
Stat 8931 Fall 2005 Class Notes

c©2005 Charles J. Geyer

Some Markov Chain Theory

Version of October 28, 2005

Contents

1 Applied Measure Theory 3

2 Conditional Probability and Kernels 4

3 General Markov Chains 6

4 Kernel Operations 7
4.1 Left Multiplication by a Measure 7
4.2 Right Multiplication by a Function 8
4.3 Multiplication of Kernels . 8
4.4 The Identity Kernel . 9

5 Special Types of Markov Chains 9
5.1 Stationary Markov Chains and Invariant Measures 9
5.2 Reversible Markov Chains . 10

6 Unnormalized Densities and Measures 11

7 The Metropolis Update 12
7.1 Algorithm . 12
7.2 Proof . 13
7.3 Examples . 15
7.4 Turning an Update into a Markov Chain 15
7.5 Choosing the Proposal Distribution 16
7.6 History . 17
7.7 Variable-at-a-Time Metropolis 19

8 Combining Updates I 20
8.1 Composition . 20
8.2 Composition versus Reversibility 21
8.3 State Independent Mixing . 22
8.4 Subsampling a Markov Chain 23

1

8.4.1 Fixed Interval . 23
8.4.2 Random Interval . 24

9 The Metropolis-Hastings Update 25
9.1 Algorithm . 25
9.2 Langevin Diffusion . 25

10 The Gibbs Update 27
10.1 Algorithm . 27
10.2 The Block Gibbs Update . 28
10.3 The Generalized Gibbs Update 28
10.4 Proof . 28
10.5 The Gibbs Sampler . 29
10.6 Examples . 29

11 The Swendsen-Wang Algorithm 30
11.1 The Ising Model . 30

11.1.1 The Basic Model . 30
11.1.2 Other Boundary Conditions 32
11.1.3 Phase Transitions . 33

11.2 The Potts Model . 34
11.3 Naive Metropolis and Gibbs 35
11.4 Swenden-Wang . 36
11.5 Lessons Learned . 40

12 Annealing and Tempering 41
12.1 Random Search Optimization 41
12.2 Simple Random Search Optimization 41
12.3 Adaptive Random Search Optimization 42
12.4 Simulated Annealing . 42
12.5 Parallel Tempering . 45
12.6 Serial Tempering . 46

13 Monte Carlo Likelihood 46
13.1 Methods . 46
13.2 Unknown Normalizing Constant Models 47

13.2.1 MCLA . 50
13.2.2 MCNR . 51
13.2.3 MCSA . 54
13.2.4 MCMM . 57

2

13.2.5 The Acid Test . 58
13.3 Missing Data Models . 58

13.3.1 MCLA . 59
13.3.2 MCNR . 62
13.3.3 MCSA . 62
13.3.4 MCEM . 62

13.4 Unknown Normalizing Constant Missing Data Models 64
13.4.1 MCSA . 66
13.4.2 MCEM . 66

13.5 Umbrella Sampling . 66

1 Applied Measure Theory

If X is a random element of some probability space having measure P ,
then we write

E{g(X)} =
∫
g(x)P (dx) (1)

whenever g is a real-valued function such that the expectation exists. From
an applied point of view, we can regard (1) as a convenient shorthand.
Whatever is meant by the left hand side is whatever is meant by the right
hand side.

IfX is a discrete random variable taking values in a set S with probability
mass function f , then (1) means

E{g(X)} =
∑
x∈S

g(x)f(x).

If X is a continuous random variable with probability density function f ,
then (1) means

E{g(X)} =
∫ +∞

−∞
g(x)f(x) dx.

If X is a continuous random vector taking values in R3 with probability
density function f , then (1) means

E{g(X)} =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
g(x1, x2, x3)f(x1, x2, x3) dx1 dx2 dx3.

IfX is a random variable that is neither discrete nor continuous, for example,
X is an exponential random variable with rate parameter λ right censored

3

at T (meaning we observe the exponential random variable or T , whichever
is smaller), then (1) means

E{g(X)} =
∫ T

0
g(x)λe−λx dx+ g(T)e−λT .

So the integral in (1) doesn’t necessarily mean integration in the sense of
calculus. It may mean summation or a combination of integration and sum-
mation. And even if it does mean integration in the sense of calculus, it may
mean a double, triple, or higher integral.

So measure-theoretic notation is valuable even in applied situations be-
cause it allows us to cover all the special cases with one notation. But isn’t
the left hand side of (1) and all those other equations good enough as a
common notation? Not really, because it is too vague. The right hand side
of (1) clearly indicates the measure P and clearly indicates that what ex-
pectation means depends (through P) on the probability model in question.
The left hand side doesn’t. This clarity will become more apparent as we
go along.

We shall not need the abstract measure-theoretic definition of measures
like P . It will be enough to know that when outside an integral, a measure
is a set function, a map from subsets A of the state space to probabilities
P (A). It is a deep theorem that such functions determine abstract integrals
like the right hand side of (1). But to apply measure theory, one only needs
to know that probability is a special case of expectation

P (A) = E{IA(X)} =
∫
A
P (dx), (2)

where IA denotes the indicator function of the set A,

IA(x) =

{
1, x ∈ A
0, otherwise

(3)

2 Conditional Probability and Kernels

In master’s level probability theory much is made of the operation of
finding conditional probabilities from joint probabilities. So much is made
of it that students in such courses can be forgiven their impression that that
is what conditional probabilities really are: thingummies derived from joint
probabilities by an operation they have learned. This notion is too limited
for general probability theory and too limited for the study of Markov chains.

4

The general view is actually much simpler. A conditional probability is
just a variable probability that depends on some other variable. Often this
other variable is written “behind the bar” so we write P (A|y) meaning that
the measure P (· |y) is a (possibly) different measure for each different y. If Q
is another measure on a state space where y takes values then the “product”
of P and Q is the “joint measure” and we can calculate expectations.

E{g(X,Y)} =
∫∫

g(x, y)P (dx|y)Q(dy). (4)

As in the case of only one abstract (measure-theoretic) integral, this iterated
integral may mean summation, integration or a combination of the two.
Each of the iterated integrals on the right hand side of (4) (with respect
to x and with respect to y) is an expectation just like any of the special
cases in the preceding section. After we have done the integral with respect
to x (which is such an operation, ordinary integration, summation, or a
combination of the two, as the case may be), we are left with another such
integral with respect to y.

Markov chain theory is somewhat eccentric in its notation. We don’t use
the “bar” notation for conditional probability, insisting on rewriting (4) as

E{g(X,Y)} =
∫∫

g(x, y)P (y, dx)Q(dy), (5)

the only difference between the two being that one has P (dx|y) where the
other has P (y, dx) and this is a mere notational quibble. Nevertheless the
difference is important. If you can’t recognize that (5) means the same thing
as (4), then you can’t understand the Markov chain literature.

Probabilities are nonnegative and integrate (abstractly, meaning ordi-
nary integration, summation, or a combination of the two) to one so we
have

Q(B) ≥ 0, for all B

and ∫
Q(dy) = 1

and also
P (y,A) ≥ 0, for all y and all A

and ∫
P (y, dx) = 1, for all y.

5

But for complete generality, we want to drop this restriction. A signed
measure is an arbitrary real-valued set function. It can be thought of as a
linear combination of probability measures

µ(A) = α1P1(A)− α2P2(A)

where P1 and P2 are probability measures and α1 and α2 are positive real
constants (it is another deep theorem that all signed measures can be written
this way). A kernel K is an arbitrary function1 of two variables a point x
and a set A. An arbitrary kernel K is Markov if all of the measures are
probability measures

K(x,A) ≥ 0, for all x and all A (6a)∫
K(x, dy) = 1, for all x. (6b)

And K is sub-Markov if (6a) holds and (6b) with = replaced by ≤ holds.

3 General Markov Chains

A Markov chain is a sequence X1, X2, . . . of random elements of some
space, called the state space of the Markov chain, that has the Markov
property

the future is independent of the past given the present,

which in notation is that

E{g(Xn+1, Xn+2, . . .)|X1, . . . , Xn} = E{g(Xn+1, Xn+2, . . .)|Xn}

for any function g (of an infinite number of random elements (the entire
future after time n) for which the expectation exists. Using the Markov
property and the iterated expectation theorem we have

E{g(Xn+1, Xn+2, . . .)|X1, . . . , Xn}
= E

{
E[g(Xn+1, Xn+2, . . .)|X1, . . . , Xn+1]

∣∣ X1, . . . , Xn

}
= E

{
E[g(Xn+1, Xn+2, . . .)|Xn+1]

∣∣ X1, . . . , Xn

}
= E{h(Xn+1)|X1, . . . , Xn}

= E{h(Xn+1)|Xn}
1Not completely arbitrary, the measure-theoretic definition is that K(x, ·) is a signed

measure for each fixed x and K(· , A) is a measurable function for each fixed A.

6

where we have defined

h(Xn+1) = E[g(Xn+1, Xn+2, . . .)|Xn+1].

Thus we see that the “one-step transition probabilities” E{h(Xn+1)|Xn} for
arbitrary functions h and integers n are sufficient to determine everything
about the Markov chain.

Let Q be the marginal distribution of X1 (the initial distribution of the
Markov chain, and let Pn be the Markov kernel that gives the distribution
of Xn given Xn−1 for n = 2, 3, Then we can calculate the so-called
“finite-dimensional distributions” of the Markov chain as

E{g(X1, . . . , Xn)}

=
∫∫

· · ·
∫
Q(dx1)P2(x1, dx2) · · ·Pn(xn−1, dxn)g(x1, . . . , xn)

(and it is another deep theorem of measure theory that the finite-dimensional
distributions determine a unique infinite-dimensional distribution for the
whole sequence).

The Pn are called the transition probability kernels, and the Markov
chain is said to have stationary transition probabilities if Pn does not de-
pend on n. In MCMC we are only interested in Markov chains with station-
ary transition probabilities, and in a bit we shall adopt the convention that
“Markov chain” implies “stationary transition probabilities” unless other-
wise explicitly stated. But we continue a bit with general Markov chains.

4 Kernel Operations

4.1 Left Multiplication by a Measure

If µ is a general signed measure and K a general kernel, we define the
notation µK = ν to mean

ν(A) =
∫
µ(dx)K(x,A), for all A.

When we specialize this definition to probability measures and Markov ker-
nels we get the following interpretation. If µ is the marginal distribution of
Xn and P is the kernel that gives the conditional distribution of Xn+1 given
Xn, then ν = µP is the marginal distribution of Xn+1. This is essentially
what (5) says when we replace X and Y in (5) with Xn+1 and Xn. Thus

7

left multiplication of the transition probability kernel by the
marginal distribution at time n shifts forward in time to the
marginal distribution at time n+ 1.

4.2 Right Multiplication by a Function

If g is a general function on the state space and K a general kernel, we
define the notation h = Kg to mean

h(x) =
∫
K(x, dy)g(y), for all x.

When we specialize this definition to Markov kernels kernels we get the
following interpretation. If P is the kernel that gives the conditional dis-
tribution of Xn+1 given Xn, then h = Pg is the conditional expectation of
g(Xn+1) given Xn

h(Xn) = E{g(Xn+1)|Xn}.

Thus

right multiplication of the transition probability kernel by a func-
tion gives the lag one conditional expectation of that function.

4.3 Multiplication of Kernels

If K1 and K2 are general kernels, we define the notation K3 = K1K2 to
mean

K3(x,A) =
∫
K1(x, dy)K2(y,A), for all x and all A.

If P2, P3, . . . are the transition probability kernels of a general Markov chain,
then PnPn+1 is the conditional distribution of Xn+1 given Xn−1. Why do we
write K3 = K1K2 rather than in the other order K3 = K2K1? So it works
with our other two notations! If µ is the marginal distribution of Xn−1,
then µPnPn+1 is the marginal distribution of Xn+1, and multiplication is
associative

(µPn)Pn+1 = µ(PnPn+1).

Similarly, if g is a general function on the state space, then PnPn+1g is
the conditional expectation of g(Xn+1) given Xn−1, and multiplication is
associative

(PnPn+1)g = Pn(Pn+1g).

8

Because of the associativity of multiplication (all three multiplication op-
erations), we can omit the parentheses. If P is the transition probability
kernel of a Markov chain with stationary transition probabilities, then Pn,
meaning PP · · ·P with n factors, is the conditional distribution of Xn+1

given X1. If µ is the initial measure of the Markov chain, then µPn is the
marginal distribution of Xn+1.

4.4 The Identity Kernel

The identity kernel on the state space is defined by

I(x,A) =

{
1, x ∈ A
0, otherwise

Comparing with (3) we recognize the right hand side: I(x,A) means the
same thing as IA(x). Of course, I and IA do not mean the same thing (one
is a kernel, the other a function). The function IA can be written I(· , A).

It is easily checked that I is the identity element for kernel multiplication:
KI = IK = K for all kernels K. To evaluate KI we need to understand
that I(x, ·) is the probability measure concentrated at the point x, so for
any function g ∫

I(x, dy)g(y) = g(x).

So I also behaves as the identity in Ig = g and µI = µ.
Not only is I as important to “kernel theory” as zero is important to

arithmetic (and for the same reasons), but I is also the transition probability
kernel of a Markov chain, a rather useless Markov chain that goes nowhere
and does nothing, satisfying X1 = X2 = · · · with probability one (all the
variables are exact copies of the first). This fact will mostly be important
as a source of simple counterexamples.

5 Special Types of Markov Chains

5.1 Stationary Markov Chains and Invariant Measures

If P is a Markov kernel, then π is an invariant measure for P if πP = π
(also called stationary distribution and equilibrium distribution).

We now impose the convention that “Markov chain” implies “with sta-
tionary transition probabilities” unless otherwise explicitly noted. Then if
π is the initial distribution and P the transition probability kernel of a

9

Markov chain and πP = π, then we also have πPn = π for all n, so all of
the Xn have the same marginal distribution (thus justifying the name “sta-
tionary”). Moreover, it is easily checked that the joint distribution of the
k-tuple (Xn+1, . . . , Xn+k) does not depend on k, which makes the Markov
chain (by definition) a strictly stationary stochastic process.

Invariant measures need not exist, for example, consider the Markov
chain on the integers that always moves one step to the right (xn+1 = xn+1
with probability one). If an invariant measure exists, it need not be unique,
for example, consider the Markov chain with identity transition kernel (µI =
µ for all measures µ).

When we do MCMC we always assume (prove, hopefully) that an in-
variant measure exists, is unique, is the one we want, and the Markov chain
converges rapidly to equilibrium.

5.2 Reversible Markov Chains

If P is a Markov kernel, then P is reversible with respect to a measure
π if ∫∫

π(dx)P (x, dy)g(x, y) =
∫∫

π(dx)P (x, dy)g(y, x) (7)

whenever g is such that the integrals exist (g is bounded, for example).
Plugging g(x, y) = IA(y) into (7) we get∫

π(dx)P (x,A) =
∫
A

∫
π(dx)P (x, dy) =

∫
A
π(dx) = π(A),

which is πP = π. Hence P reversible with respect to π implies π is invariant
for P .

The reason the notion is called “reversible” (sometimes “time reversible”)
is that when π is used as the initial distribution, so the chain is stationary,
(7) has the interpretation that the joint distribution of the pair (Xn, Xn+1)
is the same as the joint distribution of the pair (Xn+1, Xn) with the order
reversed. From this one easily shows that the k-tuple (Xn+1, . . . , Xn+k) has
the same joint distribution as the k-tuple (Xn+k, . . . , Xn+1) with the order
reversed.

Thus we say the stationary chain with reversible kernel P looks the
same (in distribution) running forward or backward. Note well that a non-
stationary chain with kernel P will not look the same running forward or
backward.

The main use of reversibility in MCMC is constructing kernels that have
a specified invariant distribution. Given π, find a P such that P is reversible

10

w. r. t. (with respect to) π. It turns out that this is a much easier problem
than: given π find a P that preserves π (meaning π is invariant for P). The
reason is that πP = π is a difficult integral equation to solve for P given π,
whereas (7) although even more difficult if considered as an integral equation
to solve, is quite trivial when considered as a symmetry condition to check
(swapping x and y in the argument of g doesn’t change anything). The
reversibility condition is sometimes written

π(dx)P (x, dy) = π(dy)P (y, dx)

meaning that if we hit both sides with g(x, y) and integrate, we get the
same thing, regardless of what function g we use (so long as the expectations
exist).

6 Unnormalized Densities and Measures

Let π be a probability measure and let λ be a measure that dominates
π, meaning π has a density f with respect to λ

π(A) =
∫
A
f(x)λ(dx).

In most cases λ is Lebesgue measure, so λ(dx) is just plain dx and f is the
ordinary probability density function (but x is usually a vector although
the notation doesn’t explicitly indicate this and the integral is a multiple
integral, because MCMC is never needed for one-dimensional problems). In
most of the remaining cases λ is counting measure on a finite set S, so the
integral becomes an ordinary sum

π(A) =
∑
x∈A

f(x)

and f is the ordinary probability mass function.
A useful notion in MCMC is the unnormalized density which means a

function h = cf , where 0 < c < ∞. Of course, h determines f because f
integrates to one, so h integrates to c

c =
∫
h(x)λ(dx)

and f = h/c.
The reason for introducing this notion is that it turns out that most

methods of specifying MCMC algorithms need only specify unnormalized

11

densities and this turns out to be very convenient (in Bayesian inference, for
example, the unnormalized posterior is likelihood times prior, which requires
no computation to specify).

Similarly, we say that η = cπ is an unnormalized probability measure
(which means no more than a positive, finite measure). The unnormalized
density h is the density w. r. t. λ of the unnormalized measure η. We can
say we are specifying either h or η.

Note that π is invariant for P if and only if η is invariant for P . Similarly,
P is reversible w. r. t. π if and only if it is reversible w. r. t. η.

7 The Metropolis Update

7.1 Algorithm

Given an unnormalized density h with respect to λ, the Metropolis up-
date makes a random change to the state that preserves the distribution
having this unnormalized density. Thus, if iterated, it produces a Markov
chain with h as the unnormalized density of the equilibrium distribution.

Let q be any function on the product of the state space with itself such
that

• q(x, y) = q(y, x) for all x and y,

• q(x, ·) is a probability density w. r. t. λ for all x, and

• it is possible to simulate random realizations from q(x, ·) for all x.

The Metropolis update of the state moves from a state x to the state x∗

according to the following procedure

• [The Proposal] Simulate y from q(x, ·).

• [The Odds Ratio] Calculate

r =
h(y)
h(x)

(8)

• [Metropolis Rejection] With probability min(r, 1) set x∗ = y, otherwise
set y = x.

In the last step we say we “accept the proposal” when we set x∗ = y and
otherwise we say we “reject the proposal.”

12

The update is undefined when h(x) = 0, but h(y) = 0 is allowed. Such
a proposal gives r = 0 so we “accept” the proposal with probability zero.
If the update is used as the transition probability mechanism of a Markov
chain, then so long as h(x1) > 0 each iterate will be well-defined and satisfy
h(xn) > 0 as well.

Computer code for the update looks something like this, supposing rq(x)
simulates a random variate having density q(x, ·) and runif simulates a
uniform (0, 1) random variate

y = rq(x);
r = h(y) / h(x);
if (runif() < r)

x = y;

Or one can save a call to runif sometimes with

y = rq(x);
r = h(y) / h(x);
if (r < 1 && runif() < r)

x = y;

(the value of x at the end is what is denoted x∗ in the mathematical de-
scription).

Note well that when the “Metropolis rejection” step “rejects” the state
does not change (we have x∗ = x). So a Markov chain that is produced by
iterating a Metropolis update over and over, has many steps when the state
does not change. This is part of preserving π. Any attempt to avoid this
“rejection” only ruins the algorithm. The state not changing in “rejection”
steps is not a bug, it’s a feature. It’s what makes the algorithm get the
correct stationary distribution with only trivial calculations.

7.2 Proof

We claim this update defines a kernel P that is reversible w. r. t. η. First
we define the kernel. Let

a(x, y) = min
(
h(y)
h(x)

, 1
)

be the probability that the “Metropolis rejection” step is “accepted” (exe-
cutes the assignment x = y). Then

P (x,A) =
∫
A
q(x, y)a(x, y)λ(dy) + I(x,A)

(
1−

∫
q(x, y)a(x, y)λ(dy)

)
.

13

This is a little complicated, but sensible if we take it one bit at a time. We
can move from x to A by proposing y ∈ A and accepting (that’s the first
term) or by having x ∈ A originally (that’s what the I(x,A) is in there for)
and proposing some y that is rejected (that’s the term in the big parens).

Now∫∫
η(dx)P (x, dy)g(x, y) =

∫∫
h(x)q(x, y)a(x, y)g(x, y)λ(dx)λ(dy)

+
∫
h(x)g(x, x)

(
1−

∫
q(x, y)a(x, y)λ(dy)

)
λ(dx)

and the second term on the right hand side (the second line of the display)
is obviously unchanged if the two arguments of g are swapped (since they
are both x). Thus we only need to show that the first term is unchanged if
we replace g(x, y) by g(y, x). So∫∫

h(x)q(x, y)a(x, y)g(x, y)λ(dx)λ(dy)

=
∫∫

h(y)q(y, x)a(y, x)g(y, x)λ(dy)λ(dx)

=
∫∫

h(y)q(x, y)a(y, x)g(y, x)λ(dy)λ(dx)

the first inequality being interchange of dummy variables and the other
being the symmetry requirement q(x, y) = q(y, x). Thus in order to finish
the proof it is enough to show that

h(x)a(x, y) = h(y)a(y, x), for all x and all y. (9)

To prove that, assume without loss of generality that h(x) ≥ h(y). Then

a(x, y) =
h(y)
h(x)

≤ 1

and
a(y, x) = 1

so
h(x)a(x, y) = h(x) · h(y)

h(x)
= h(y)

and
h(y)a(y, x) = h(y)

so (9) does indeed hold, and the Metropolis update does indeed preserve η
because its kernel is reversible w. r. t. η.

14

7.3 Examples

The standard example is to make q(x, ·) be a nondegenerate multivariate
normal distribution centered at x. Then

q(x, y) = φ(x− y)

where φ is multivariate normal centered at zero. Hence q does indeed have
the required symmetry property. This is the update used by the metrop
function in the mcmc contributed package for R. The variance-covariance
matrix of the normal proposal can be anything so long as it is nonsingular.
In order that the Markov chain have stationary transition probabilities, the
proposal distribution must not change. We must use the same variance-
covariance matrix for all proposals.

Clearly, the particular form of the normal distribution plays no role in
the preceding example. We could replace the normal φ above by any density
having point symmetry about zero

φ(x) = φ(−x), for all x.

There are not many such symmetric multivariate distributions that can be
simulated so as to make suitable proposals. The only other obviously correct
possibility is uniform on any region having a center of symmetry with x being
the center. The regions could be balls, ellipsoids, or boxes. It is not clear
that any of these are better than normal proposals.

7.4 Turning an Update into a Markov Chain

One makes a Markov chain (with stationary transition probabilities, our
default assumption) by executing the same random mechanism over and
over and letting Xn be the state after the n-th execution. This random
mechanism is associated with a transition probability kernel P . The chain
starts at X0 which can have any distribution (the “initial distribution” µ).

MCMC involves running a Markov chain with transition proba-
bility kernel P and invariant distribution π.

That’s all there is to it. There’s a Markov chain. You run it. And you
use averages over the run to estimate (approximate, calculate, whatever)
properties of π.

Right now, we only know one way to make a kernel P that preserves a
specified stationary distribution π, the Metropolis update. So right now our

15

recipe for doing MCMC is to iterate the same Metropolis update over and
over.

But we shall soon (Sections 7.7 and 10) meet two other methods of
making what we call elementary updates, the “indivisible atoms” of MCMC
mechanisms, and we shall also soon (Section 8) meet methods of combining
elementary updates to make a “combined kernel” P that preserves a specified
π. Then everything we said here will apply to these more general update
mechanisms. Given π you construct a random mechanism described by a
kernel P (elementary or combined) that preserves π. Then one makes a
Markov chain (with stationary distribution π) by executing this random
mechanism over and over.

7.5 Choosing the Proposal Distribution

The wonderful feature of the Metropolis algorithm, that any proposal
works, leaves us with a difficult problem of too many choices. Some propos-
als will work better than others (will produce more accurate Monte Carlo
approximation in the same amount of computer time). Which do we choose?

In general, there is very little one can say. The possible problems that
MCMC can be used to solve include every possible probability problem,
not to mention every possible integration problem (thus going far beyond
probability and statistics). This class of problems is so general, that nothing
can be said at this level of generality.

Most discussions in the literature focus on the acceptance rate in the
Metropolis rejection step (the proportion of Metropolis proposals that are
accepted) as a guide. Moreover, they focus on a particular class of proposals
(for example, multivariate normal Metropolis proposals). With such simpli-
fication of the problem, our choices seem much simpler. How do we adjust
the variance matrix of the (multivariate normal) proposal so as to get good
performance, and how does the acceptance rate indicate good performance?

It is important to understand that higher acceptance rate is not neces-
sarily good.

• If the unnormalized density h is continuous, then one can always make
the acceptance rate as close to one as one pleases by making the pro-
posal variance very very small so h(y) and h(x) are nearly equal and
the odds ratio is nearly one.

But such “baby steps” take a very long time to get anywhere.

• Conversely, consider “giant steps” with very large proposal variance.

16

In order for h to be integrable, it must go to zero at infinity, thus if the
current position x is from the equilibrium distribution and y is very
far from x we will generally have h(y) � h(x) and the odds ratio is
nearly zero.

The “giant steps are bad” part of the argument is not so clear as the “baby
steps are bad” part, but it is clear that we do not want an acceptance rate
so low that there are very few acceptances in the entire run of the Markov
chain that we are willing to do. It is clear that we don’t want an acceptance
rate that is either zero or one, and intuitively obvious that we don’t want
an acceptance rate that is nearly zero or one either.

Thus it seems that we have something of a “Goldilocks problem” (we
don’t want the porridge too hot or two cold as in the children’s story of
Goldilocks and the three bears). We want an acceptance rate somewhere
between zero and one. Surprisingly, it is possible to work out the theo-
retically optimal acceptance rate for some very simple problems. Gelman
et al. (1996) considered the problem of sampling the multivariate normal
distribution (which, of course, does not need MCMC but is simple enough
to analyze theoretically) and showed that an acceptance rate of about 20%
was right for normal proposal Metropolis (the optimal rate goes to 23.4%
and the dimension of the state space goes to infinity).

In a quite different situation Geyer and Thompson (1995) came to a
similar conclusion, that a 20% acceptance rate is about right, But they also
warned that a 20% acceptance rate could be very wrong and produced an
example where a 20% acceptance rate was impossible and attempting to
reduce the acceptance rate below 70% would keep the sampler from ever
visiting part of the state space.

The 20% magic number must be considered like other rules of thumb we
teach in intro courses (like n > 30 means means normal approximation is
valid). It is not at all clear that the focus on acceptance rate as the sole
criterion of goodness of proposal makes any sense. Even if one decides to
focus on acceptance rate, we have no theory that tells us what acceptance
rate to use in general.

For more on acceptance rates, see the discussion at the end of Section 9.2.

7.6 History

The Metropolis update was invented by Metropolis, Rosenbluth, Rosen-
bluth, Teller, and Teller (1953) at the dawn of the computer age, when Los
Alamos National Laboratory was one of the few places that had a computer.

17

Metropolis et al. (1953) did not use the Metropolis update described here
but the variable-at-a-time updates described later. Metropolis et al. (1953)
were not doing probability and statistics, but simulating the thermodynamic
equilibrium distribution of a physical system (a liquid in equilibrium with its
vapor phase). This is natural. Physical systems are continuous time Markov
processes. To find out about their equilibrium distribution, let them come
into equilibrium, and then run them for a long time and average. That’s
what thermodynamic equilibrium distribution means. The tour de force in-
volved in the paper is the realization of Metropolis et al. (1953) that the
physical system need not be simulated exactly, but that any continuous
time or discrete time Markov process having the same equilibrium distri-
bution could be used instead (because, after all, it will, by definition, give
the same answer). The other contribution of Metropolis et al. (1953) was
understanding the reversibility argument for finding a Markov chain with a
specified equilibrium distribution.

Despite never having been forgotten in computational physics and chem-
istry, and despite being known in spatial statistics which used Markov ran-
dom field models similar to those used in statistical physics (for example,
Ising and Potts models, explained in Section 11.1 and 11.2 below), being
explained in Ripley (1987), for example, the Metropolis algorithm was little
used in statistics until after MCMC became popular in the form of the Gibbs
sampler following the appearance of Gelfand and Smith (1990). It wasn’t
until several years later that Clifford (1993), discussing a Royal Statistical
Society meeting in which three papers on MCMC were read, said

Surely it has to be recognized that the Gibbs sampler attained
prominence by accident. Currently, there are many statisticians
trying to reverse out of this cul-de-sac. To use the Gibbs sampler,
we have to be good at manipulating conditional distributions and
ingenious in sampling, so this rather brings back the mystique
of the statisticians. The same equilibrium can be attained by
using a Markov chain in which sites are updated one at at time
by the Metropolis method. This only involves calculating ratios
of densities to accept or reject the sampled state at each site. It
is very much easier to programme

I couldn’t have said it better myself. For Americans, “reverse out of this
cul-de-sac” means back out of this dead end street. The only thing to
be added is that the simple Metropolis update (not the variable-at-a-time
update Clifford specifically refers to) is also good. I can tell a story about an
experienced MCMC user who in 2005, although well aware of the Metropolis

18

update, having used it in previous work, went through incredible contortions
trying to do an approximate Gibbs update. When I pointed out after his
talk (fortunately a “work in progress” talk) that Metropolis would be easy,
he said “I’m embarrassed.” A week later Metropolis was working well for
him. I could tell a dozen other stories where experienced MCMC users asked
me for help when the only real problem is that they were trying to use Gibbs
instead of Metropolis. It may add to “the mystique of the statisticians” but
it makes many simple problems impossibly hard.

7.7 Variable-at-a-Time Metropolis

As mentioned in the history, Metropolis et al. (1953) actually used a
variant of the update described in Section 7.1 that most people nowadays
think of as the plain Metropolis update. We call the variant described in
this section “variable-at-a-time” Metropolis.

In this section subscripts denote components of the state vector not
different variables of a Markov chain. Everything remains the same as de-
scribed in Section 7.1 except that the proposal only changes one component
of the state, which is a vector x = (x1, . . . , xd). The proposal is of the form

y = (y1, . . . , yd) = (x1, . . . , xj−1, yj , xj+1, . . . , xd),

that is, we have yi = xi except for yj , which is a new random variate. The
proposal density qj(x, yj) must thus be a density w. r. t. a measure λj which
is on the space in which xj and yj take values, and the unnormalized density
h of the desired stationary distribution must be a density w. r. t. the product
measure λ = λ1 × · · · × λd. The symmetry requirement is now

• qj(x, yj) = qj(y, xj) for all x and y.

Then everything goes through unchanged (the odds ratio and Metropolis
rejection are the same). The proof in Section 7.2 can be altered for this
variable-at-a-time update—the changes are mostly notational—but, since
this update is a special case of the Metropolis-Hastings-Green update we
shall omit the details.

A variable-at-a-time Metropolis update does not, by itself, make a good
Markov chain. Since it only changes one variable, it can never sample the
equilibrium distribution. There are many ways to combine different updates
that preserve the same stationary distribution to make a “combined update”
that also preserves that distribution and does make a good Markov chain.
These ways deserve a section of their own, which follows.

19

8 Combining Updates I

8.1 Composition

It is a trivial observation that if each term of a product of kernels pre-
serves a stationary distribution, then so does the product, in mathematical
notation

πPi = π, for all i

implies
πP1P2 . . . Pd = π,

the proof being the aforementioned multiplication is associative (applied to
kernel operations).

This idea is most frequently called “fixed scan” in the literature, the
image being one of making a “scan” over the possible choices in fixed order.

The reason we like the term composition is because that is what it is
mathematically in several senses. One can think of kernels as linear opera-
tors on the space of signed measures (a kernel K mapping µ 7→ µK), and
then this is composition of operators

P1P2 · · ·Pd = Pd ◦ Pd−1 ◦ · · · ◦ P1

(note the reversal of order). One can also think of kernels as linear operators
on the space of functions (a kernel K mapping g 7→ Kg), and then this is
composition of operators

P1P2 · · ·Pd = P1 ◦ P2 ◦ · · · ◦ Pd

(note the non-reversal of order). One can also think of kernels as linear
operators on the space of kernels, in which case there are two kinds M 7→
MK and M 7→ KM , and the two kinds correspond to the two compositions
above.

This recognition of composition makes the proof obvious (composition
of operators is always associative, whether or not the operators have any-
thing to do with Markov chains). Whichever one prefers, “composition” or
“fixed scan,” it is important to understand the method clearly and its trivial
proof. Note that it is our measure-theoretic notation and our knowledge of
kernel operations that make everything trivial. If we insisted on master’s
level theory with integrals and sums written our explicitly and lots of case
splitting, this could be made arbitrarily messy and confusing.

20

8.2 Composition versus Reversibility

A Metropolis update (plain or variable-at-a-time) is reversible (more pre-
cisely, its kernel is reversible w. r. t. π). But a composition of reversible
kernels is, in general, not reversible. The “reverse” of the composition
P1P2 · · ·Pd is the composition PdPd−1 · · ·P1 and these kernels are reversible
if and only if they are the same:

P1P2 · · ·Pd = PdPd−1 · · ·P1.

One way to make them the same is to use a palindromic composition2

that is obviously the same when reversed, such as P1P2P3P1P3P2P1. Of
course, a palindromic composition can also be called a palindromic fixed
scan.

The connection between reversibility and composition is curious and of
some theoretical importance. Theory for reversible Markov chains is much
sharper and better understood than for non-reversible Markov chains. All
known methods of MCMC that apply to complicated problems use the re-
versibility principle and have “elementary” updates (the “atoms” from which
combined updates are formed) that are reversible.

The other methods of combining updates that we shall study (various
forms of “mixing”) also preserve reversibility. The only source of non-
reversibility is non-palindromic composition. One can hold two attitudes
toward this.

(i) Since palindromic composition is easy and has sharper theory, use it.

(ii) Since palindromic compositions are generally twice as long as need be,
and since non-reversibility only makes the theory somewhat messier
and less sharp, which may not be of any practical concern, why bother?

(iii) Moreover, since non-reversible MCMC, at least in theory, can be more
efficient than reversible MCMC, non-palindromic composition may do
some good.

Although there is some literature on non-reversible MCMC (see Mira and
Geyer, 2000, and other works cited therein), little progress has been made
on the only kind of reversibility that arises in practice, which is from non-
palindromic composition. In particular, it is not known whether point (iii)
above, is of any practical importance.

2A palindrome is a phrase that reads the same forwards and backwards, such as “Able
was I ere I saw Elba.”

21

Your humble author holds the view (i) above, but admits the case is not
overwhelming.

8.3 State Independent Mixing

If multiplication of kernels provides one method of combining, perhaps
addition provides another? Addition of kernels is well defined and obvious,
but does not correspond to any probabilistic operation. The sum of Markov
kernels is not Markov (the sum integrates to two, not one).

However, a convex combination of kernels

q1P1 + q2P2 + · · ·+ qdPd

where the Pi are Markov kernels and the qi are nonnegative real numbers
that sum to one (and do not depend on x or A in the kernels), does cor-
respond to a probabilistic operation. This combined update proceeds as
follows.

• Choose an index j at random, choosing j with probability qj .

• Update the state using the mechanism with kernel Pj .

We call this state independent mixing to contrast with state dependent
mixing, which will be covered later. State independent means the qj do not
depend on the state x. That

π(q1P1 + q2P2 + · · ·+ qdPd) = π

is again a trivial matter of algebra (and the fact that the qi sum to one),
and again it is our use of measure-theoretic notation that makes it trivial.
It is crucial that the qi do not depend on x or A. As we shall see, state
dependent mixing is rather less trivial.

What we are calling mixing here is more often called “random scan” in
the literature, the image being one of making a “scan” over the possible
choices in random order. But from our point of view (the “update” point of
view), this term is highly misleading. A state independent mixing update
does not do a “scan.” Rather it executes the mechanism associated with
exactly one Pj (chosen randomly).

It is only slightly less trivial that the mixing can be over an infinite set
of choices. Say Pz is for each z a Markov kernel that preserves π and Q
is an arbitrary measure on the space where z lives. The mixture kernel

22

associated with the mechanism that chooses z at random according to Q
and then executes the mechanism having kernel Pz is

Pmix(x,A) =
∫
Q(dz)Pz(x,A)

and πPmix = π written out in full is

π(A) =
∫
π(dx)

∫
Q(dz)Pz(x,A)

The Fubini theorem (change of order of doing double integrals) says∫
π(dx)

∫
Q(dz)Pz(x,A) =

∫
Q(dz)

∫
π(dx)Pz(x,A)

=
∫
Q(dz)π(A)

= π(A)

The main use of this mixing over an infinite choice of possibilities is the
so-called hit-and-run sampler (what this has to do with leaving the scene of
an auto accident has always been a mystery to me, perhaps any catchy short
name is good, even if it makes no sense) proposed by Bélisle et al. (1993)
and further studied by Chen and Schmeiser (1993).

In this sampler, the state space is Euclidean. The random choice is a
direction. Then one (conceptually) does a change-of-variable so that only
one coordinate changes along that direction and updates that coordinate
variable using a variable-at-a-time Metropolis (or Metropolis-Hastings or
Gibbs) update.

This algorithm has no particular virtues, but it is good to know that it
fits into our general notions about combining updates, which shows these
notions are general enough to encompass a wide variety of schemes.

8.4 Subsampling a Markov Chain

Although rarely thought of as belonging in this section (combining up-
dates), a subsampled Markov chain is just a special case of composition.

8.4.1 Fixed Interval

If P is a Markov kernel, then P k is also a Markov kernel, and P k is
clearly the k-fold composition of P with itself. If X1, X2, . . . is a Markov
chain with kernel P , then Xk, X2k, . . . is a Markov chain with kernel P k.

23

This operation is commonly called “subsampling” the Markov chain.
The original justification was that the subsampling lessened the autocorre-
lation in the chain, but this is wrong headed. As Elizabeth Thompson once
eloquently summed it up,

you don’t get a better answer by throwing away data.

The first formal proof of this (for reversible chains only) was given by Geyer
(1992). Then MacEachern and Berliner (1994) gave a much simpler proof
that also applied to non-reversible chains.

Geyer (1992) also gave a finer analysis. If one considers not only the
cost (computing time, memory usage, whatever) of generating the Markov
chain, but also the cost of using the samples generated and notices that a
subsampled chain will have cost of generation proportional to kn where k
is the spacing and n the number of iterates in the subsampled chain, but
the cost of using samples will be proportional to n. So subsampling may
be effective, but only if the cost of “using” is large compared to the cost of
“sampling.” The theorems that forbid subsampling mentioned above assume
zero cost of “using.”

The point is not that one should do such an analysis (the analysis would
generally take longer than just going ahead and doing something subopti-
mal). The point is to be aware of the issue. Before these theorems, sub-
sampling sounded plausible to many MCMC experts. Even if one considers
costs, most users’ intuitions about subsampling are far too favorable to it.
Most users guess that intervals like 100 or 1000 are a good idea when a
formal analysis would say something more like 3 or 5 is optimal.

Moreover, subsampling also competes with the method of batch means.
If the only point of subsampling is to avoid excessive memory use, then one
can batch instead of subsample and get the full accuracy possible without
using more memory.

8.4.2 Random Interval

Fixed interval subsampling can be “part of the problem not part of the
solution” because it can convert an effective sampler into a useless one.
This most often happens when the original sampler is periodic, but can also
happen when the original sampler is only “nearly” periodic. Subsampling
using an interval that is a multiple of the period (or “near” period) can
destroy all of the good properties of the sampler (even mere irreducibility).

But subsampling at a random interval has no such drawbacks. Surpris-
ingly, this idea seems unknown to MCMC practitioners, although it is a

24

major theoretical tool in the best Markov chain theory book (Meyn and
Tweedie, 1993).

Since it is hardly used, we need say no more about it other than to
mention that it also fits into our general notions about combining updates.
It is a mixture of updates, which are themselves compositions. The random
choice selects a random non-negative integer j, and the update executes
the mechanism associated with P j , where P 0 is another notation for the
identity kernel I. So this is state independent mixing from a possibly infinite
mixture. This again shows our notions about combining are general enough
to encompass a wide variety of schemes.

9 The Metropolis-Hastings Update

9.1 Algorithm

Hastings (1970) proposed a variant of the Metropolis which makes the
symmetry requirement unnecessary. Everything is the same as described in
Section 7.1 except that the requirement

• q(x, y) = q(y, x) for all x and y

is dropped and replaced by the much weaker

• q(x, y) can be evaluated for all x and y.

Of course, without the symmetry requirement, the algorithm is no longer
correct, but Hastings found that the simple change of replacing the Metropo-
lis definition of r in (8) by

r =
h(y)q(y, x)
h(x)q(x, y)

(10)

restores correctness.
Then everything goes through unchanged (use this r in the Metropolis

rejection and everything else works the same). The proof in Section 7.2
can be altered for this Metropolis-Hastings update, but, since this update
is a special case of the Metropolis-Hastings-Green update we shall omit the
details.

9.2 Langevin Diffusion

Grenander and Miller (1994) proposed using a continuous time rather
than a discrete time Markov process for simulation. They were not the first

25

to do this, as we shall later see in the context of spatial point processes. The
problem with this is that a computer can’t do continuous time. One must
use a discrete-time approximation. But then one is not actually doing the
process one is theorizing about. It turns out that discretizing a continuous
time process like this is highly problematic (Roberts and Tweedie, 1996); the
convergence properties of the continuous time process need not correspond
to those of the discrete time approximation.

But there is a much simpler way to see this is problematic. Let us intro-
duce the term exact MCMC for running a Markov chain that has exactly the
claimed stationary distribution. Of course, the “exact” here ignores both
rounding errors in computer arithmetic (which is a different kind of discrete
approximation) and any defects of the random number generators that are
raw materials for our MCMC algorithms. Generally, statisticians ignore
rounding errors because theory about that lies in a different discipline: nu-
merical analysis. They also, for the most part ignore defects in random num-
ber generators, because currently available random number generators are so
good that whatever defects there may be are negligible compared to MCMC
convergence issues. Thus “exact” MCMC is the most one tries to achieve.
We claim it should also be the least. Since “exact” MCMC is so easy to
achieve (just correctly implement Metropolis, Metropolis-Hastings, Gibbs,
Metropolis-Hastings-Green, with correct combining of updates), there is no
excuse for not being “exact.”

Grenander and Miller (1994) were not “exact” and in hindsight, since the
Roberts and Tweedie (1996) paper, this is a mistake. They were not the first
to make this mistake. Many sorta-kinda-but-not-exactly MCMC algorithms
have been devised and published, but now we know that there is no sorta-
kinda-but-not-exactly Markov chain convergence theory that justifies them.
Fortunately, Besag (1994) in his discussion of Grenander and Miller (1994)
pointed out how to fix their algorithm. Simply consider each of their iterates
as a mere proposal in a Metropolis-Hastings update which must be followed
by a Metropolis rejection step. Now we are doing “exact” MCMC and there
are no problems.

The actual Langevin diffusion proposal is multivariate normal but does
not have the symmetry property of a Metropolis proposal (which requires
the mean be the current state x). It proposes y to be multivariate normal
with mean

x+
ε

2
∇h(x)

and variance-covariance matrix ε times the identity. Here ε is some “small”
number that is the discrete time step length (as ε→ 0 we get closer and closer

26

to continuous time) and ∇h(x) is the gradient (vector of partial derivatives)
of h evaluated at the point x.

When we consider this as a Metropolis-Hastings update there is no reason
for ε to be small; the update is valid for all positive ε. As in all Metropolis-
Hastings we adjust the “tuning parameter” (here ε) so that we get an ac-
ceptance rate that is not too large and not too small. There is no reason
to make ε as small as possible. In fact, this is the worst thing you can do.
Making ε very small guarantees the algorithm will make only very small
steps and have very slow convergence.

It is interesting that a true continuous time Langevin diffusion (if it
could actually be done) would be non-reversible. It drifts in the direc-
tion ∇h(x). The time-reversed process has the opposite drift. But the
Metropolis-Hastings corrected discrete time approximation is reversible (like
any Metropolis-Hastings update). So another lesson in this story is that the
only way we know how to get “exact” MCMC is using reversibility.

Roberts and Rosenthal (1998) show that an acceptance rate of about 50%
is optimal for the Langevin diffusion approximation Metropolis-Hastings al-
gorithm, more precisely, they show that for problems in which the equi-
librium distribution has IID components (and hence for which MCMC is
unnecessary) that the optimal acceptance rate goes to 57.4% as the dimen-
sion of the state space goes to infinity. They also discuss some extensions
of their theory to slightly more complicated problems than IID ones, but
do not have an extension to completely general equilibrium distributions.
Thus, as we saw for simple Metropolis in Section 7.5, there is no general
theory for setting acceptance rates. Nor is there any general theory that
says that acceptance rates are the right quantity to look at to adjust the
proposal of a Metropolis-Hastings update.

There is no theory at all about adjusting proposals in a combined update
(variable-at-a-time Metropolis, and the like).

10 The Gibbs Update

In this section subscripts denote components of the state vector not
different variables of a Markov chain.

10.1 Algorithm

Given a desired stationary distribution π whose state is a vector x =
(x1, . . . , xd), update one variable, say xj , by giving it a random realization

27

from its conditional distribution given “the rest” (x1, . . . , xj−1, xj+1, . . . , xd),
this conditional distribution being derived from the joint distribution π.

10.2 The Block Gibbs Update

For any subset J of D = {1, . . . , d}, let xJ denote the tuple formed from
the variables xj , j ∈ J . A block Gibbs update gives xJ a random realiza-
tion from its conditional distribution given “the rest” xD\J , this conditional
distribution being derived from the joint distribution π.

10.3 The Generalized Gibbs Update

Given any function of the state g(x), a generalized Gibbs update gives
x a random realization from its conditional distribution given g(x), this
conditional distribution being derived from the joint distribution π.

Clearly, a block Gibbs update is the special case obtained when g(x) =
xJ , and an ordinary Gibbs update is the special case of block Gibbs ob-
tained when J = {j}. Conversely, generalized Gibbs is the special case of
ordinary Gibbs obtained when one does a change of variable so that one of
the variables is g(x).

10.4 Proof

The proof is trivial: marginal times conditional equals joint. Additional
mathematical detail can hardly make the argument any more convincing,
but for those who want to see it, let P be the conditional distribution of
X given g(X) for a generalized Gibbs update, and let Q be the marginal
distribution of g(X), both marginal and conditional being derived from π.
If the current state X has distribution π, then g(X) has distribution Q, and
a generalized Gibbs update of the current state has distribution∫

Q(dy)P (y,A) = π(A)

because when we integrate out y = g(x) we get the marginal of the other
variable which is the joint distribution π (because the “other” variable is
X).

This is the sort of argument that shows that “applied measure theory” is
worth knowing. The joint distribution of X and g(X) is degenerate, hence
impossible to handle using the tools of master’s level theory. Measure theory
(rigorous or not) has no problem. The distributions exist. We have notation
for them. The argument goes right through.

28

10.5 The Gibbs Sampler

The so-called Gibbs sampler is an MCMC algorithm using only Gibbs
updates. A single Gibbs update does not, by itself, make a good Markov
chain. Since (if ordinary) it only changes one variable, it can never sample
the equilibrium distribution. One needs to combine the Gibbs updates using
any of the combining methods discussed in Section 8.

10.6 Examples

Suppose we observe IID normal data assumed to be two-parameter nor-
mal and we want to do a Bayesian analysis. The log likelihood is

l(µ, λ) = −λ
2

n∑
i=1

(xi − µ)2 +
n

2
log(λ)

where µ is the mean of the normal distribution and λ is the precision (inverse
variance). We adopt independent priors on the parameters: Normal(m, l−1)
for µ and Gamma(a, b) for λ. Then a log unnormalized posterior is

l(µ, λ)− l

2
(µ−m)2 + (a− 1) log λ− bλ

Since a conditional probability density is merely the joint density renormal-
ized, when unnormalized densities are allowed

there is no difference between (unnormalized) joint and condi-
tional except that the joint is considered a function of all the
variables and the conditional a function of some of them.

Looking at our unnormalized (joint) posterior, it is clear that

• considered as a function of µ only, it is quadratic, hence the conditional
of µ given λ is normal, and

• considered as a function of λ only, it is of the form c1 log λ−c2λ, where
c1 and c2 are not functions of λ, hence the conditional of λ given µ is
gamma.

Since the remaining details (figuring out exactly which normal and which
gamma) are an exercise in master’s level theory that allows the reader to
participate in what Clifford calls “the mystique of the statisticians” (in the
quotation on p. 18), we don’t wish to spoil the reader’s pleasure and stop
our analysis here.

We make only a few comments about the general nature of the Gibbs
update.

29

(i) The priors used here are not the conjugate prior studied in master’s
level theory that gives a closed form solution for the posterior in which
the joint prior and joint posterior are factored as marginal times con-
ditional one way are gamma and normal and factored the other way
are Student t and gamma.

(ii) Thus the class of “Gibbs friendly” priors is larger than the class
of “pencil-and-paper friendly” priors usually called conjugate. The
“Gibbs friendly” property is analogous to conjugacy, except one con-
siders one variable at a time holding the others fixed.

(iii) But the class of “Gibbs friendly” priors is not much larger. The
Metropolis update allows any prior at all. Gibbs doesn’t. As I once
noted in a slightly different context (Geyer, 1995)

Computational convenience is a poor substitute for philoso-
phy.

If you are a subjective Bayesian and a “Gibbs friendly” prior truly
represents the relevant expert opinion, then use Gibbs (although you
might have a difficult time convincing anyone the prior was not chosen
for reasons of computational convenience). If not, then don’t. And
similarly with objective substituted for subjective and whatever crite-
rion one thinks constitutes Bayesian objectivity (a Jeffreys prior, for
example) substituted for expert opinion.

11 The Swendsen-Wang Algorithm

11.1 The Ising Model

11.1.1 The Basic Model

The Ising model is what is now called a spatial lattice process or a graphi-
cal model in statistical terminology. Originally, it was a model from physics,
an attempt to model magnetism.

Although the Ising model can be defined on an infinite lattice Z2 = Z×Z,
where Z denotes the set of all integers and × indicates a Cartesian product,
thus justifying calling it a stochastic process, the only models that can be
simulated by MCMC or by any other simulation method must have a finite
number of variables, hence a finite graph.

30

Thus we define the Ising model on a finite square lattice D2, where
D = {1, . . . , d}. As in all graphical models we associate a random variable
with each node of the graph. Let Xi denote the random variable at node i.

In order to have a graphical model, we must have edges in the graph.
Let G denote the vertex set and E denote the edge set of the graph. Here
G = D2 and E is a subset of G2 = G × G that we have yet to define. We
now do so. Writing i = (i1, i2) and j = (j1, j2) we set

E = { (i, j) ∈ G2 : |i1 − j1|+ |i2 + j2| = 1 }. (11)

This is the so-called nearest neighbor graph. We have an edge if and only if
either the first coordinates differ by one or the second coordinates differ by
one, but not both. Each node in the interior of the graph has four neighbors
(has four edges linking it to other nodes). Nodes on the sides of the graph
have three neighbors. Nodes in the corners of the graph have two neighbors.

In set theoretic terminology, a subset E of G × G is a relation on G.
A relation E is symmetric if (i, j) ∈ E if and only if (j, i) ∈ E. In the
terminology of graph theory, a graph is undirected if its edge set is a sym-
metric relation. All of the graphical models we consider in this section will
be undirected.

In physics the Xi take values in the two-point set S = {−1, 1} and are
called spins. Each Xi models one atom in a crystal lattice. Of course, real
crystals are three-dimensional, but theory exists only for two-dimensional
lattice processes. Moreover, statistical applications of Ising models, as prior
distributions in Bayesian image reconstruction, are also two-dimensional.
In a ferromagnetic material (like iron), spins tend to align together. In
the Ising model, we model only the interaction of neighbors defined by the
graph. The unnormalized density (with respect to counting measure on SG)
of the thermodynamic equilibrium distribution of the vector of spins is

h(x) = exp

∑
i∈G

αixi +
1
2

∑
(i,j)∈E

βijxixj

 (12)

where the αi and βij are parameters of the distribution. The 1/2 in (12)
corrects for double counting; each edge occurs twice in E, once as (i, j) and
once as (j, i). The term Ising model refers to the situation where we have
symmetry: all of the αi are equal and all of the βij are equal, but we have
written the more general form here for future use.

31

11.1.2 Other Boundary Conditions

The model described in the preceding section is called the Ising model
with free boundary conditions. It is somewhat ugly in its behavior at the
boundary of the graph.

Toroidal Graph We can eliminate the boundary and restore the complete
symmetry of the model by adopting a toroidal graph. Let T denote the
discrete circle with d elements. We can identify T with the numbers 0,
. . ., d − 1 with addition and subtraction done modulo d. Now we define
G = T× T and E by (11) as before. Now because of the modular addition
and subtraction, there are no boundary points of the graph. The points 0
and d− 1 are adjacent in T. This gives every node in G four neighbors. We
again define the unnormalized density of the model by (12). The only thing
that has changed is the definition of the edges of the graph.

The reason the graph is called “toroidal” is because if C is a circle (a
true circle, not discrete), then C×C is a topological torus, topologically iso-
morphic to a geometric torus (donut shaped object). The physicists usually
call this model the Ising model with periodic boundary conditions, the idea
of that name being that a function on a circle is equivalent to a periodic
function on the real line.

Conditioning on the Boundary An alternative way to deal with the
boundary of the graph is to fix variables on the boundary. Let deg(i) denote
the degree of the node i in the graph (G,E), which is the number of edges
involving i, the cardinality of the set { (i, j) : j ∈ G and (i, j) ∈ E }.

Now we use the same graph and model as in Section 11.1.1 with the ex-
ception that all variables Xi with deg(i) < 4 are held fixed. So (12) changes
meaning. Not all variables xi in (12) are random, some are held fixed. Those
that are random, those with deg(i) = 4 have a joint unnormalized density,
now a conditional density given the other variables, that is given by (12).

There is almost no difference between the specification of the conditional
and unconditional models. Clearly, this idea of fixing some set of variables
to give a conditional model (conditioning on those fixed values) is more
general. Any set of variables can be fixed, and the unnormalized conditional
density is just the same as the original unnormalized joint density.

32

11.1.3 Phase Transitions

A ferromagnet undergoes phase transitions. By “phase transition” physi-
cists mean an abrupt change in behavior as some variable changes continu-
ously. The most familiar example is changes of state from solid to liquid to
gas and vice versa. As temperature changes continuously there is an abrupt
change in many properties of the material as the temperature goes past the
melting point or the boiling point. Similarly, there is an abrupt change in
the behavior of a magnet as the temperature goes past the Curie tempera-
ture. Below the Curie temperature, the material is magnetized. Above the
Curie temperature, it is demagnetized.

In the Ising model, the parameter α plays the role of the external mag-
netic field, which for this discussion we take to be zero, and the parameter β
plays the role of inverse temperature (as β goes to infinity the temperature
goes to absolute zero, −273.15◦ C, as β goes to zero the temperature goes
to infinity).

In the Ising model, α = 0 and β = 0, gives a distribution proportional to
counting measure on SG. The spins are then independent mean-zero random
variables. And the net magnetization, which is proportional to

mn(x) =
∑
i∈G

xi

has an asymptotic normal distribution by the central limit theorem (CLT).
The standardized variable m(X)/

√
n where n = d2 is the number of nodes

in the graph is approximately standard normal for large n. The net mag-
netization per node which, is mn(x)/n, is approximately Normal(0, 1/n),
hence nearly zero.

In the Ising model, α = 0 and β →∞, gives a distribution concentrated
on two points, the two states in which all of the spins are aligned so∑

(i,j)∈E

xixj

has its maximal value (4n with toroidal boundary conditions, 4n− 4d with
free boundary conditions). And in either of these two (equally probable)
states, mn(x) is maximal in absolute value, either −n or +n, and mn(x)/n
is either −1 or +1.

So much is trivial. What is not at all obvious, and what took 30 years
after the invention of the model to prove rigorously, is that this behavior
holds for other temperatures as well. There is a value

βc =
1
2

sinh−1(1) =
1
2

log(1 +
√

2) = 0.4406868 (13)

33

such that for β < βc the behavior is essentially the same as at β = 0 for
large n and for β > βc the behavior is essentially the same as at β →∞ for
large n. If β < βc, then mn(x)/n converges in probability to zero as n goes
to infinity. If β > βc, then mn(x)/n converges in probability to the random
variable concentrated on the two-point set {−1,+1} as n goes to infinity.

Ising invented this model in 1925 and proved that the one-dimensional
version does not have a phase transition. Onsager proved that the two-
dimensional model does have the behavior described here in 1944. Kinder-
mann and Snell (1980) give the history and much more detail.

The behavior for β = βc is strange and beautiful. Realizations from the
model exhibit fractal-like behavior with features at all scales.

11.2 The Potts Model

Potts (1952) invented a generalization of the Ising model in which the
variables Xi at the nodes take values in an arbitrary finite set, which we
continue to denote S. To have a concrete name for the elements of S, we
will call them colors, as might be the case when a Potts model is used a
prior distribution in Bayesian image reconstruction. Now it makes no sense
to add or multiply the Xi, since S has no arithmetic structure. The only
thing we can do with two values xi and xj is test for equality. Define the
indicator function

e(x, y) =

{
1, x = y

0, x 6= y

Then we define the Potts model unnormalized density by

h(x) = exp

∑
i∈G

αi(xi) +
1
2

∑
(i,j)∈E

βije(xi, xj)

 (14)

where αi : S → R is an arbitrary function and, as before, the βij are arbitrary
constants. The 1/2 in (14) corrects for double counting, just like the 1/2 in
(12).

As before, in physics we usually take αi = 0 for all i and the βij all the
same, but we allow more generality for statistical applications.

The Potts model also undergoes phase transitions. The critical parame-
ter value is

βc = log(1 +
√
r)

where r is the cardinality of the set S. Note that this agrees for the formula
for the Ising model when r = 2 except for the extra factor 1/2 in (13). This

34

factor arises from e(xi, xj) taking values in {0, 1} whereas in the Ising model
xixj takes values in {−1, 1}. The Ising model is the special case of the Potts
model when S has two elements. The fact that the two states are called
“spins” and given the values −1 and +1 is inessential.

The behavior of the Potts model for large lattice sizes is similar to that of
the Ising model. For β < βc, the vector mn(x) that counts the number of xi
taking each of the r possible values has mn(x)/n converging in probability
to zero. If β > βc, then mn(x)/n converges in probability to the vector
uniformly distributed on the r vertices of the unit simplex, (1, 0, 0, . . .),
(0, 1, 0, . . .), and so forth.

11.3 Naive Metropolis and Gibbs

It is easy to do Gibbs or Metropolis using the spatial Markov property of
these models. The conditional distribution of one Xi given the rest depends
only on its neighbors.

Let x be the current state, and y be the same state as x except that xi
has a different value. Then the odds ratio for this Metropolis proposal is

h(y)
h(x)

= exp

αi(yi − xi) +
∑
j∈G

(i,j)∈E

βij(yi − xi)xj

simple to calculate because it only involves at most four neighboring nodes.
The Metropolis update then does Metropolis rejection.

The Gibbs update chooses the two possible states (updating xi only)
which are x and y, the same states that Metropolis considers, moving to y
with its conditional probability given the rest, which is

h(y)
h(x) + h(y)

in the notation we used for the Metropolis update. And it stays at x with
probability

1− h(y)
h(x) + h(y)

=
h(x)

h(x) + h(y)

The Potts model is not harder. It’s naive Metropolis proposal moves
from x to a y that changes only xi and chooses among the r possible values
uniformly among the r−1 possible values that are different from the current

35

value (this is easily seen to be a symmetric proposal). Then

h(y)
h(x)

= exp

αi(yi)− α(xi) +
∑
j∈G

(i,j)∈E

βij
[
e(yi, xj)− e(xi, xj)

]
almost the same, merely notational differences.

Now the Gibbs update can have any of r possible outcomes that differ
from x only in the i-th coordinate. The conditional distribution of the Gibbs
update is

pi(y | x) =

exp

αi(yi) +
∑
j∈G

(i,j)∈E

βije(yi, xj)

∑
y∗∈S

exp

αi(y∗) +
∑
j∈G

(i,j)∈E

βije(y∗, xj)

(the denominator is the sum of the r possible numerators).

Gibbs and Metropolis are simple, but neither works well for large lattices
except at very “hot” temperatures (very small βij , very weak dependence).

11.4 Swenden-Wang

From 1953 when the Metropolis algorithm was invented until 1987 when
the Swendsen-Wang algorithm was invented, the Ising model was considered
the archetypical hard problem for MCMC. The Swendsen-Wang algorithm
made it easy.

It starts out on a way that seems at first counterintuitive, even bizarre.
It complicates the problem by introducing new variables. The Swendsen-
Wang algorithm (Swendsen and Wang, 1987) works for any Potts model on
any graph (G,E) such that all of the coupling parameters βij are positive.
The new variables are Bernoulli random variables Yij for (i, j) ∈ E. They
are often called bonds, and can be thought of as inducing a subgraph of
(G,E) in which only the edges with Yij = 1 are retained. This subgraph is
also undirected, which requires that the matrix Y be symmetric: Yij = Yji
with probability one.

Having increased the number of variables and hence the state space of the
Markov chain, we now need to specify the desired equilibrium distribution

36

on this new state space. We keep the same distribution (given by the Potts
model) for the old variables (the Xi). Of course, this is now the marginal
(for the vector X). We now specify a conditional for Y given X (where Y
is the vector of all the bond variables), and that completes the specification
of the joint distribution of X and Y . The Yij are conditionally independent
(subject to symmetry) given X and

P (yij = 1|x) =

{
γij , xi = xj

0, otherwise

where the γij are constants to be named later (we choose them after we see
what makes the Swendsen-Wang algorithm simple).

The Swendsen-Wang algorithm is a block Gibbs algorithm. It samples
from bonds given spins (Y given X), then from spins given bonds (X given
Y). We have just seen one of these conditionals. Clearly it is simple to
sample from because of the conditional independence of the Yij .

The conditional distribution of X given Y is a bit more complicated.
First note that any two nodes connected by a bond must be the same color
(must have the same value of their Xi). This is clearly also the case for any
two nodes connected by a chain of bonds. Consider the graph (G,Ey) where

Ey = { (i, j) ∈ E : Yij = 1 }

the subgraph of (G,E) mentioned above where we let the bonds be the edges
in the graph.

Let Ay be the partition of G induced by Ey. The elements of Ay are
called the maximal connected components of (G,Ey) and there are highly
efficient algorithms for constructing them (Dijkstra, 1976, Chapter 23). For-
mally, Ey is a relation having domain G. The transitive reflexive closure of
this relation is the smallest equivalence relation (transitive, reflexive, and
symmetric relation) that contains Ey. Every equivalence relation induces a
partition and vice versa (elements are equivalent if and only if they are in
the same partition). Thus the computer algorithm can also be considered
an algorithm for finding equivalence classes (which is what Dijkstra, 1976
calls it).

We already know that the nodes of an element of Ay must have the same
color (given Y = y). Thus we consider the probability distribution (given
Y) of the colors of equivalence classes (elements of Ay) which we now start
calling patches to have a shorter name.

37

The unnormalized joint density of pixels and bonds is

h(x, y) =
∏
i∈G

eαi(xi)
∏

(i,j)∈E

[
eβijγ

yij

ij (1− γij)1−yij

]e(xi,xj)/2
(1− yij)1−e(xi,xj)

(15)
(where in the last term we are using the convention 00 = 1, it is one unless
yij = 1 and e(xi, yj) = 0). The division by 2 in the exponent in (15) corrects
for double counting, just like the 1/2 in (14).

Our dictum that there is no difference between an unnormalized joint
density and an unnormalized conditional density (they differ on in their
normalizing constants) means (15) is also the unnormalized conditional of x
given y considered as a function of x for fixed y.

Let Ay be as above. We already know that x has probability zero given
y unless it is constant on elements of Ay, that is, for all A ∈ Ay, the value
of xi is the same for all i ∈ A. Call x that are constant on elements of Ay,
patch respecting.

Conversely, for a patch respecting x we have e(xi, xj) = 0 implies xi and
xj are in different patches and hence yij = 0. Hence the last term in (15) is
always equal to one (is never 01) for all patch respecting x. Since the other
terms in (15) are never zero if we choose the γij to be neither zero or one, we
have proved that the conditional probability of x given y is nonzero if and
only if x is patch respecting (with patches defined according to Ay) subject
to this restriction on the choice of the γij .

Hence we now restrict attention to patch respecting x. Let ∼ denote the
equivalence relation induced by Ay (we have i ∼ j if and only if there exists
an A ∈ Ay that contains both i and j). Then we can write

h(x, y) = exp

(∑
i∈G

αi(xi)

+
1
2

∑
(i,j)∈E
i∼j

[
βij + yij log(γij) + (1− yij) log(1− γij)

]

+
1
2

∑
(i,j)∈E
i6∼j

[
βij + log(1− γij)

]
e(xi, xj)

)

The simplification of the ∼ terms comes from i ∼ j implies e(xi, xj) = 1,
and the simplification of the 6∼ terms comes from i 6∼ j implies yij = 0.

38

We now choose γij to make the 6∼ terms go away

1− γij = e−βij , (i, j) ∈ E. (16)

Then we note that the ∼ terms do not contain x and hence can be considered
part of the normalizing constant for an unnormalized conditional density of
x given y (that is, they can be dropped). Hence we can write (with this
choice of γij)

h(x | y) = exp

(∑
i∈G

αi(xi)

)

=
∏
A∈Ay

exp

(∑
i∈A

αi(xA)

) (17)

where in the last expression we have written xA for the common value of
x on the patch A (we are still insisting that x be patch respecting). The
conditional of x given y described by (17) is remarkably simple. Note that
because of the product over patches, the the patch colors are conditionally
independent given the bonds. It gets even simpler in the special case of
interest to the physicists where αi = 0 for all i. Then all patch colors are
equally likely.

We summarize.

• [Update y given x.] The bonds are conditionally independent given
the pixels.

– If (i, j) ∈ E and xi = xj , then Yij = 0 with probability (16).
– If (i, j) ∈ E and xi 6= xj , then Yij = 0 with probability one.

• [Calculate patches.] Run an algorithm to determine the equivalence
classes Ay.

• [Update x given y.] The patch colors are conditionally independent
given the patches (which are determined by the bonds). The proba-
bility of color c for patch A is proportional to

exp

(∑
i∈A

αi(c)

)

What is amazing about the Swendsen-Wang algorithm is that it equili-
brates very quickly, in about 50 iterations for a million pixel lattice. Naive
Metropolis and Gibbs would take longer than the age of the universe on
such a large lattice.

39

11.5 Lessons Learned

Since Swendsen and Wang (1987) appeared, other similar algorithms
have been invented, all using the same clever trick with “bonds” but only
for very similar models. The Swendsen-Wang idea has had little (perhaps
no) application outside of spatial lattice processes. But the general idea

Often the efficient way to do an MCMC problem is to not use
the state space and equilibrium distribution that are given.

The Swendsen-Wang algorithm uses a completely different state
space (adding “bond” variables), which must then have a dif-
ferent equilibrium distribution. The new and old equilibrium
distributions have a connection, for Swendsen-Wang, one is a
marginal of the other.

Besag and Green (1993) coined the name auxillary variables algorithm for
methods of the Swendsen-Wang type in which new variables are added to the
state space. Parallel and serial tempering are other algorithms of this type,
although they differ the relation between the new equilibrium distribution
an the old. For tempering the old is a conditional of the new, not a marginal
as in Swendsen-Wang.

Many other MCMC users have thought up “auxillary variables” algo-
rithms. It’s easy. Just add variables and stir. The only issues are the
following.

1. One must be absolutely clear what is the state space of the new Markov
chain (with added variables). Exactly what variables are added.

2. One must be absolutely clear what is the equilibrium distribution of
the new Markov chain.

3. One must be absolutely clear that the proposed sampler is an instance
of the Metropolis-Hastings-Green algorithm, or if not, that one has
some proof that it preserves the equilibrium distribution given in 2.

4. One must be absolutely clear about the relation between the new and
old distributions and how sampling the new distribution solves the
problem as given.

Many people have gotten confused about one of these steps when thinking
about auxiliary variable problems, often beginning with item 1. Variables
are used but one forgets that they are thereby part of the state and must
be part of the distribution in item 2 (and so forth).

40

12 Annealing and Tempering

12.1 Random Search Optimization

Random search optimization and MCMC are often confused, with some
famous papers mixing the two without drawing clear distinctions. Let us
draw the distinction clearly here ourselves.

Random search optimization that is similar to MCMC is gener-
ally much easier than MCMC. One doesn’t have to preserve any
particular equilibrium distribution. One only needs to evaluate
the objective function at a fairly dense set of points.

12.2 Simple Random Search Optimization

By simple random search optimization, we mean the points X1, X2, . . .
at which the objective function g is evaluated are an IID sample from some
distribution f .

Suppose g is twice continuously differentiable in a neighborhood of the
of the optimal value x∗ and that f is also continuous on that neighbor-
hood. Suppose that ∇2g(x∗) is positive definite so that x∗ is a strong local
minimum. Level sets of g for levels near g(x∗) are then approximately hyper-
ellipsoids

x∗ + rA, (18)

where A is a “unit” hyper-ellipsoid, and have hyper-volume rdV where V is
the hyper-volume of A and d is the dimension of the space.

The probability of a point landing in rA is for small r nearly rdV f(x∗)
by continuity of f . The probablity that at least one point in the first n lands
in rA is approximately

1−
(
1− rdV f(x∗)

)n
. (19)

Let r̂n denote the smallest r such that (18) contains an Xi. Then (19) is
also the approximate cumulative distribution function (CDF) of r̂n.

If we divide rd by n in (19) and let n go to infinity, we get

1− exp
(
−rdV f(x∗)

)
(20)

and this says that
nV r̂dn

D−→ Exp
(
f(x∗)

)
.

The actual details of the asymptotic argument here are not important,
because we rarely do simple random search. But the qualitative results are
important.

41

Optimization is different from averaging. The rate is n not n1/2.
The asymptotic distribution is not normal.

That the rate is fast (n not root n) is an indication that optimization is
easier.

Of course, the fast rate depends on the assumption of smoothness of
the objective function. Nothing can be said about an arbitrarily obnoxious
objective function.

12.3 Adaptive Random Search Optimization

By adaptive random search optimization, we mean the points X1, X2,
. . . at which the objective function g is evaluated are not IID but rather
the distribution of Xn depends on g(X1), . . ., g(Xn). The idea is too look
harder in the neighborhood of previously seen good Xi values (so one can
get closer to the optimal value faster), but not to entirely stop looking in
new regions of the state space (so one does not fail to find the optimum
eventually, even if one’s adaptive strategy is bad).

Nothing is easier than inventing adaptive random search algorithms.
There are no requirements other than the one just mentioned that some
proportion of the effort must be expended on exploring new regions so that
one eventually finds the optimum. The most famous adaptive random search
algorithms are those with catchy names, simulated annealing and genetic al-
gorithms, and stories to go with the names.

People like stories and they also like catchy names, but what people like
has little to do with performance of optimization.

Vague analogies with metallurgy and genetics do noting to im-
prove adaptive random search.

Comparison of simulated annealing and genetic algorithms with other sim-
pler (and earlier invented) adaptive random search algorithms shows no
performance advantages. One can usually invent something better than ei-
ther simulated annealing or genetic algorithms for any particular problem.
That being the case, we will say nothing about genetic algorithms, which are
unrelated to MCMC and only enough about simulated annealing to explain
how it has influenced MCMC.

12.4 Simulated Annealing

The most famous method of adaptive random search optimization, fa-
mous for its catchy name rather than any performance advantage it has over

42

other adaptive random search algorithms, is simulated annealing, which was
proposed by Kirkpatrick et al. (1983). We are interested in it primarily
because of its connections with MCMC. We are given an objective func-
tion f to minimize. Simulated annealing runs a Metropolis algorithm with
equilibrium density

hτ (x) = e−f(x)/τ

where τ is the “temperature” of the distribution.
When τ is very large, then hτ is nearly uniform (assuming that hτ is

integrable so a corresponding normalized density exists). When τ is nearly
zero, then hτ is nearly concentrated on the set of minimum values (the
“argmin”) of the function f . The idea of simulated annealing is to “cool”
the process slowly, changing τ as the process proceeds. Let τk denote the
sequence of taus, τk being used for the k-th iteration.

Since the distribution preserved by the Metropolis update (having unnor-
malized density hτk) keeps changing, we have a Markov chain x1, x2, . . . with
nonstationary transition probabilities, which cannot be analyzed according
to Markov chain theory for chains with stationary transition probabilities
(which is all we have discussed so far).

Theory for simulated annealing interesting mathematics but provides
little guide for practical problems. We take as a reference Locatelli (2000),
which not only provides a new theorem with somewhat different conditions
from earlier work, but also provides a good survey of earlier work. This
theory only applies to continuous objective functions defined on compact
subsets of Rd, but analogous theory holds for discrete domains (also dis-
cussed in Locatelli, 2000).

Let yk be the “empirical argmin” any xj such that

f(yk) = min
i=1,...,k

f(xi)

Let A be the “theoretical argmin”

A = {x : f(x) = inf f(x) }

we assume A is nonempty.
Let d(yk, A) denote the distance from yk to A. Then Bélisle (1992)

shows that the sequence d(yk, A) converges in probability to zero provided
the proposal distribution qk(x, ·) for Metropolis updates, a density w. r. t.
Lebesgue measure, implies the existence of ρ > 0 such that

qk(x, y) ≥ ρ, for all x and y in the domain of f and for all k (21)

43

This condition essentially makes simulated annealing behave like simple ran-
dom search, because there is positive probability in going from anywhere to
anywhere in one step.

Locatelli (2000, p. 126) complains this condition is not what is wanted

The negative consequence [of Bélisle’s condition (21)] is that, [a
repeat of (21)]. Therefore, at any iteration, there is a probability
bounded away from zero of sampling points in regions far from
the global optimum region. Instead, we would like to be able
to perform steps which are only local in order to explore more
deeply the most promising parts of the feasible region.

Locatelli (2000) introduces technical conditions reflecting this informal ex-
pression that guarantee not only that d(yk, A) converges in probability to
zero, but also that d(xk, A) converges in probability to zero, and also xk+1−
xk converges to zero. But in order to obtain this, cooling must be at a very
slow rate

τk =
C

log k
(22)

where C is a positive constant that depends on a complicated fashion on the
particular problem structure (more precisely, see Locatelli, 2000, Assump-
tion 3.3). The logarithmic cooling rate is seen in other simulated annealing
theorems (discussed in Locatelli, 2000), including problem in which f has
discrete domain.

The trouble with this body of theory (and we have no wish to pick on
Locatelli, 2000, other theory is similar) is that the rate (22) is so slow that
no one would ever use it in practice. Hence the theory is absolutely useless,
an interesting theoretical exercise, but one that tells nothing useful about
simulated annealing.

The quotation above from Locatelli (2000) is interesting because it shows
exactly how and where this body of theory goes wrong. His point “we would
like to be able to perform steps which are only local in order to explore
more deeply the most promising parts of the feasible region” is completely
wrong headed. This refusal to ever explore beyond a “local” region, once
one has cooled sufficiently is the whole reason why such slow cooling is
necessary. If “cooling” imposes irreversible limitations on the search, then
it had better be very, very slow. If no such irreversible limitations are
imposed, then the problem becomes much easier. A search for reheated
"simulated annealing" in Google turns up many hits but apparently no
authoritative reference. The notion that monotonic cooling is a bad idea

44

is apparently widespread, but I do not know who originated it. A form of
“reheating” is the key to serial tempering (Section 12.6 below).

12.5 Parallel Tempering

What is now called parallel tempering was invented under the name
Metropolis-coupled MCMC, abbreviated (MC)3, and first appeared in Geyer
(1991). Despite its origin in a lowly conference proceeding, it has become
very popular under its new name, a back formation by analogy with simu-
lated tempering, which is described in the following section. A Google search
for "parallel tempering" turns up 18,400 hits and a Wikipedia entry.

The idea is very simple, although not completely obvious. Suppose we
are interested in a finite set of distributions specified by unnormalized den-
sities hi, i = 1, . . . , d. By analogy with simulated annealing, these might all
be “heated” versions of a single basic distribution

hi(x) = h(x)1/τi

where the τi are “temperatures” in the language of simulated annealing. But
as we shall see there is no reason for using this particular form. There is no
requirement other than that the hi all have the same domain.

The state space of the parallel tempering Markov chain is the d-fold
product of the common domain of all the hi. Thus the state of the Markov
chain is a d-vector (x1, . . . , xd) and in this section we will have subscripts
indexing components of the state vector rather than iterations of the Markov
chain.

The equilibrium distribution of the parallel tempering Markov chain is
the product density

h(x) =
d∏
i=1

hi(xi)

that makes the components of the state vector independent under the equi-
librium distribution (as we shall see, the components are not independent
in the Markov chain).

The update of the parallel tempering Markov chain is a combined update
with the following elementary updates.

• Update xi preserving hi.

• Choose an index pair (i, j) and propose to swap xi and xj . Accept the
proposal with probability min(r, 1) where

r =
hi(xj)hj(xi)
hi(xi)hj(xj)

45

These updates can be combined by any valid combining mechanism (com-
position or mixing). The first kind of update is not part of the parallel
tempering idea. It is supposed that one already has ideas about simulating
from the hi that can be used here. Again, any valid method (Metropolis,
Gibbs, whatever) can be used.

12.6 Serial Tempering

13 Monte Carlo Likelihood

MCMC is most commonly used (in statistics) for Bayesian inference, but
that is not the only use. It is useful whenever there are probabilities and
expectations that one wants to know and cannot be done by pencil an paper,
by computer algebra systems (like Mathematica and Maple), by numerical
integration, or by ordinary Monte Carlo.

In likelihood inference, it is often possible to calculate the likelihood.
This is what makes likelihood inference so simple and powerful. If you can
calculate the likelihood, then (if you use the “usual asymptotics”) you can
do everything.

Note the contrast with Bayesian inference. If you can compute the like-
lihood and the prior, then you’ve only gotten started. You usually need
MCMC to calculate the posterior. In likelihood inference, if you can compute
the likelihood, you’re done. No fancy computational methods are needed.
(You may need to calculate derivatives of the log likelihood by finite differ-
ences, but that’s trivial.)

This there is no need for MCMC or even IIDMC when doing likelihood
inference in the kinds of problems where a Bayesian needs MCMC. However,
that is not the end of the story. There are harder likelihood problems.

13.1 Methods

For an area that is unknown to many statisticians, there is an amazing
variety of methods.

Monte Carlo Likelihood Approximation (MCLA) Methods that di-
rectly approximate the log likelihood and indirectly its derivatives at
all parameter values simultaneously using the importance sampling
formula. Originated by Geyer and Thompson (1992) for the unknown
normalizing constant models, by Thompson and Guo (1991) for miss-
ing data models, and by Gelfand and Carlin (1993), for the combina-
tion of the two. Theory developed in Geyer (1994).

46

Monte Carlo Newton-Raphson (MCNR) Methods that approximate
first and second derivatives of the log likelihood and use Newton-
Raphson iteration to find the maximum likelihood estimate. Origi-
nated by Penttinen (1984). Reinvented by several later authors who
were unaware of Penttinen’s work.

Markov Chain Stochastic Approximation (MCSA) Methods using
Markov chains with nonstationary transition probabilities, roughly de-
scribable as attempting to simulate from hθ when θ is changing, adjust-
ing θ until the first derivative of the log likelihood at θ is nearly zero.
Originated by Younes (1988) and by Moyeed and Baddeley (1991).
IIDMC stochastic approximation is very old (Wasan, 1969), but the-
ory for MCMC stochastic approximation was only developed in Ben-
veniste et al. (1990). See Younes (1999) for a full development of
MCSA likelihood approximation.

Monte Carlo EM (MCEM) and MM (MCMM) Methods that do a
Monte Carlo version of the EM algorithm (Dempster, Laird, and Ru-
bin, 1977) or the MM algorithm (Hunter and Lange, 2004). Originated
by Wei and Tanner (1990) and Guo and Thompson (1992).

13.2 Unknown Normalizing Constant Models

Suppose
H = {hθ : θ ∈ Θ } (23)

is a family of unnormalized densities w. r. t. some measure λ. This means
the “normalizing constants”

c(θ) =
∫
hθ(x)λ(dx) (24)

are nonzero and finite for each θ ∈ Θ. Note that the “normalizing constants”
depend on the parameter θ, so normalizing function c : Θ → (0,∞) would
be better terminology. Then

fθ(x) =
1
c(θ)

hθ(x)

define the normalized densities of a statistical model.
Since fθ is entirely determined by hθ through (24), we can consider

(23) a perfectly good specification of a statistical model. Before MCMC
we didn’t specify models this way because we didn’t know what to do with

47

unnormalized densities. Now we do. MCMC has no trouble sampling from
hθ. If you can sample, you can calculate probabilities and expectations by
Monte Carlo. If you can calculate probabilities and expectations, then you
can do statistical inference.

The log likelihood for the model (23) is given by

l(θ) = log hθ(x)− log c(θ) (25)

where x is the observed data (when the model is correct, a realization from
some fθ). When the integral in (24) is intractable, we must do it by some
means if we are to calculate (25). Sometimes it can be done by numerical
integration. Since this is a course in MCMC, we consider doing it by MCMC
(with IIDMC a special case).

We use not only MCMC but importance sampling. To do the integral in
(24) by MCMC in any way, we must write it as an expectation. We write
it as an expectation w. r. t. the distribution with unnormalized density h∗

w. r. t. λ.

c(θ) =
∫
hθ(x)
h∗(x)

h∗(x)λ(dx) = E∗
{
hθ(X)
h∗(X)

}
(26)

In order for (26) to make sense we must never have divide by zero in (26).
More formally, we assume

h∗(x) = 0 implies hθ(x) = 0, for all θ ∈ Θ and for λ-almost-all x

(that we have 0/0, which is undefined, on a set of λ measure zero does not
cause any problems).

Suppose X1, X2, . . . is a Markov chain with equilibrium distribution h∗.
Then the natural estimator of c(θ) is

cn(θ) =
1
n

n∑
i=1

hθ(Xi)
h∗(Xi)

(27)

and the natural estimator of (25) is

ln(θ) = log hθ(x)− log

(
1
n

n∑
i=1

hθ(Xi)
h∗(Xi)

)
(28)

The connection with importance sampling is somewhat vague, but ap-
parent. Clearly, (26) uses the theoretical importance sampling formula, to
change an integral w. r. t. λ(dx) into an integral w. r. t. h∗(x)λ(dx). More-
over, (27) looks like the denominator in normalized importance weights. But

48

(28) does not look much like importance sampling. The connection, how-
ever, becomes more apparent when we differentiate (all derivatives are with
respect to θ).

∇ln(θ) = ∇ log hθ(x)−
1
n

∑n
i=1

∇hθ(Xi)
h∗(Xi)

1
n

∑n
i=1

hθ(Xi)
h∗(Xi)

= ∇ log hθ(x)−
∑n

i=1∇ log hθ(Xi)
hθ(Xi)
h∗(Xi)∑n

i=1
hθ(Xi)
h∗(Xi)

= ∇ log hθ(x)−
n∑
i=1

[
∇ log hθ(Xi)

]
w∗n,θ(Xi)

(29a)

where the w∗n,θ(Xi) are normalized importance weights

w∗n,θ(x) =
hθ(x)
h∗(x)∑n

i=1
hθ(Xi)
h∗(Xi)

(29b)

for shifting a sample w. r. t. h∗ to calculate expectations w. r. t. hθ. Thus
we write

∇ln(θ) = ∇ log hθ(x)− E∗
n,θ

{
∇ log hθ(Xi)

}
(29c)

where we take the second term on the right hand side to be a shorthand
for the second term on the right hand side in (29a). Or, more formally, we
could define for any integrable function g

E∗
n,θ

{
g(Xi)

}
=

n∑
i=1

g(Xi)w∗n,θ(Xi)

This is the importance sampling estimate of Eθ{g(X)} using normalized
importance weights and a sample of size n from h∗.

If the likelihood achieves its maximum at a point in the interior of the
parameter space (where the first derivative is zero), then we can get a Monte
Carlo approximation to the MLE by setting the Monte Carlo approximation
of the log likelihood to zero and solving for θ. From (29c) we see that this
entails setting ∇hθ(x) equal to its expectation calculated by MCMC and
solving for θ.

49

Before we go further down that path, let us look at the second derivative.

∇2ln(θ) = ∇2 log hθ(x)−
1
n

∑n
i=1

∇2hθ(Xi)
h∗(Xi)

1
n

∑n
i=1

hθ(Xi)
h∗(Xi)

+

 1
n

∑n
i=1

∇hθ(Xi)
h∗(Xi)

1
n

∑n
i=1

hθ(Xi)
h∗(Xi)

 1
n

∑n
i=1

∇hθ(Xi)
h∗(Xi)

1
n

∑n
i=1

hθ(Xi)
h∗(Xi)

T (30a)

The term of the form (vector)(vector)T is an outer product. If vj are the
components of the vector in questions, then the outer product is the matrix
with j, k element vjvk. Readers who find the vector notation unintitive
should calculate with coordinates, meaning calculate ∂2ln(θ)/∂θj∂θk, and
satisfy themselves that the matrix whose j, k entries are these partials, which
is ∇2ln(θ) does agree with (30a).

We would further like to put (30a) in a form that involves only expec-
tations (calculated by importance sampling) of derivatives of log hθ. To do
this we need

∇ log h =
∇h
h

hence

∇2 log h =
∇2h

h
−
(
∇h
h

)(
∇h
h

)T
So

∇2ln(θ) = ∇2 log hθ(x)− E∗
n,θ

{
∇2 log hθ(Xi)

}
− E∗

n,θ

{[
∇ log hθ(Xi)

][
∇ log hθ(Xi)

]T}
+ E∗

n,θ

{
∇ log hθ(Xi)

}
E∗
n,θ

{
∇ log hθ(Xi)

}T (30b)

(we get two terms involving outer products of first derivatives, one with
the outer product inside the expectation, one with the expectations inside
the outer product). The reason for writing everything (except the impor-
tance weights) in terms of derivatives of log hθ is that these are generally
numerically much better behaved than derivatives of hθ itself.

13.2.1 MCLA

The acronym MCLA is retrofitted; Geyer and Thompson (1992) and
Geyer (1994) did not call it that. It is often called “simulated maximum
likelihood” by people who do not understand it and don’t like it. As we shall

50

see, it unifies all the other methods, which are in various ways simplifications
of it. Whenever any of the other methods perform badly, the answer to the
problem lies in applying MCLA correctly.

As with every importance sampling algorithm, the performance depends
on having a good importance sampling distribution h∗. It may take some
preliminary trial and error to find a good h∗ Geyer and Thompson (1992).
The method of umbrella sampling (Section 13.5 below) can always be used
to find a good h∗.

Since (28) approximates the log likelihood and (30a) minus the observed
Fisher information, we have everything we need for likelihood inference, if
we can apply the “usual asymptotics” for maximum likelihood. Even if
the asymptotics do not apply, Geyer (1991) shows that we can easily do a
parametric bootstrap.

Let X1, X2, . . . be an MCMC sample from h∗ as used above. Suppose θ̂n
is the Monte Carlo MLE (MCMLE), the maximizer of (28). This is our best
approximation of the true unknown parameter value. Let X̃1, X̃2, . . . be an
MCMC sample from hθ̂n

. This is our best approximation of the sampling
distribution of the data under the true unknown parameter value. For each
X̃j , maximize (28) with x replaced by X̃j , denoting the maximizer θ̃j . Then
the distribution of the θ̃j is the parametric bootstrap distribution of the
MLE and can be used for inference that does not depend on the validity of
the “usual” asymptotics. (It does depend on the sampling distribution of the
MLE not depending too much on θ so that our use of the distribution under
θ̂n rather than under the true unknown θ does not make much difference,
but that’s all. It does not depend on asymptotic normality of anything.)
Thus with only two Monte Carlo samples, we can find out everything. (Of
course, in practice, one usually does more than two runs of the Markov chain
just tuning the Metropolis algorithm before starting serious sampling.)

MCLA is also the only known method of calculating likelihood ratios for
likelihood ratio tests. The other methods avoid calculating the likelihood
itself. Thus MCLA is the only known method of dealing with situations
where the “usual asymptotics” of maximum likelihood do not apply. As we
shall see, the other methods are intolerably slow, are not automatic, and
hence cannot be bootstrapped. Nothing like the bootstrap in Geyer (1991)
has ever been done for the competing methods.

13.2.2 MCNR

In the special case where h∗ = hθ all normalized importance weights
(29b) are equal, and the MC approximations of the log likelihood derivatives

51

become

∇ln(θ) = ∇ log hθ(x)−
1
n

n∑
i=1

∇ log hθ(Xi) (31a)

and

∇2ln(θ) = ∇2 log hθ(x)−
1
n

n∑
i=1

∇2 log hθ(Xi)

−

(
1
n

n∑
i=1

[
∇ log hθ(Xi)

][
∇ log hθ(Xi)

]T)

+

(
1
n

n∑
i=1

∇ log hθ(Xi)

)(
1
n

n∑
i=1

∇ log hθ(Xi)

)T
(31b)

and still make sense, although the equation for the likelihood itself becomes
meaningless (we can’t vary θ and also hold it fixed so hθ = h∗).

But having the log likelihood derivatives means Newton-Raphson is pos-
sible. If we have evaluated at a point θ, then the Newton-Raphson update
moves to

θ +
(
−∇2ln(θ)

)−1∇ln(θ)

assuming the matrix being inverted is positive definite (if it isn’t, then
Newton-Raphson makes no sense as an attempt at maximization).

This problem with lack of positive definiteness is only part of the problem
with MCNR. When the matrix is positive definite but nearly singular, then
the Newton step will often be very bad.

A Digression on Newton’s Method Many naive users have too much
respect for Newton-Raphson. It can behave very badly on even the best
behaved problems.

Consider maximum likelihood for a binomial model with x successes
in n trials. If we use the canonical parameterization (logit of the success
probability), the log likelihood is

l(θ) = −x log
(
1 + e−θ

)
− (n− x) log

(
1 + eθ

)
and if 0 < x < n is a strictly concave function with a unique maximum at
θ̂ = logit(x/n). But l′′(θ) converges to zero as θ goes to infinity or minus
infinity, and Newton-Raphson does not converge (it diverges to infinity)
when not started close enough to the maximum.

52

This badness of Newton-Raphson is well known. Authoritative textbooks
Fletcher (1987); Nocedal and Wright (1999) never recommend its use. What
they do recommend is Newton-Raphson modified by safeguarding, meaning
any of several methods, the most popular of which are line search and trust
regions, of assuring the algorithm always goes uphill on the objective func-
tion (when maximizing) and makes sufficient progress in each iteration.

What is good about Newton’s method is that it is the best possible
method when started near enough to the solution, a fact sometimes called the
Dennis-Moré theorem in optimization: every optimization method that has
superlinear convergence is asymptotically equivalent to Newton-Raphson
Fletcher (1987, Theorem 6.2.3), where here the “asymptotically” has nothing
to do with the kind of asymptotics we use in statistics, but refers to the rate
of convergence. An iterative method with iterates θ1, θ2, . . . is said to be
linearly convergent if it converges to a point θ∗ and

‖θk+1 − θ∗‖ = O(‖θk − θ∗‖) (32a)

superlinearly convergent if

‖θk+1 − θ∗‖ = o(‖θk − θ∗‖) (32b)

and quadratically convergent if

‖θk+1 − θ∗‖ = O(‖θk − θ∗‖2) (32c)

Note that mere linear convergence is very slow; by itself (32a) does not even
assure that the sequence of iterates converges (that’s an additional assump-
tion), although (32b) and (32c) do assure the sequence converges. Another
method with iterates ψ1, ψ2, . . . is said to be asymptotically equivalent to
the first method if

‖ψk+1 − θk+1‖ = o(‖θk+1 − θk‖)

so when one method makes small steps, the other method makes nearly the
same steps. Newton-Raphson has quadratic convergence on well behaved
functions (Fletcher, 1987, Theorem 3.1.1). The Dennis-Moré theorem says
that you either get that rate of convergence and you do so by being nearly
the same as Newton-Raphson when close to the solution, or you have mere
linear convergence (which is slow). If a linearly convergent algorithm takes
100 iterations to reduce the error from 0.1 to 0.01, then it will take another
100 iterations to reduce the error to 0.001, another 100 to reduce to 10−4,
and so forth. Newton-Raphson (or asymptotically equivalent algorithms) go
from 0.01 to 10−4 in one step, then to 10−8 in the next step, then 10−16 in
the next (which is the precision of computer arithmetic).

53

Back to Monte Carlo None of the preceding discussion had anything to
do with Monte Carlo. With Monte Carlo approximation, we never get high
accuracy, so it is unclear what the relevance of the Dennis-Moré theorem
is. The bad behavior of Newton-Raphson when far from the solution does
carry over to the Monte Carlo situation. It is just not safe to use without
safeguarding. But none of the MCNR literature seems to be aware of the
need for safeguarding. One suspects that anyone who recommends MCNR
without any sort of safeguarding has never actually used it. They used the
MCNR update, of course, but they also supplied some form of safeguarding,
some form of trial and error, some form of human intervention, that strictly
speaking is not part of the method.

Note that the most fundamental form of safeguarding discussed by op-
timization textbooks, assuring that the method always takes uphill steps,
is not possible in MCNR, because it refuses to calculate the objective func-
tion, only derivatives. To apply safeguarding to MCNR, we must go back
to MCLA!

On the other hand, when close to the solution, MCLA and MCNR nearly
agree on the step to the maximum (because the importance weights are
nearly equal and Newton-Raphson needs no safeguarding when sufficiently
close to the solution). Thus an MCNR update that is the last one intends
to do (the one after which one will declare the algorithm converged) does
nearly the same thing as MCLA maximum likelihood. Thus MCNR can
never be better than MCLA and usually is worse.

Also note that MCLA is not an iterative algorithm in the same sense that
MCNR is. MCNR requires repeated MCMC sampling. We need samples
from each hθk

that are the “iterates” of MCNR. As the method converges the
distributions are much the same, and if we were willing to use the importance
sampling formula, we could avoid the repeated sampling. But that use of
importance sampling would be MCLA. Seen in this light, MCNR is simple
refusal to gain the benefits of importance sampling in MCMC coupled with
naivete about the dangers of Newton-Raphson when far from the solution.

13.2.3 MCSA

MCSA uses only first derivatives without importance sampling (31a), but
it continuously adjusts the θ in the distribution with unnormalized density
h∗ = hθ preserved by the MCMC update, thus producing a Markov chain
with nonstationary transition probabilities. Traditionally, the adjustment
occurs in each step and has the form

θk+1 = θk + εk
[
∇ log hθk

(x)−∇ log hθk
(Xk)

]
(33)

54

Note that the term in brackets is a very crude approximation to the score
(the first derivative of the log likelihood), the special case of (31a) where
n = 1. The reason why we use only the n = 1 case is that if εk is small and
slowly changing, so we have θk also slowly changing, and if hθ is continuous
so hθk

it is also slowly changing, then we get

θk+m ≈ θk +mεk

[
∇ log hθk

(x)− 1
m

k+m∑
i=k

∇ log hθk
(Xi)

]

so it makes little difference whether one adjusts every step or every m steps.
Younes (1999) shows how very difficult it is to assure convergence of

MCSA. Very strong (unverifiable in practice) regularity conditions concern-
ing the Markov chain transition mechanism are required, and even then
explicit recommendations for the sequence εn are not a sufficient guide to
practice. Also Younes (1999) considers a much more general scheme than
updating every m steps. Instead we update at constant parameter value θk
for mk steps, where mk can depend on θk as well as k. The update is

θk+1 = θk + εk

∇ log hθk
(x)− 1

mk

m1+···+mk∑
i=m1+···+mk−1+1

∇ log hθk
(Xi)

 (34)

Then Younes (1999) considers various schemes in which εk goes to zero at
various rates while mk goes to infinity. But such complicated conditions
provide little guide for practice. (This is not meant to disparage Younes’s
work. The asymptotics of MCSA is a very difficult area. Getting any results
at all is a major theoretical accomplishment. But that doesn’t help applied
people very much.)

We do not consider schemes in which mk grows, because when mk is
very large, then one would do better to switch to MCLA. Again we see that
MCLA provides the unifying framework and competitor to all the other
methods. Once we consider switching from MCSA to MCLA, we see that
there is no point to actually running MCSA “to convergence” because we
should switch to MCSA or MCNR when we get close enough so that they
work.

Nevertheless, MCSA is a useful tool because it does provide a simple
means of “getting close” that is easily implemented. If one has an MCMC
sampler and one can modify the source code, then adding a simple MCSA
update (33) of the parameter is very easy so long as one has a closed-form
expression for the derivative ∇ log hθ(x).

55

If one cannot or does not want to modify the source code for the sampler,
then one can still easily implement (34) with mk = m a constant sequence by
putting the sampler in a loop. For example, supposing that logh(x, theta)
is an R function that evaluates hθ(x) and that dellogh(x, theta) is an
R function that evaluates ∇hθ(x) the following loop (which has not been
actually tested, since these notes aren’t done using Sweave)

out <- metrop(logh, xstart, nbatch = 1, blen = m,
outfun = dellogh, scale = scale)

for (k in 1:niter) {
out <- metrop(out, theta = theta)
theta <- theta + epsilon * as.numeric(out$batch)

}

should work when xstart, m, theta, scale, and niter have been previously
defined. Here we don’t bother to make epsilon a decreasing sequence, since
we haven’t discussed that yet. But we could also insert

epsilon <- epsilon * rho

at the bottom of the loop, where rho has been previously defined and is
some number just a little less than 1.

And this does bring us to schemes for adjusting εk. As Younes (1999)
notes, the traditional IID stochastic approximation criteria are that

∞∑
k=1

εk = ∞

so an infinite amount of adjustment over an infinite run of the chain is
possible (otherwise the scheme could never get to the correct θ if started too
far away) but

∞∑
k=1

εαk <∞

for some α > 1. Simple sequences that satisfy these criteria are

εk =
a

kβ
(35)

where a > 0 and 1/α < β ≤ 1. The smaller β is, the more slowly εk goes to
zero and the more chance MCSA has to converge (but also the more time it
takes).

56

In our experience, there is little point in worrying about εk sequences if
one is willing to apply some human input to the process. Just run at fixed
ε (any fixed ε) and look at the sequence θk for guidance. Does it appear
to be wandering around haphazardly, at least in the latter portion of the
run? Then ε is too large. Decrease it. Does it appear to move almost
monotonically, still heading in the direction of the solution, but still a ways
away? Then ε is too small. Increase it.

In the current state of the art, one has two choices. One can do a huge
amount of theory (like Younes, 1999) and still be unable to decide on a
particular a and β to use in (35). Or one can use trial and error.

13.2.4 MCMM

The EM algorithm applies only to the missing data situation, so it does
not apply here in the unnormalized density case. Hunter and Lange (2004)
name the MM algorithm a generalization of the EM algorithm that does not
involve missing data or conditional expectation. The EM algorithm had a
long history before Dempster et al. (1977), a history they and their discus-
sants cite. Dempster et al. (1977) only gave it a name and popularized it.
The theorems in Dempster et al. (1977) that are correct were not new (sev-
eral of their “theorems” are not theorems, being incorrect beyond patching).
Similarly, the MM algorithm is not new. Hunter and Lange (2004) recap a
long history in the optimization literature. Hunter and Lange (2004) have
only given it a new name (MM patterned after EM) and hope to popularize
it among statisticians.

The MM stands for minorize-maximize (or majorize-minimize, if one is
minimizing the objective function). Suppose we maximize (as in maximum
likelihood), the objective function is l, and there is a minorizing function
q(θ | θ′) satisfying

q(θ | θ′) ≤ l(θ), for all θ (36a)

and
q(θ′ | θ′) = l(θ′). (36b)

Property (36a) is the minorization property. Together these properties as-
sure that if θ1, θ2, . . . is a sequence such that

q(θk+1 | θk) > q(θk | θk), for all k (36c)

then (36a), (36b), and (36c) together assure that

l(θk+1) > l(θk), for all k (36d)

57

This is just like the proof for EM, in fact EM is a special case of MM. What
is different about EM, is that EM requres that the minorization inequality
(36a) must be produced by application of Jensen’s inequality to certain
conditional expectations. Any other way of producing a minorization isn’t
EM but the more general MM. Hunter and Lange (2004) are certainly right
in pointing out that ther

13.2.5 The Acid Test

Not a method of finding a solution, but simply a method of checking
a solution (which is a much simpler problem). Suppose one has a θ that
one wants to check whether it is an MLE or not. More precisely, we check
whether θ satisfies the first order necessary condition for a maximum of the
log likelihood (the score is zero). To do this we simulate a Markov chain
having equilibrium distribution with unnormalized density hθ and evaluate
(31a). It should be zero, at least to within MCSE.

We should always do this check. No matter what method one uses to
find a putative solution, if the solution doesn’t pass this test (which is much
simpler to do than any of the proposed methods of finding a solution), then
the putative solution isn’t a solution.

Since all of the methods can fail, only the foolish refuse to check whether
they have failed.

13.3 Missing Data Models

This section covers models that are specified as joint densities fθ(x, y)
where x is missing and y is observed. It includes an models with unobserved
variables, whether these variables are potentially observable or not. When
the variables x are not observable under any circumstances, they are often
called latent variables or random effects, but there is no difference as far as
we are concerned between the two situations. Missing is missing, whether
it is accidental (data that could have been observed were not) or deliberate
(description of the model involves unobservable random variables). Another
application of the methodology in this section is so-called empirical Bayes
estimation, which is not, despite the name, Bayesian

No one is less Bayesian than an empirical Bayesian.
— D. V. Lindley

Empirical Bayes is just missing data maximum likelihood with a shift in
terminology. What the likelihoodist calls latent variables, a Bayesian calls

58

parameters, because to a Bayesian any unobservable variable is a parame-
ter and all uncertainty is described by probability, hence they are random
variables having a distribution. So far so Bayesian. What the likelihoodist
calls parameters, the Bayesian calls hyperparameters. In a (fully) Bayesian
analysis, the hyperparameters also get a prior distribution, and if there are
parameters of the hyperprior, these hyperhyperparameters, also get a prior,
an so forth indefinitely in an arbitrarily deep hierarchy. But a so-called
empirical Bayes analysis just maximizes the same function the likelihood-
ist would call the likelihood and the empirical Bayesian calls the posterior,
considered as a function of the (hyper)parameters. They are maximizing
the same function and reporting the same numbers, only the terminology is
different.

The likelihood is, of course, the probability of the data considered as a
function of the parameter. What is special about missing data problems is
that this is the probability of the observed data y, not the joint data (often
called “complete data” in this context, x and y). Thus the likelihood is

L(θ) = fθ(y) =
∫
fθ(x, y)µ(dx) (37)

assuming fθ is a density w. r. t. a product measure µ × ν. What makes
missing data hard is that the integral in (37) is often intractable. In fact,
the only widely used missing data models in which the integral is tractable
are the classical normal random effects models where the joint distribution
of x and y is multivariate normal.

Even in cases where the classical EM algorithm can be used to maximize
(37) even though it cannot be computed explicitly, the EM algorithm does
not compute likelihood ratios, Fisher information, and many other quantities
needed for a full likelihood analysis. Hence these methods are useful even
in those cases. Only when there is no problem computing (37) and its
derivatives is there no scope for the methods of this section.

13.3.1 MCLA

This being a course on MCMC, we compute the integral in (37) by
MCMC. We suspect from the preceding section that we need importance
sampling, and in any event we need to convert the integral in (37) to an

59

expectation in order to use any form of Monte Carlo. Thus we write

L(θ) =
∫

fθ(x, y)
f∗(x, y)

f∗(x, y)µ(dx)

= E∗
{
fθ(X,Y)
f∗(X,Y)

∣∣∣∣ Y = y

} (38)

again we have the requirement of no divide by zero, or more precisely

f∗(x, y) = 0 implies fθ(x, y) = 0, for all θ and for µ-almost-all x

where y here is the observed value of this variable. Unlike the case in the
preceding section f∗ and fθ are normalized densities (the case where they
are unnormalized is the following section).

Now let X1, X2, . . . be a Markov chain having equilibrium distribution
with unnormalized density f∗(· , y). Since y is fixed, we are sampling the
conditional distribution of x given y corresponding to the joint density f∗.
We also see that it makes no difference whether f∗ is normalized, as should
have been obvious from the begininning, since it never makes a difference if
we change the likelihood by a multiplicative constant that does not depend
on the parameter (the normalizing constant for f∗ does not depend on θ).
The natural Monte Carlo estimate of (38) is

Ln(θ) =
1
n

n∑
i=1

fθ(Xi, y)
h∗(Xi, y)

(39)

where we have changed notation from f∗ to h∗ to recognize our realiza-
tion that h∗ may be unnormalized, though fθ must be normalized. The
corresponding log likelihood

ln(θ) = log

(
1
n

n∑
i=1

fθ(Xi, y)
h∗(Xi, y)

)
(40)

As in the case in the preceding section, we record its derivatives

∇ln(θ) =

∑n
i=1∇ log fθ(Xi, y)

fθ(Xi,y)
h∗(Xi,y)∑n

i=1
fθ(Xi,y)
h∗(Xi,y)

=
n∑
i=1

∇ log fθ(Xi, y)w∗n,θ(Xi, y)

= E∗
n,θ

{
∇ log fθ(X,Y)

∣∣ Y = y
}

(41)

60

the notation in the last line suggesting that the weighted average in the
preceding line does indeed estimate the conditional expectation

∇ logL(θ) =
1

L(θ)
E∗
{
∇fθ(X,Y)
h∗(X,Y)

∣∣∣∣ Y = y

}

=
E∗
{
∇fθ(X,Y)
h∗(X,Y)

∣∣∣∣ Y = y

}
E∗
{
fθ(X,Y)
h∗(X,Y)

∣∣∣∣ Y = y

}
where in both of the above equations the normalized importance weights are

w∗n,θ(x, y) =
fθ(x,y)
h∗(x,y)∑n

i=1
fθ(Xi,y)
h∗(Xi,y)

(42)

Also

∇2ln(θ) =

∑n
i=1

∇2fθ(Xi,y)
h∗(Xi,y)∑n

i=1
fθ(Xi,y)
h∗(Xi,y)

−

∑n
i=1

∇fθ(Xi,y)
h∗(Xi,y)∑n

i=1
fθ(Xi,y)
h∗(Xi,y)

∑n
i=1

∇fθ(Xi,y)
h∗(Xi,y)∑n

i=1
fθ(Xi,y)
h∗(Xi,y)

T

= E∗
n,θ

{
∇2 log fθ(X,Y)

∣∣ Y = y
}

+ E∗
n,θ

{[
∇ log fθ(X,Y)

][
∇ log fθ(X,Y)

]T ∣∣∣ Y = y
}

− E∗
n,θ

{
∇ log fθ(X,Y)

∣∣ Y = y
}
E∗
n,θ

{
∇ log fθ(X,Y)

∣∣ Y = y
}T

(43)

As in (30b) we get two terms involving outer products of first derivatives,
one with the outer product inside the expectation, one with the expectations
inside the outer product.

MCLA is not much different in this context than in the unknown nor-
malizing constant context. The formulas are slightly different. Geyer (1994)
comments that this form of MCLA is somewhat less well behaved because
the random term is positive rather than negative. Since the terms being aver-
aged (the unnormalized importance weights) are bounded below by zero but
unbounded above, this means that outliers, when they occur are positive for
missing data MCLA but negative in unknown normalizing constant MCLA,
and when maximizing positive outliers have more effect than negative out-
liers. This was noticed because stronger regularity conditions are required

61

in the consistency for missing data MCLA, but once the phenomenon has
been pointed out, one sees it in real examples. Other than this slight theo-
retical difference, which merely requires Monte Carlo sample sizes larger in
one case than the other, there is no important difference.

13.3.2 MCNR

As in the other case, the derivatives simplify when we take h∗ = fθ in
which case we get

∇ln(θ) =
1
n

n∑
i=1

∇ log fθ(Xi, y) (44a)

and

∇2ln(θ) =
1
n

n∑
i=1

∇2fθ(Xi, y)

+
1
n

n∑
i=1

[
∇ log fθ(Xi, y)

][
∇ log fθ(Xi, y)

]T
−

(
1
n

n∑
i=1

∇ log fθ(Xi, y)

)(
1
n

n∑
i=1

∇ log fθ(Xi, y)

)T
(44b)

All of the comments that applied to MCNR in the preceding section apply
here too.

13.3.3 MCSA

In this case the update of θ in MCSA, the competitor (33) in the other
case, is

θk+1 = θk + εk∇ log fθk
(Xk, y) (45)

Otherwise the cases are very similar.

13.3.4 MCEM

Here, since we could not find an MCMM algorithm for the other case,
we have something new. The q function for the EM algorithm applied to
our missing data problem is

q(θ | ψ) = Eψ{log fθ(X,Y) | Y = y}

62

For comparison with MCLA, we change this standard q function to

q(θ | ψ) = Eψ

{
log

fθ(X,Y)
fψ(X,Y)

∣∣∣∣ Y = y

}
(since this only changes the additive term by a constant that does not de-
pend on θ this does not change the sequence of iterates produced by the
algorithm). If we apply the conditional Jensen inequality to this we get

q(θ | ψ) = Eψ

{
log

fθ(X,Y)
fψ(X,Y)

∣∣∣∣ Y = y

}
≤ log

(
Eψ

{
fθ(X,Y)
fψ(X,Y)

∣∣∣∣ Y = y

})
≤ log

(∫
fθ(x, y)
fψ(x, y)

fψ(x | y)µ(dx)
)

≤ log
(∫

fθ(x, y)
fψ(x, y)

·
fψ(x, y)
fψ(y)

µ(dx)
)

≤ log
(

1
fψ(y)

∫
fθ(x, y)µ(dx)

)
= l(θ)− l(ψ)

And from this minorization condition we get the guarantee that the EM
algorithm goes uphill on the log likelihood, because it satisfies (36a) and
(36b) with l(θ) replaced by l(θ)− l(ψ). Of course, this is non-Monte-Carlo
EM.

The natural approximation of the EM algorithm when the q function
cannot be calculated in closed form is

qn(θ | ψ) =
1
n

n∑
i=1

log fθ(Xi, ψ)

where X1, X2, . . . form a Markov chain with equilibrium distribution hav-
ing unnormalized density fψ(· , y), that is, we sample from the conditional
distribution of X given Y for the parameter ψ.

The MCEM algorithm produces a sequence of iterates θ1, θ2, . . . satis-
fying

qn(θk+1|θk) > qn(θk|θk)

and such a sequence is guaranteed to go uphill on what? Not on the true
log likelihood because of Monte Carlo error. It is by the conditional Jensen

63

inequality to go uphill on the MCLA approximation to the log likelihood

qn(θ|ψ)− qn(ψ|ψ) =
1
n

n∑
i=1

log
fθ(Xi, ψ)
fψ(Xi, ψ)

≤ log

(
1
n

n∑
i=1

fθ(Xi, ψ)
fψ(Xi, ψ)

)
= ln(θ)

if in the last step we use fψ = h∗ as the importance sampling distribution for
MCLA, in which case ln(ψ) = 0, which is why there is no term like that at
the end. Thus we see that MCEM has no virtues unless MCLA gives virtues
to it, and for that MCLA must possess the same virtues itself. Moreover,
when we compare the expressions on the opposite sides of the inequality, we
see that MCEM and MCLA involve exactly the same calculations but just
in a different order. In one the log is inside the sum, in the other the log is
outside.

We know from the Dennis-Moré theorem (p. 13.2.2 that the EM algo-
rithm, not being asymptotically equivalent to Newton-Raphson is slowly
converging. In fact, it is notoriously slowly converging, often taking thou-
sands or millions of iterations to produce a few significant figures (this is
non-Monte-Carlo EM). MCEM is slower still, since each of these iterations
is costly, requiring and MCMC run.

The good news is that we have no intention of MCEM “converging” to
high accuracy, since no Monte Carlo method can produce high accuracy.
The bad news is that MCEM is still very efficient. Once it gets close to
a solution, it is simply perverse to keep doing MCEM iterations instead
of switching to MCLA or MCNR. But MCEM is inefficient in the role of
“getting close” compared to MCSA. It is not clear that there is any role in
which MCEM makes sense. It is, however, the most popular method for
these problems. Such is the influence of widely popularized methods.

13.4 Unknown Normalizing Constant Missing Data Models

Suppose now our model is given by a family of unnormalized densities
hθ(x, y) with x missing and y observed. The normalizing constants are

c(θ) =
∫∫

hθ(x, y)µ(dx)ν(dy)

64

where the hθ are densities w. r. t. the product measure µ×ν. The normalized
complete data densities are

fθ(x, y) =
1
c(θ)

fθ(x, y)

The likelihood is

L(θ) = fθ(y)

=
1
c(θ)

∫
hθ(x, y)µ(dx)

Thus the log likelihood is

l(θ) = log
(∫

hθ(x, y)µ(dx)
)
− log

(∫∫
hθ(x, y)µ(dx)ν(dy)

)
(46)

As always, in order to do the integrals by Monte Carlo, we use the impor-
tance sampling formula, writing

l(θ) = log
(
E∗
{
hθ(X,Y)
h∗(X,Y)

∣∣∣∣ Y = y

})
− log

(
E∗∗

{
hθ(X,Y)
h∗∗(X,Y)

})
(47)

where we have introduced two different importance sampling distributions,
there being no need for them to be the same. As always we need no divide
by zero for (47) to be valid. For once, we will not write out the condition
explicitly.

If X∗
1 , X∗

2 , . . . are a Markov chain with equibrium distribution having
unnormalized density h∗(· , y) and If (X∗∗

i , Y
∗∗
i), i = 1, 2, . . . are a Markov

chain with equibrium distribution having unnormalized density h∗∗, then

lm,n(θ) = log

(
1
m

m∑
i=1

hθ(X∗
i , y)

h∗(X∗
i , y)

)
− log

(
1
n

n∑
i=1

hθ(X∗∗
i , Y

∗∗
i)

h∗∗(X∗∗
i , Y

∗∗
i)

)
(48)

is the natural Monte Carlo approximation to (47). Note that the two samples
being unrelated, there is no reason to have the same Monte Carlo sample
size, so we have allowed them to be different.

We shall not laboriously repeat the details of all the issues. MCLA and
MCNR are obvious. One only needs calculus to differentiate (48). We forgo
the details.

65

13.4.1 MCSA

Since this involves two samplers not one, it is no longer clear how to
do MCSA. It does seem that if one ran a simultaneous sampler with state
(X∗

i , X
∗∗
i , Y

∗∗
i) having joint equilibrium unnormalized density

hk(x∗, x∗∗, y∗∗) = fθk
(x∗, y)fθk

(x∗∗, y∗∗),

then
θk+1 = θk + εk

[
∇hθk

(X∗
k , y)−∇hθk

(X∗∗
k , Y

∗∗
k)
]

would be some sort of MCSA step, but (as far as I know) this has never
been studied.

13.4.2 MCEM

To do MCEM one just moves the log inside as we did before. The MCEM
q function is

qm,n(θ, ψ) =

(
1
m

m∑
i=1

log
hθ(X∗

i , y)
hψ(X∗

i , y)

)
− log

(
1
n

n∑
i=1

hθ(X∗∗
i , Y

∗∗
i)

h∗∗(X∗∗
i , Y

∗∗
i)

)
(49)

One can go ahead and do MCEM if one has a serious MCEM addiction. Of
course, this scheme is an odd combination of MCEM and MCLA. There is
no way (as far as I know) to MCEMize the second term. Hence one must use
importance sampling anyway. So if one has a serious importance sampling
aversion, one must simply avoid these sorts of models.

I will concede that to the extent that EM deserves its reputation as
being more stable than other optimization methods and being especially
well behaved when started far from the solution (there is much folklore
saying this, but no theorem), one may prefer MCEM in this role of “getting
close” since MCSA has not been studied. Actually (as far as I know), neither
MCSA nor MCEM has ever been used for these sorts of models for the simple
reason that these sorts of models have not been used much and have never
been extensively investigated.

13.5 Umbrella Sampling

References

Bélisle, C. J. P. (1992). Convergence theorems for a class of simulated
annealing algorithms on Rd. Journal of Applied Probability, 29:885–895.

66

Bélisle, C. J. P., Romeijn, H. E., and Smith, R. L. (1993). Hit-and-run
algorithms for generating multivariate distributions. Mathematics of Op-
erations Research, 18:255–266.

Benveniste, A., Métivier, M., and Priouret, P. (1990). Adaptive algorithms
and stochastic approximations. Berlin: Springer-Verlag.

Besag, J. (1994). Discussion of Grenander and Miller (1994). Journal of the
Royal Statistical Society, Series B, 56:591–592.

Besag, J., Green, P., Higdon, D., and Mengersen, K. (1995). Bayesian
computation and stochastic systems. Statistical Science, 10:3–41. With
discussion.

Besag, J. and Green, P. J. (1993). Spatial statistics and Bayesian compu-
tation. Journal of the Royal Statistical Society, Series B, 55:25–37. With
discussion.

Chen, M.-H. and Schmeiser, B. (1993). Performance of the Gibbs, hit-and-
run, and Metropolis samplers. Journal of Computational and Graphical
Statistics, 2:251–272.

Clifford, P. (1993). Discussion of Smith and Roberts (1993), Besag and
Green (1993), and Gilks et al. (1993). Journal of the Royal Statistical
Society, Series B, 55:53–54.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likeli-
hood from incomplete data via the EM algorithm. Journal of the Royal
Statistical Society, Series B, 39:1–38. With discussion.

Dijkstra, E. W. (1976). A Dicipline of Programming. Englewood Cliffs, NJ:
Prentice-Hall.

Fletcher, R. (1987). Practical Methods of Optimization. John Wiley, 2nd
edition.

Gelfand, A. E. and Carlin, B. P. (1993). Maximum-likelihood estimation
for constrained- or missing-data models. Canadian Journal of Statistics,
21:303–311.

Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to
calculating marginal densities. Journal of the American Statistical Asso-
ciation, 85:398–409.

67

Gelman, A., Roberts, G. O., and Gilks, W. R. (1996). Efficient Metropolis
jumping rules. In Bayesian Statistics 5 – Proceedings of the Fifth Valen-
cia International Meeting, J. M. Bernardo, J. O. Berger, A. P. Dawid,
and A. F. M. Smith, editors, pages 599–607. Clarendon Press [Oxford
University Press].

Geyer, C. J. (1991). Markov chain Monte Carlo maximum likelihood. In
Computing Science and Statistics: Proc. 23rd Symp. Interface, E. Kerami-
das, editor, pages 156–163. Interface Foundation.

Geyer, C. J. (1992). Practical Markov chain Monte Carlo. Statistical Science,
7:473–511. With discussion.

Geyer, C. J. (1994). On the convergence of Monte Carlo maximum likelihood
calculations. Journal of the Royal Statistical Society, Series B, 56:261–
274.

Geyer, C. J. (1995). Comment on Besag et al. (1995). Statistical Science,
10:46–48.

Geyer, C. J. and Thompson, E. A. (1992). Constrained Monte Carlo max-
imum likelihood for dependent data. Journal of the Royal Statistical So-
ciety, Series B, 54:657–699. With discussion.

Geyer, C. J. and Thompson, E. A. (1995). Annealing Markov chain Monte
Carlo with applications to ancestral inference. Journal of the American
Statistical Association, 90:909–920.

Gilks, W. R., Clayton, D. G., Spiegelhalter, D. J., Best, N. G., and McNeil,
A. J. (1993). Modelling complexity: Applications of Gibbs sampling in
medicine. Journal of the Royal Statistical Society, Series B, 55:39–52.
With discussion.

Grenander, U. and Miller, M. I. (1994). Representations of knowledge
in complex systems. Journal of the Royal Statistical Society, Series B,
56:549–603. With discussion.

Guo, S. W. and Thompson, E. A. (1992). Monte Carlo estimation of mixed
models for large complex pedigrees. American Journal of Human Genet-
ics, 51:1111–1126.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains
and their applications. Biometrika, 57:97–109.

68

Hunter, D. R. and Lange, K. (2004). A tutorial on MM algorithms. American
Statistician, 58:30–37.

Kindermann, R. and Snell, J. L. (1980). Markov Random Fields and Their
Applications. Providence, RI: American Mathematical Society.

Kirkpatrick, S., Gelatt, C. D., J., and Vecchi, M. P. (1983). Optimization
by simulated annealing. Science, 220:671–680.

Locatelli, M. (2000). Convergence of a simulated annealing algorithm for
continuous global optimization. Journal of Global Optimization, 18:219–
234.

MacEachern, S. N. and Berliner, L. M. (1994). Subsampling the gibbs sam-
pler. American Statistician, 48:188–190.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and
Teller, E. (1953). Equation of state calculations by fast computing ma-
chines. Journal of Chemical Physics, 21:1087–1092.

Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic
Stability. London: Springer-Verlag.

Mira, A. and Geyer, C. J. (2000). On non-reversible Markov chains. In Monte
Carlo Methods, N. Madras, editor, pages 93–108. Toronto, Canada: Fields
Institute.

Moyeed, R. A. and Baddeley, A. J. (1991). Stochastic approximation of
the MLE for a spatial point pattern. Scandinavian Journal of Statistics,
18:39–50.

Nocedal, J. and Wright, S. J. (1999). Numerical Optimization. Springer-
Verlag.

Penttinen, A. (1984). Modelling Interaction in Spatial Point Patterns: Pa-
rameter Estimation by the Maximum Likelihood Method. Number 7 in
Jyväskylä Studies in Computer Science, Economics, and Statistics. Uni-
versity of Jyväskylä.

Potts, R. B. (1952). Some generalized order-disorder transformations. Pro-
ceedings of the Cambridge Philosophical Society, 48:106–109.

Ripley, B. D. (1987). Stochastic Simulation. New York: Wiley.

69

Roberts, G. O. and Rosenthal, J. S. (1998). Optimal scaling of discrete
approximations to Langevin diffusions. Journal of the Royal Statistical
Society, Series B, 60:255–268.

Roberts, G. O. and Tweedie, R. L. (1996). Exponential convergence of
Langevin distributions and their discrete approximations. Bernoulli,
2:341–363.

Smith, A. F. M. and Roberts, G. O. (1993). Bayesian computation via the
Gibbs sampler and related Markov chain Monte Carlo methods. Journal
of the Royal Statistical Society, Series B, 55:3–23. With discussion.

Swendsen, R. H. and Wang, J. S. (1987). Non-universal critical dynamics
in Monte Carlo simulations. Physical Review Letters, 58:86–88.

Thompson, E. A. and Guo, S. W. (1991). Evaluation of likelihood ratios for
complex genetic models. IMA J. Math. Appl. Med. Biol., 8:149–169.

Wasan, M. T. (1969). Stochastic Approximation. Cambridge University
Press.

Wei, G. C. G. and Tanner, M. A. (1990). A Monte Carlo implementation
of the EM algorithm and poor man’s data augmentation. Journal of the
American Statistical Association, 85:699–704.

Younes, L. (1988). Estimation and annealing for Gibbsian fields. Annales
de l’Institut Henri Poincaré. Probabilités et Statistiques, 24:269–294.

Younes, L. (1999). On the convergence of Markovian stochastic algorithms
with rapidly decreasing ergodicity rates. Stochastics and Stochastics Re-
ports, 65:177–228.

70

