Mass Function

$$f(x) = p(1-p)^x$$
 $x = 0, 1, \dots$

Moments

$$E(X) = \frac{1-p}{p}$$
$$var(X) = \frac{1-p}{p^2}$$

Addition Rule If X_1, \ldots, X_k are IID Geo(p) random variables, then $X_1 + \cdots + X_k$ is a NegBin(k, p) random variable.

Theorem The fact that the probability mass function sums to one is equivalent to the geometric series: for any real number s such that |s| < 1

$$\sum_{k=0}^{\infty} s^k = \frac{1}{1-s}.$$

Degeneracy If p = 1 the distribution is concentrated at 0.

10 Negative Binomial Distribution

Abbreviation NegBin(r, p).

Type Discrete.

Rationale

- Sum of IID geometric random variables.
- Inverse sampling.
- Gamma mixture of Poisson distributions.

Parameters Real number $0 . Integer <math>r \ge 1$.

Sample Space The non-negative integers $0, 1, \ldots$

Probability Mass Function

$$f(x) = {r+x-1 \choose x} p^r (1-p)^x, \qquad x = 0, 1, \dots$$

Moments

$$E(X) = \frac{r(1-p)}{p}$$
$$var(X) = \frac{r(1-p)}{p^2}$$

Addition Rule If $X_1, ..., X_k$ are independent random variables, X_i being $\operatorname{NegBin}(r_i, p)$ distributed, then $X_1 + \cdots + X_k$ is a $\operatorname{NegBin}(r_1 + \cdots + r_k, p)$ random variable.

Normal Approximation If r(1-p) is large, then

NegBin
$$(r, p) \approx \mathcal{N}\left(\frac{r(1-p)}{p}, \frac{r(1-p)}{p^2}\right)$$

Degeneracy If p = 1 the distribution is concentrated at 0.

Extended Definition The definition makes sense for noninteger r if binomial coefficients are defined by

$$\binom{r}{k} = \frac{r \cdot (r-1) \cdots (r-k+1)}{k!}$$

which for integer r agrees with the standard definition.

Also

$$\binom{r+x-1}{x} = (-1)^x \binom{-r}{x}$$
 (10.1)

which explains the name "negative binomial."

Theorem The fact that the probability mass function sums to one is equivalent to the **generalized binomial theorem:** for any real number s such that -1 < s < 1 and any real number m

$$\sum_{k=0}^{\infty} {m \choose k} s^k = (1+s)^m.$$
 (10.2)

If m is a nonnegative integer, then $\binom{m}{k}$ is zero for k > m, and we get the ordinary binomial theorem.

Changing variables from m to -m and from s to -s and using (10.1) turns (10.2) into

$$\sum_{k=0}^{\infty} {m+k-1 \choose k} s^k = \sum_{k=0}^{\infty} {-m \choose k} (-s)^k = (1-s)^{-m}$$

which has a more obvious relationship to the negative binomial density summing to one.

11 Normal Distribution

Abbreviation $\mathcal{N}(\mu, \sigma^2)$.

Type Continuous.

Rationale

- Limiting distribution in the central limit theorem.
- Error distribution that turns the method of least squares into maximum likelihood estimation.

Parameters Real numbers μ and $\sigma^2 > 0$.

Sample Space The real numbers.

Probability Density Function

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/2\sigma^2}, \quad -\infty < x < \infty$$

Moments

$$E(X) = \mu$$
$$var(X) = \sigma^{2}$$
$$E\{(X - \mu)^{3}\} = 0$$
$$E\{(X - \mu)^{4}\} = 3\sigma^{4}$$

Linear Transformations If X is $\mathcal{N}(\mu, \sigma^2)$ distributed, then aX + b is $\mathcal{N}(a\mu + b, a^2\sigma^2)$ distributed.

Addition Rule If $X_1, ..., X_k$ are independent random variables, X_i being $\mathcal{N}(\mu_i, \sigma_i^2)$ distributed, then $X_1 + \cdots + X_k$ is a $\mathcal{N}(\mu_1 + \cdots + \mu_k, \sigma_1^2 + \cdots + \sigma_k^2)$ random variable.

Theorem The fact that the probability density function integrates to one is equivalent to the integral

$$\int_{-\infty}^{\infty} e^{-z^2/2} \, dz = \sqrt{2\pi}$$

Relation to Other Distributions If Z is $\mathcal{N}(0,1)$ distributed, then Z^2 is $Gam(\frac{1}{2},\frac{1}{2}) = chi^2(1)$ distributed. Also related to Student t, Snedecor F, and Cauchy distributions (for which see).

12 Exponential Distribution

Abbreviation $\text{Exp}(\lambda)$.

Type Continuous.

Rationales

- Lifetime of object that does not age.
- Waiting time or interarrival time in Poisson process.
- Continuous analog of the geometric distribution.

Parameter Real number $\lambda > 0$.

Sample Space The interval $(0, \infty)$ of the real numbers.

Probability Density Function

$$f(x) = \lambda e^{-\lambda x}, \qquad 0 < x < \infty$$

Cumulative Distribution Function

$$F(x) = 1 - e^{-\lambda x}, \qquad 0 < x < \infty$$

Moments

$$E(X) = \frac{1}{\lambda}$$
$$var(X) = \frac{1}{\lambda^2}$$

Addition Rule If X_1, \ldots, X_k are IID $\text{Exp}(\lambda)$ random variables, then $X_1 + \cdots + X_k$ is a $\text{Gam}(k, \lambda)$ random variable.

Relation to Other Distributions $Exp(\lambda) = Gam(1, \lambda)$.

13 Gamma Distribution

Abbreviation $Gam(\alpha, \lambda)$.

Type Continuous.

Rationales

- Sum of IID exponential random variables.
- Conjugate prior for exponential, Poisson, or normal precision family.

Parameter Real numbers $\alpha > 0$ and $\lambda > 0$.

Sample Space The interval $(0, \infty)$ of the real numbers.

Probability Density Function

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, \qquad 0 < x < \infty$$

where $\Gamma(\alpha)$ is defined by (13.1) below.

Moments

$$E(X) = \frac{\alpha}{\lambda}$$
$$var(X) = \frac{\alpha}{\lambda^2}$$

Addition Rule If $X_1, ..., X_k$ are independent random variables, X_i being $Gam(\alpha_i, \lambda)$ distributed, then $X_1 + \cdots + X_k$ is a $Gam(\alpha_1 + \cdots + \alpha_k, \lambda)$ random variable.

Normal Approximation If α is large, then

$$Gam(\alpha, \lambda) \approx \mathcal{N}\left(\frac{\alpha}{\lambda}, \frac{\alpha}{\lambda^2}\right)$$

Theorem The fact that the probability density function integrates to one is equivalent to the integral

$$\int_0^\infty x^{\alpha - 1} e^{-\lambda x} \, dx = \frac{\Gamma(\alpha)}{\lambda^{\alpha}}$$

the case $\lambda = 1$ is the definition of the gamma function

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx \tag{13.1}$$

Relation to Other Distributions

- $\operatorname{Exp}(\lambda) = \operatorname{Gam}(1, \lambda)$.
- $\operatorname{chi}^2(\nu) = \operatorname{Gam}(\frac{\nu}{2}, \frac{1}{2}).$
- If X and Y are independent, X is $\Gamma(\alpha_1, \lambda)$ distributed and Y is $\Gamma(\alpha_2, \lambda)$ distributed, then X/(X+Y) is $\text{Beta}(\alpha_1, \alpha_2)$ distributed.
- If Z is $\mathcal{N}(0,1)$ distributed, then Z^2 is $\operatorname{Gam}(\frac{1}{2},\frac{1}{2})$ distributed.

Facts About Gamma Functions Integration by parts in (13.1) establishes the gamma function recursion formula

$$\Gamma(\alpha + 1) = \alpha \Gamma(\alpha), \qquad \alpha > 0$$
 (13.2)

The relationship between the $\text{Exp}(\lambda)$ and $\text{Gam}(1,\lambda)$ distributions gives

$$\Gamma(1) = 1$$

and the relationship between the $\mathcal{N}(0,1)$ and $Gam(\frac{1}{2},\frac{1}{2})$ distributions gives

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$

Together with the recursion (13.2) these give for any positive integer n

$$\Gamma(n+1) = n!$$

and

$$\Gamma(n+\frac{1}{2}) = \left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right)\cdots\frac{3}{2}\cdot\frac{1}{2}\sqrt{\pi}$$

14 Beta Distribution

Abbreviation Beta(α_1, α_2).

Type Continuous.

Rationales

- Ratio of gamma random variables.
- Conjugate prior for binomial or negative binomial family.

Parameter Real numbers $\alpha_1 > 0$ and $\alpha_2 > 0$.

Sample Space The interval (0,1) of the real numbers.

Probability Density Function

$$f(x) = \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} x^{\alpha_1 - 1} (1 - x)^{\alpha_2 - 1} \qquad 0 < x < 1$$

where $\Gamma(\alpha)$ is defined by (13.1) above.

Moments

$$E(X) = \frac{\alpha_1}{\alpha_1 + \alpha_2}$$
$$var(X) = \frac{\alpha_1 \alpha_2}{(\alpha_1 + \alpha_2)^2 (\alpha_1 + \alpha_2 + 1)}$$

Theorem The fact that the probability density function integrates to one is equivalent to the integral

$$\int_0^1 x^{\alpha_1 - 1} (1 - x)^{\alpha_2 - 1} dx = \frac{\Gamma(\alpha_1) \Gamma(\alpha_2)}{\Gamma(\alpha_1 + \alpha_2)}$$

Relation to Other Distributions

- If X and Y are independent, X is $\Gamma(\alpha_1, \lambda)$ distributed and Y is $\Gamma(\alpha_2, \lambda)$ distributed, then X/(X+Y) is $\operatorname{Beta}(\alpha_1, \alpha_2)$ distributed.
- Beta(1,1) = Unif(0,1).

15 Multinomial Distribution

Abbreviation $Multi(n, \mathbf{p})$.

Type Discrete.

Rationale Multivariate analog of the binomial distribution.

Parameters Real vector **p** in the parameter space

$$\left\{ \mathbf{p} \in \mathbb{R}^k : 0 \le p_i, \ i = 1, \dots, k, \text{ and } \sum_{i=1}^k p_i = 1 \right\}$$
 (15.1)

(real vectors whose components are nonnegative and sum to one).

Sample Space The set of vectors

$$S = \left\{ \mathbf{x} \in \mathbb{Z}^k : 0 \le x_i, \ i = 1, \dots, k, \text{ and } \sum_{i=1}^k x_i = n \right\}$$
 (15.2)

(integer vectors whose components are nonnegative and sum to n).

Probability Mass Function

$$f(\mathbf{x}) = \binom{n}{\mathbf{x}} \prod_{i=1}^{k} p_i^{x_i}, \quad \mathbf{x} \in S$$

where

$$\binom{n}{\mathbf{x}} = \frac{n!}{\prod_{i=1}^{k} x_i!}$$

is called a multinomial coefficient.

Moments

$$E(X_i) = np_i$$

$$var(X_i) = np_i(1 - p_i)$$

$$cov(X_i, X_j) = -np_ip_j, \qquad i \neq j$$

Moments (Vector Form)

$$E(\mathbf{X}) = n\mathbf{p}$$
$$var(\mathbf{X}) = n\mathbf{M}$$

where

$$\mathbf{M} = \mathbf{P} - \mathbf{p} \mathbf{p}^T$$

where \mathbf{P} is the diagonal matrix whose vector of diagonal elements is \mathbf{p} .

Addition Rule If $\mathbf{X}_1, \ldots, \mathbf{X}_k$ are independent random vectors, \mathbf{X}_i being Multi (n_i, \mathbf{p}) distributed, then $\mathbf{X}_1 + \cdots + \mathbf{X}_k$ is a Multi $(n_1 + \cdots + n_k, \mathbf{p})$ random variable.

Normal Approximation If n is large and \mathbf{p} is not near the boundary of the parameter space (15.1), then

$$Multi(n, \mathbf{p}) \approx \mathcal{N}(n\mathbf{p}, n\mathbf{M})$$

Theorem The fact that the probability mass function sums to one is equivalent to the **multinomial theorem:** for any vector **a** of real numbers

$$\sum_{\mathbf{x} \in S} \binom{n}{\mathbf{x}} \prod_{i=1}^k a_i^{x_i} = (a_1 + \dots + a_k)^n$$

Degeneracy If a vector \mathbf{a} exists such that $\mathbf{M}\mathbf{a} = 0$, then $\text{var}(\mathbf{a}^T\mathbf{X}) = 0$. In particular, the vector $\mathbf{u} = (1, 1, \dots, 1)$ always satisfies $\mathbf{M}\mathbf{u} = 0$, so $\text{var}(\mathbf{u}^T\mathbf{X}) = 0$. This is obvious, since $\mathbf{u}^T\mathbf{X} = \sum_{i=1}^k X_i = n$ by definition of the multinomial distribution, and the variance of a constant is zero. This means a multinomial random vector of dimension k is "really" of dimension no more than k-1 because it is concentrated on a hyperplane containing the sample space (15.2).

Marginal Distributions Every univariate marginal is binomial

$$X_i \sim \text{Bin}(n, p_i)$$

Not, strictly speaking marginals, but random vectors formed by collapsing categories are multinomial. If A_1, \ldots, A_m is a partition of the set $\{1, \ldots, k\}$ and

$$Y_j = \sum_{i \in A_j} X_i, \qquad j = 1, \dots, m$$

 $q_j = \sum_{i \in A_j} p_i, \qquad j = 1, \dots, m$

then the random vector \mathbf{Y} has a $\mathrm{Multi}(n, \mathbf{q})$ distribution.

Conditional Distributions If $\{i_1, ..., i_m\}$ and $\{i_{m+1}, ..., i_k\}$ partition the set $\{1, ..., k\}$, then the conditional distribution of $X_{i_1}, ..., X_{i_m}$ given $X_{i_{m+1}}, ..., X_{i_k}$ is Multi $(n - X_{i_{m+1}} - \cdots - X_{i_k}, \mathbf{q})$, where the parameter vector \mathbf{q} has components

$$q_j = \frac{p_{i_j}}{p_{i_1} + \dots + p_{i_m}}, \quad j = 1, \dots, m$$

Relation to Other Distributions

- Each marginal of a multinomial is binomial.
- If X is Bin(n, p), then the vector (X, n X) is Multi(n, (p, 1 p)).

16 Bivariate Normal Distribution

Abbreviation See multivariate normal below.

Type Continuous.

Rationales See multivariate normal below.

Parameters Real vector $\boldsymbol{\mu}$ of dimension 2, real symmetric positive semi-definite matrix \mathbf{M} of dimension 2×2 having the form

$$\mathbf{M} = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$$

where $\sigma_1 > 0$, $\sigma_2 > 0$ and $-1 < \rho < +1$.

Sample Space The Euclidean space \mathbb{R}^2 .

Probability Density Function

$$f(\mathbf{x}) = \frac{1}{2\pi} \det(\mathbf{M})^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{M}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$
$$= \frac{1}{2\pi\sqrt{1 - \rho^2}\sigma_1\sigma_2} \exp\left(-\frac{1}{2(1 - \rho^2)} \left[\left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2 - 2\rho\left(\frac{x_1 - \mu_1}{\sigma_1}\right) \left(\frac{x_2 - \mu_2}{\sigma_2}\right) + \left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2 \right] \right), \quad \mathbf{x} \in \mathbb{R}^2$$

Moments

$$E(X_i) = \mu_i, \qquad i = 1, 2$$
$$var(X_i) = \sigma_i^2, \qquad i = 1, 2$$
$$cov(X_1, X_2) = \rho \sigma_1 \sigma_2$$
$$cor(X_1, X_2) = \rho$$

Moments (Vector Form)

$$E(\mathbf{X}) = \boldsymbol{\mu}$$
$$var(\mathbf{X}) = \mathbf{M}$$

Linear Transformations See multivariate normal below.

Addition Rule See multivariate normal below.

Marginal Distributions X_i is $\mathcal{N}(\mu_i, \sigma_i^2)$ distributed, i = 1, 2.

Conditional Distributions The conditional distribution of X_2 given X_1 is

 $\mathcal{N}\left(\mu_2 + \rho \frac{\sigma_2}{\sigma_1}(x_1 - \mu_1), (1 - \rho^2)\sigma_2^2\right)$

17 Multivariate Normal Distribution

Abbreviation $\mathcal{N}(\boldsymbol{\mu}, \mathbf{M})$

Type Continuous.

Rationales

- Multivariate analog of the univariate normal distribution.
- Limiting distribution in the multivariate central limit theorem.

Parameters Real vector $\boldsymbol{\mu}$ of dimension k, real symmetric positive semi-definite matrix \mathbf{M} of dimension $k \times k$.

Sample Space The Euclidean space \mathbb{R}^k .

Probability Density Function If M is (strictly) positive definite,

$$f(\mathbf{x}) = (2\pi)^{-k/2} \det(\mathbf{M})^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{M}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right), \quad \mathbf{x} \in \mathbb{R}^k$$

Otherwise there is no density (X is concentrated on a hyperplane).

Moments (Vector Form)

$$E(\mathbf{X}) = \boldsymbol{\mu}$$
$$var(\mathbf{X}) = \mathbf{M}$$

Linear Transformations If **X** is $\mathcal{N}(\mu, \mathbf{M})$ distributed, then $\mathbf{a} + \mathbf{B}\mathbf{X}$, where a is a constant vector and B is a constant matrix of dimensions such that the vector addition and matrix multiplication make sense, has the $\mathcal{N}(\mathbf{a} + \mathbf{B}\boldsymbol{\mu}, \mathbf{B}\mathbf{M}\mathbf{B}^T)$ distribution.

Addition Rule If $X_1, ..., X_k$ are independent random vectors, X_i being $\mathcal{N}(\boldsymbol{\mu}_i, \mathbf{M}_i)$ distributed, then $\mathbf{X}_1 + \cdots + \mathbf{X}_k$ is a $\mathcal{N}(\boldsymbol{\mu}_1 + \cdots + \boldsymbol{\mu}_k, \mathbf{M}_1 + \cdots + \mathbf{M}_k)$ random variable.

Degeneracy If a vector **a** exists such that $\mathbf{M}\mathbf{a} = 0$, then $var(\mathbf{a}^T\mathbf{X}) = 0$.

Partitioned Vectors and Matrices The random vector and parameters are written in partitioned form

$$\mathbf{X} = \begin{pmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{pmatrix} \tag{17.1a}$$

$$\boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{pmatrix} \tag{17.1b}$$

$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$$

$$\mathbf{M} = \begin{pmatrix} \mathbf{M}_{11} & \mathbf{M}_{12} \\ \mathbf{M}_{21} & \mathbf{M}_2 \end{pmatrix}$$

$$(17.1b)$$

when X_1 consists of the first r elements of X and X_2 of the other k-relements and similarly for μ_1 and μ_2 .

Marginal Distributions Every marginal of a multivariate normal is normal (univariate or multivariate as the case may be). In partitioned form, the (marginal) distribution of \mathbf{X}_1 is $\mathcal{N}(\boldsymbol{\mu}_1, \mathbf{M}_{11})$.

Conditional Distributions Every conditional of a multivariate normal is normal (univariate or multivariate as the case may be). In partitioned form, the conditional distribution of X_1 given X_2 is

$$\mathcal{N}(\mu_1 + \mathbf{M}_{12}\mathbf{M}_{22}^-[\mathbf{X}_2 - \mu_2], \mathbf{M}_{11} - \mathbf{M}_{12}\mathbf{M}_{22}^-\mathbf{M}_{21})$$

where the notation \mathbf{M}_{22}^- denotes the inverse of the matrix \mathbf{M}_{22}^- if the matrix is invertible and otherwise any generalized inverse.

18 Chi-Square Distribution

Abbreviation $chi^2(\nu)$ or $\chi^2(\nu)$.

Type Continuous.

Rationales

- Sum of squares of IID standard normal random variables.
- Sampling distribution of sample variance when data are IID normal.
- Asymptotic distribution in Pearson chi-square test.
- Asymptotic distribution of log likelihood ratio.

Parameter Real number $\nu > 0$ called "degrees of freedom."

Sample Space The interval $(0, \infty)$ of the real numbers.

Probability Density Function

$$f(x) = \frac{(\frac{1}{2})^{\nu/2}}{\Gamma(\frac{\nu}{2})} x^{\nu/2 - 1} e^{-x/2}, \qquad 0 < x < \infty.$$

Moments

$$E(X) = \nu$$
$$var(X) = 2\nu$$

Addition Rule If $X_1, ..., X_k$ are independent random variables, X_i being $\text{chi}^2(\nu_i)$ distributed, then $X_1 + \cdots + X_k$ is a $\text{chi}^2(\nu_1 + \cdots + \nu_k)$ random variable.

Normal Approximation If ν is large, then

$$chi^2(\nu) \approx \mathcal{N}(\nu, 2\nu)$$

Relation to Other Distributions

- $\operatorname{chi}^2(\nu) = \operatorname{Gam}(\frac{\nu}{2}, \frac{1}{2}).$
- If X is $\mathcal{N}(0,1)$ distributed, then X^2 is $\mathrm{chi}^2(1)$ distributed.
- If Z and Y are independent, X is $\mathcal{N}(0,1)$ distributed and Y is $\mathrm{chi}^2(\nu)$ distributed, then $X/\sqrt{Y/\nu}$ is $t(\nu)$ distributed.
- If X and Y are independent and are $\text{chi}^2(\mu)$ and $\text{chi}^2(\nu)$ distributed, respectively, then $(X/\mu)/(Y/\nu)$ is $F(\mu,\nu)$ distributed.

19 Student's t Distribution

Abbreviation $t(\nu)$.

Type Continuous.

Rationales

- Sampling distribution of pivotal quantity $\sqrt{n}(\overline{X}_n \mu)/S_n$ when data are IID normal.
- \bullet Marginal for μ in conjugate prior family for two-parameter normal data.

Parameter Real number $\nu > 0$ called "degrees of freedom."

Sample Space The real numbers.

Probability Density Function

$$f(x) = \frac{1}{\sqrt{\nu\pi}} \cdot \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})} \cdot \frac{1}{\left(1 + \frac{x^2}{\nu}\right)^{(\nu+1)/2}}, \quad -\infty < x < +\infty$$

Moments If $\nu > 1$, then

$$E(X) = 0.$$

Otherwise the mean does not exist. If $\nu > 2$, then

$$\operatorname{var}(X) = \frac{\nu}{\nu - 2}.$$

Otherwise the variance does not exist.

Normal Approximation If ν is large, then

$$t(\nu) \approx \mathcal{N}(0,1)$$

Relation to Other Distributions

- If X and Y are independent, X is $\mathcal{N}(0,1)$ distributed and Y is $\text{chi}^2(\nu)$ distributed, then $X/\sqrt{Y/\nu}$ is $t(\nu)$ distributed.
- If X is $t(\nu)$ distributed, then X^2 is $F(1,\nu)$ distributed.
- t(1) = Cauchy(0, 1).

20 Snedecor's F Distribution

Abbreviation $F(\mu, \nu)$.

Type Continuous.

Rationale

• Ratio of sums of squares for normal data (test statistics in regression and analysis of variance).

Parameters Real numbers $\mu > 0$ and $\nu > 0$ called "numerator degrees of freedom" and "denominator degrees of freedom," respectively.

Sample Space The interval $(0, \infty)$ of the real numbers.

Probability Density Function

$$f(x) = \frac{\Gamma(\frac{\mu + \nu}{2})\mu^{\mu/2}\nu^{\nu/2}}{\Gamma(\frac{\mu}{2})\Gamma(\frac{\nu}{2})} \cdot \frac{x^{\mu/2 - 1}}{(\mu x + \nu)^{(\mu + \nu)/2}}, \qquad 0 < x < +\infty$$

Moments If $\nu > 2$, then

$$E(X) = \frac{\nu}{\nu - 2}.$$

Otherwise the mean does not exist.

Relation to Other Distributions

- If X and Y are independent and are $\text{chi}^2(\mu)$ and $\text{chi}^2(\nu)$ distributed, respectively, then $(X/\mu)/(Y/\nu)$ is $F(\mu,\nu)$ distributed.
- If X is $t(\nu)$ distributed, then X^2 is $F(1,\nu)$ distributed.

21 Cauchy Distribution

Abbreviation Cauchy (μ, σ) .

Type Continuous.

Rationales

- Very heavy tailed distribution.
- Counterexample to law of large numbers.

Parameters Real numbers μ and $\sigma > 0$.

Sample Space The real numbers.

Probability Density Function

$$f(x) = \frac{1}{\pi\sigma} \cdot \frac{1}{1 + \left(\frac{x-\mu}{\sigma}\right)^2}, \quad -\infty < x < +\infty$$

Moments No moments exist.

Addition Rule If X_1, \ldots, X_k are IID Cauchy (μ, σ) random variables, then $\overline{X}_n = (X_1 + \cdots + X_k)/n$ is also Cauchy (μ, σ) .

Relation to Other Distributions

• t(1) = Cauchy(0, 1).

22 Laplace Distribution

Abbreviation Laplace(μ , σ).

Type Continuous.

Rationales The sample median is the maximum likelihood estimate of the location parameter.

Parameters Real numbers μ and $\sigma > 0$, called the mean and standard deviation, respectively.

Sample Space The real numbers.

Probability Density Function

$$f(x) = \frac{\sqrt{2}}{2\sigma} \exp\left(-\sqrt{2}\left|\frac{x-\mu}{\sigma}\right|\right), \quad -\infty < x < \infty$$

Moments

$$E(X) = \mu$$
$$var(X) = \sigma^2$$

23 Dirichlet Distribution

Abbreviation none.

Type Continuous. Multivariate.

Rationales

- multivatiate analog of beta distribution; Dirichlet is to Beta as Multinomial is to Binomial
- Conjugate prior for multinomial family.

Parameter Vector α having strictly positive real number components.

Sample Space The "unit simplex," the set of all probability vectors \mathbf{p} having the same dimension as $\boldsymbol{\alpha}$. If d is the dimension of $\boldsymbol{\alpha}$, then the sample space is

$$S = \{ \mathbf{x} \in [0,1]^d : x_1 + \dots + x_d = 1 \}.$$

Probability Density Function The Dirichlet distribution is degenerate since the components sum to one with probability one. If we drop the first component, then the remaining components have PDF

$$f(x_2, \dots, x_d) = \frac{\Gamma(\alpha_1 + \dots + \alpha_d)}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_d)} (1 - x_2 - \dots - x_d) \prod_{i=2}^d x_i^{\alpha_i - 1},$$
$$0 < x_i, i = 2, \dots, d \text{ and } x_2 + \dots + x_d < 1$$

where the gamma function is defined by (13.1) above.

Moments Let
$$I = \{1, \dots, d\}$$
. Then
$$E(X_i) = \frac{\alpha_i}{\alpha_1 + \dots + \alpha_d}$$

$$\operatorname{var}(X_i) = \frac{\alpha_i}{(\alpha_1 + \dots + \alpha_d)^2 (\alpha_1 + \dots + \alpha_d + 1)} \sum_{\substack{j \in I \\ j \neq i}} \alpha_j$$

$$\operatorname{cov}(X_i, X_j) = -\frac{\alpha_i \alpha_j}{(\alpha_1 + \dots + \alpha_d)^2 (\alpha_1 + \dots + \alpha_d + 1)}$$

Theorem The fact that the probability density function integrates to one is equivalent to the integral

$$\int \cdots \int (1 - x_2 - \cdots - x_d)^{\alpha_1 - 1} \left(\prod_{i=2}^d x_i^{\alpha_i - 1} \right) dx_2 \cdots dx_d$$

$$= \frac{\Gamma(\alpha_1) \cdots \Gamma(\alpha_d)}{\Gamma(\alpha_1 + \cdots + \alpha_d)}$$

Marginal Distributions Every univariate marginal is beta

$$X_i \sim \text{Beta}\left(\alpha_i, \sum_{\substack{i \in I \\ i \neq j}} \alpha_j\right)$$

where I is defined under Moments.

Multivariate marginals are "almost" Dirichlet. If we collapse categories, we get another Dirichlet. Let \mathcal{A} be a partition of $I = \{1, \ldots, d\}$, and define

$$Z_A = \sum_{i \in A} Y_i, \qquad A \in \mathcal{A}.$$

 $\beta_A = \sum_{i \in A} \alpha_i, \qquad A \in \mathcal{A}.$

Then the random vector having components Z_A has the Dirichlet distribution with parameter vector having components β_A .

Conditional Distributions Conditionals of Dirichlet are constant times Dirichlet. The conditional distribution of X_1, \ldots, X_k given X_{k+1}, \ldots, X_d is determined by the conditional distribution of the random vector **Y** having components

$$Y_i = \frac{X_i}{1 - X_{k+1} - \dots - X_d}$$

which has a Dirichlet distribution whose parameter vector has components $\alpha_1, \ldots, \alpha_k$. Multiplying **Y** by $1 - X_{k+1} - \cdots - X_d$ gives a random vector having the conditional distribution under discussion.

Relation to Other Distributions All univariate marginals are beta. The joint distribution can be written as a function of independent beta random variables.