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Chapter 1

Introduction

1.1 Monte Carlo

Classical Monte Carlo involves the notion of learning about a probability dis-
tribution by simulating independent identically distributed realizations from it.
Suppose we are interested in a probability distribution 7 and cannot do any
pencil and paper calculations about it but can simulate in a computer a se-
quence X1, Xo, ... of independent identically distributed realizations having
this distribution. Then we can estimate expectations

Erg(X) = [ gla)(da) (1.1)

of interesting functions g. The notation on the right hand side in (1.1) is not
intended to intimidate anyone or warn of an impending onset of measure theory.
It is just used as the appropriate shorthand sums or integrals or a combination
of the two as the case may be. If X is a discrete random variable,

Brg(X) = [ gla)mtdn) = 3 glalple)
all possible
x values
where p(z) is the probability mass function of the distribution =. If X is a
continuous random variable,

Eng(X) = [ g(oyn(dr) = [ galpla)da.

where p(z) is the probability density function of the distribution 7. If X is mul-
tivariate these will be multiple sums or multiple integrals or perhaps sums and
integrals if X has some discrete components and some continuous components.

In any case, although we can write down (1.1) we cannot actually evaluate
the sums or integrals and so cannot actually calculate the expectation. Intro-
duce the Greek letter yu = E,g(X) for the quantity we want to calculate. Then

7
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p is the mean of the random variable Y = ¢g(X). If we can simulate a sequence
X1, Xa, ..., of independent realizations of the random process X having distri-
bution 7, then the random variables Y; = ¢g(X;) are independent and identically
distributed with distribution 7. Thus

the sample mean of the Y;, is an unbiased estimator of p and fi,, converges
almost surely to p as n — oo by the strong law of large numbers. Moreover, if
the variance of the random variable Y = g(X) is finite, then the central limit
theorem applies

V(i — @) 2 N(0,02),

where — indicates convergence in distribution. Our Monte Carlo approxima-
tion fi,, is asymptotically normally distributed with mean p, the quantity to
be calculated and standard deviation o/+/n, where o2 is the variance of the
random variable Y

7* = [lo@) - nPn(ao).

Of course we usually do not know o, but it can be consistently estimated from
the simulations themselves by the sample standard deviation of the Y;

s= e S il = Sl —
n—1 n—1
i=1 =1

The Monte Carlo approximation i, is a point estimate of of the quantity pu,
which is the expectation to be calculated. The approximate error in the Monte
Carlo approximation is s//n. The nice thing for statisticians about ordinary
Monte Carlo is that we already understand the theory. It is just elementary
statistics.

1.2 Problems with Ordinary Monte Carlo

The main problem with ordinary Monte Carlo is that it is very hard to do for
multivariate stochastic processes. A huge number of methods exist for simulat-
ing univariate random variables. Devroye (1986) is the definitive source. Ripley
(1987) is more introductory but is authoritative as far as it goes. Knuth (1973)
is also authoritative, though a bit dated.

There are a few tricks for reducing multivariate problems to univariate prob-
lems. A general multivariate normal random vector X ~ N(u,X) can be sim-
ulated using the Cholesky decomposition of the dispersion matrix ¥ = LLT.
Let Z be a N(0,I) random vector (each component is standard normal and
the components are independent). Then X = p+ LZ has the desired N(u,X)
distribution (Ripley, 1987, p. 98). Wishart distributions can also be simulated
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(Ripley, 1987, p. 99-100). There are a few other special cases in which indepen-
dent simulations of a multivariate process are possible, but not many.

One general method that has occurred to many people is to use the laws
of conditional probability. Simulate the first component X; from its marginal
distribution, simulate the second component X5 from its conditional distribution
given X1, then simulate X3 from its conditional distribution given X; and X5,
and so forth. The sad fact is that this is almost never useful, because the
required marginal and conditional distributions are not known and cannot be
used for simulation.

In summary, ordinary independent-sample Monte Carlo is not useful for most
multivariate stochastic processes. Something better is needed.

1.3 Markov Chains

In this course, the term Markov chain refers to a discrete time stochastic process
on a general state space that has the Markov property: the future is independent
of the past given the present state. This follows one of the two conflicting
standard usages of the term “Markov chain.” Some Markov chain literature
(Chung, 1967, for example) uses “Markov chain” to refer to a discrete time or
continuous time stochastic process on a countable state space. Much of the
modern literature (Nummelin, 1984 or Meyn and Tweedie, 1993, for example)
as well as all of the Markov chain Monte Carlo (MCMC) literature follows the
usage adopted here.

A Markov chain is a discrete time stochastic process Xi, X, ... taking
values in an arbitrary state space having the property that the conditional
distribution of Xy, given the past Xi, ..., X; depends only on the present
state X;. Following Nummelin (1984) and Meyn and Tweedie (1993) and all
of the MCMUC literature, we will further restrict the term “Markov chain” to
refer to a Markov chain with stationary transition probabilities, that is, the
conditional distribution of X;,; given X; is the same for all ¢.

1.3.1 Markov Chain Monte Carlo

There are stochastic processes more general than Markov chains that one might
think would be useful for Monte Carlo, but this is not so because any computer
program used for simulation is a Markov chain if one defines the state space
properly. Consider a program

initialize x
fori=1,...,ndo
update x
output x
end

where x denotes the vector containing all of the variables the computer program
uses except the loop index 7 and the step “update x” does not refer to the loop
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index i. The program starts by defining some initial values for all the variables.
Then each time through the loop the program makes some possibly random
change in some or all of the variables and prints out the current values. The
output is a Markov chain because the probability distribution of x when i = ¢
only depends on the value of x in the preceding iteration when i = ¢ — 1 because
earlier values of x have been overwritten and are no longer available. The
transition probabilities are stationary because the same computer code is used
in the step “update z” each time through the loop and this code does not refer
to the “time” i.

The program would not necessarily be a Markov chain if the program did not
print out the values of all variables known to the program except the loop index i,
but there is no reason not to include all of the variables in the computer program
in the state space of the Markov chain. The transition probabilities would not
be stationary if the step “update z” depended on 4, but this conflicts with the
notion of trying to simulate realizations of a fixed probability distribution 7.

As we shall see, both the law of large numbers and the central limit theorem
also hold for Markov chain under certain conditions. Thus the same principles
used in ordinary Monte Carlo can be applied to Markov chain Monte Carlo.

1.3.2 Transition Probabilities

A Markov chain is defined by defining its transition probabilities. For a discrete
state space S, these are specified by defining a matrix

p(xay) = Pr{Xt—‘rl = y|Xt = ‘T}v T,y € S

that gives the probability of moving from any point = at time ¢ to any other point
y at time £+ 1. Because of the assumption of stationary transition probabilities,
the transition probability matrix p(z,y) does not depend on the time ¢. For
a general state space S the transition probabilities are specified by defining a
kernel

P(z,B) = Pr{X;41 € B| X =z}, x € S, B a measurable set in S.

The kernel is defined so that for each fixed x, the function B — P(x,B) is
a probability measure and for each fixed B the function z — P(z,B) is a
measurable function on S. In other words, the kernel is a regular conditional
probability.

The transition probabilities do not by themselves define the probability law
of the Markov chain, though they do define the law conditional on the initial
position, that is given the value of X;. In order to specify the unconditional law
of the Markov chain we need to specify the marginal distribution of X7, which
is called the initial distribution of the chain.

For those who like to keep track of measure-theoretic niceties, there is one
technical condition always imposed on a general state space, that it be countably
generated, meaning the o-field is generated by a countable family of sets. This
is required for some of the results of the modern theory of Markov chains that
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make chains on general state spaces little more difficult than those on countable
state spaces. In practice this is not restrictive. Any Euclidean space R or,
more generally, any separable metric space is countably generated.

1.3.3 Stationary Distributions

We say that a probability distribution 7 is a stationary distribution or an in-
variant distribution for the Markov chain if it is “preserved” by the transition
probability, that is if the initial distribution is 7, then the marginal distribution
of X5 is also . Hence so is the marginal distribution of X3 and all of the rest
the chain.

In the discrete case 7 is specified by a vector 7(z), and the stationary prop-
erty is

m(y) =Y _ m(x)p(x,y). (1.2)
zeS

For those who like to think of the transition probabilities as a matrix P with
entries p(z,y), (1.2) can be rewritten 7 = 7P, since the right hand side of (1.2)
is the multiplication of the matrix P on the left by the row vector w. This
association with matrix multiplication does not buy much, because it does not
extend to general state spaces.

For general state spaces the stationary property is

7(B) = / 7(dz)P(z, B). (1.3)

(1.2) and (1.3) are the same except that a sum over a discrete state space has
been replaced by an integral over a general state space. We sometimes use the
same notation 7 = 7P to refer to (1.3) as well as (1.2) but it no longer refers to
matrix multiplication. To further the analogy, we define multiplication on the
left of a kernel P by an arbitrary positive measure v by

(vP)(B) = /V(dm)P(x,B).
This makes rigorous our calling the right hand side of (1.3) 7wP.

1.3.4 Law of Large Numbers

In MCMC we always use a Markov chain that is constructed to have a spec-
ified stationary distribution 7, so there is never any question as to whether
a stationary distribution exists—it does so by construction. There may be a
question about whether the stationary distribution is unique, about whether
(1.2) or (1.3) have any other solutions 7 other than the distribution used in the
construction. If the stationary distribution is not unique, the chain is useless for
Monte Carlo. Later on we will learn that a condition guaranteeing the unique-
ness of the stationary distribution is irreducibility for chains on discrete state
spaces and so-called -irreducibility for chains on general state spaces.
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Under the same conditions, irreducibility or @-irreducibility that guarantee
uniqueness of the stationary distribution, there is a law of large numbers for the
Markov chain. Define

B = Eﬂ‘g(X)

and

just as we did in ordinary Monte Carlo. For a ¢-irreducible Markov chain,
conditional on the starting position X; = =z, fi,, converges almost surely to u
for m-almost all . Under further regularity conditions the “m-almost all z”
can be strengthened to “all ”. This will be discussed further in Section 3.2.
For now the point is that, having constructed a Markov chain with a unique
stationary distribution 7, averages over a simulation of the chain can be used to
approximate expectations with respect to m, just as in ordinary Monte Carlo.

1.3.5 Operating on Functions

Although we don’t need the notation immediately, it seems worth mentioning
here the other way a transition probability can “multiply” a vector. If g is any
non-negative function, the conditional expectation of g(X;) given X;_1 = x is
another non-negative function, which we denote Pg. If the state space is discrete

(Pg)(z) = E{g(X))|X;1 =x} = Y _ pla,y)g(y),
yeSs

and, as the notation suggests, the vector Pg is obtained by multiplying the
matrix P on the right by the column vector g.
For a general state space, the sum becomes an integral

(Pg)(x) = E{g(X))|Xo_1 = o} = / Pz, dy)g(y). (1.4)

For discrete state spaces, both of these operations are matrix multiplication,
the only distinction is that we multiply P on the left by a row vector p and
on right by a column vector g. Only the probabilistic interpretation of these
operations tells us that we should consider ;1 a measure on the state space and
g a function on the state space.

With a general state space, the distinction is clear. Because a kernel P(x, A)
has different kinds of arguments, x a point and A a set, we must have p a
measure and ¢ a function, and these two kinds of mathematical objects cannot
be confused as the “matrix multiplication” point of view invites.

We defined the operation Pg above only when g was a non-negative function.
Because both the kernel and the function are non-negative, the result is always
well-defined, although we may have (Pg)(z) equal to infinity for some (or even
all x).
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We can also define P to operate on a different class of functions, the Hilbert
space L?(m) where 7 is a stationary distribution for the kernel P. For complex-
valued measurable functions u and v on the state space, define the inner product

<ww:/¢@wwmmm

where ¥ denotes the complex conjugate of v, and the norm ||u| by

lull* = (u, u) :/IU(w)Izﬂ(dz)- (1.5)

Then L?(r) is the space of function u for which (1.5) is finite. The Cauchy-
Schwarz inequality |(u,v)| < ||lul| ||v]] guarantees the finiteness of the inner prod-
uct.

If u is an element of L?(7), then so is Pu by Jensen’s inequality

iPut? = [| [ Ple.dnuto)

< / / 7(dx) Pz, dy)u(y)?
:/%wmww2

= |[ull?

2

m(dx)

This allows us to interpret Pu when w is an arbitrary non-negative function or
when u is not non-negative but is an element of L?(r).
The norm of a linear operator P on L?(r) is defined by

Pu
1Pl = sup 12U
weL? () ||UH

The calculation above says ||P|| < 1. Since Pu = u for constant functions, we
have ||P]| = 1. We are not interested in P operating on constant functions,
because this is trivial, so we often restrict the domain of definition to the space
of functions with mean zero

Li(m)={ue L*(n): [udr}.

The norm of P considered to be an operator on the subspace LZ() is still less
than or equal to one. Because L3(m) does not contain any constant functions,
the norm may be strictly less than one.
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Chapter 2

Basic Algorithms

This section describes the two basic “algorithms” for Markov chain Monte Carlo.
The word “algorithms” is in quotation marks because what will actually be
described are elementary update steps, bits of algorithm (and the corresponding)
code that change the state variable of the Markov chain in such a way so as
to preserve the stationary distribution. Some of these updates can be used to
simulate a Markov chain by repeating the update again and again. Some cannot
be used that way, because the resulting Markov chain would not be irreducible,
but these elementary update steps can be combined in various ways to make
combined update steps that are useful. The two types of basic update step are
the Gibbs update, the basic component of the so-called “Gibbs sampler,” and the
Metropolis-Hastings update, the basic component of the so-called “Metropolis-
Hastings algorithm.”

The Gibbs update is actually a special case of the Metropolis-Hastings up-
date, so the “Gibbs sampler” is actually a special case of the “Metropolis-
Hastings algorithm,” but because it has gotten so much attention we will start
with the Gibbs update.

2.1 The Gibbs Update

The rationale of the Gibbs update is very simple. The state variable of the sys-
tem is a vector = (x1,...,24). In this section, subscripts indicate components
of the state vector rather than time. An elementary Gibbs update changes only
one component of the state vector, say z;. This component is given a new value
which is a realization from its conditional distribution given the rest m(z;|z_;)
where ©_; = (21,...,%;—1,%i11,...,2Zq) is conventional shorthand for the rest
of the components of = besides x; and the conditional distribution is the one
derived from the desired stationary distribution 7 of the Markov chain. These
one-dimensional conditional distributions of one component given the rest are
often called “full conditionals” in the Gibbs sampling literature and “local char-
acteristics” in the spatial statistics literature.

15
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It is clear that this preserves the stationary distribution. If the current state
x is a realization from 7, then x_; is distributed according to its marginal m(z_;)
derived from 7 and the state after the update will have the distribution

W(xi\x,i)w(x,i) (21)

which is 7(z) by definition of conditional probability: joint equals conditional
times marginal.

2.2 Combining update mechanisms

2.2.1 Composition

In order to get a useful Markov chain sampler, one must often combine elemen-
tary update mechanisms. There are two ways to combine update mechanisms:
composition and mixing. Composition follows one update mechanism by an-
other; the computer code for the first is executed, then the computer code for
the second. If each step preserves the stationary distribution, then so does the
combination. One reason why we are calling this composition of update mecha-
nisms is that the procedure of following one bit of computer code by another is
also composition of functions in an abstract sense. If one bit of code produces
output f(x) given input x and another bit produces output g(y) given input y,
then the first bit followed by the second produces output g(f(z)) given input .

Hence if one has d different elementary update mechanisms Uy, ..., Uy,
which we may think of as different bits of computer code or perhaps one bit of
computer code that does d slightly different operations for the d different values
of some index variable, we may combine them in a composite update U; --- Uy
that executes them in sequence, either by simply placing one bit of code after
another in the program or by putting one bit of code in a loop

for(1€1,...,d)doU;

This procedure is also composition of kernels when we think of the kernels as
operators on a function space. Suppose the corresponding transition probability
kernels for these update steps are Py, ..., Py then the kernel for the combined
update is Pj - - - Py where as usual in operator theory this means composition of
operators. For any function g € L?(7)

(P Pa)g = Pu(Py -+ (Pag) ),

that is, the result of applying P; to g yielding the L?(7) function Pug, then
applying P;_; to that function, and so forth.

2.2.2 Multiplication of Kernels

In order to see why composition preserves stationary distributions, we need to
look at the general definition of “multiplication of kernels.” Suppose X has the
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distribution p, the conditional distribution of Y given X is given by the kernel
P and the conditional distribution of Z given Y is given by the kernel (). Then
the joint distribution of X, Y, and Z is given by

PriXeAYeB, Zec()= /A/B,u(dx)P(x,dy)Q(y,C)

If we specialize to the case where u = §, the distribution concentrated at the
point = and let B be the whole state space we get

Pr(X =2,Z€C) = /P(x, dy)Q(y, C)

and this is another kernel, which is denoted by the notation PQ

(PQ)(x, A) = / Pz, dy)Q(y. A).

An important special case arises when P = ). For a Markov chain with sta-
tionary transition probabilities, the same kernel is used at each step and

Pr(Xiin € A| Xy =) = P"(x, A)

the n-fold product of the transition probability kernel P. These are called the
n-step transition probabilities. Because we can take marginals in any order, we
have the so-called Chapman-Kolmogorov equations

P (g, A) = /Pm(x, dy)P"(y, A).
These hold even for m or n equal to zero if we define

1, z€A

0 ¢4 (2.2)

Pz, A) =I(z,A) = {

to be the so-called identity kernel.
In the case of a discrete state space, when P is a matrix with entries p(x,y),
the composition PQ is matrix multiplication. PQ is the matrix with entries

> p(,y)(y, 2).

The identity kernel I becomes the identity matrix. The n-step transition prob-
abilities are the elements of the matrix P”.

So far, our only examples of different update mechanisms are the d different
Gibbs update steps for a d-dimensional state vector. If the kernel P; denotes
updating x; from its conditional distribution given the rest, then the composite
kernel P; --- P; denotes updating 1, o, ..., zq in that order. There always is
a kernel corresponding to a Gibbs update because of the assumption of a count-
ably generated state space, which assures the existence of regular conditional
probabilities.
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Now it is easy to see that composition of updates preserves a desired sta-
tionary distribution. If P;, P», and Pj5 all have the same stationary distribution
7, then

7T(P1P2P3) = ((7TP1)P2)P3 = (7TP2)P3 =7TP3 =T,

and similarly for the general case of d kernels.

2.2.3 Mixing

Mixing chooses at random amongst update mechanisms. If runif() generates
uniform random variates strictly between zero and one and Uy, ..., Uy are
update mechanisms, possibly composite update mechanisms, then the following
code combines the updates by mixing.

u = runif ()
= [dx*u]
Ui

where [z] denotes the smallest integer greater than or equal to x. Note that
the code fails if u can be zero. If the random number generator can return zero,
it is necessary to replace the first statement by

repeat u = runif () until(u > 0)
The joint probability distribution of the index I of the update chosen and

the result Y of the update is %Pi (z,dy), hence the kernel of the mixture update
is obtained by marginalizing out

d
Pr(X;41 € A[X; = 1) = = ) Pi(x, A)
1=1

or, more concisely, the kernel of the mixture update is the convex combination
of elementary kernels

SHN

d
P=->"P (2.3)
i=1
Many authors have noted that there is no reason to choose the elementary
updates with equal probabilities. If update P; was chosen with probability g;
then the mixture kernel would be

ISH

d

P=> q¢P,

i=1

a general convex combination. However, little work has been done on choosing
the ¢; and the gains in efficiency resulting from using unequal mixing probabil-
ities are likely to be small. So this is rarely used in actual practice.
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2.2.4 Combining Composition and Mixing

Composition and mixing are the only ways to combine kernels, since multiplica-
tion and convex combination are the only operations that make combine kernels
to make other kernels, but we can mix a set of kernels that are themselves prod-
ucts of other kernels. The best known example of this is the so-called random
sequence scan that combines d elementary update mechanisms by choosing a
random permutation (i1, s, ...,14) of the integers 1, 2, ..., d and then applying
the updates P;,, j =1, ..., d in that order. An efficient procedure for producing
a random permutation is given by Knuth (1973, p. 139). So if P denotes the
set of all d! permutations, the kernel of this scan is

1
P== > PPy (2.4)

(il,...,id)ep

2.2.5 Reversibility

The transition probability kernel P of a Markov chain having a stationary dis-
tribution 7 (or the Markov chain itself) is said to be reversible if when X; has
the distribution 7 then X; and X;;; are exchangeable random variables, that
is the pair (X, X¢41) has the same joint distribution as the pair (X¢1, Xt). Of
course, the fact that 7 is a stationary distribution implies that X; and Xy
have the same marginal distribution (namely, 7), but reversibility is a much
stronger property that imposes severe restrictions on the joint distribution of
X; and X; 41 (and hence on the kernel P).

Reversibility of a Markov chain is not necessary for MCMC and much of the
literature ignores reversibility. However, reversibility does have some theoretical
and practical consequences (Besag and Clifford, 1989; Geyer, 1992) and every
elementary update mechanism that has so far been proposed for MCMC is
reversible. The reason for this is the only simple way to show that an update
mechanism has a specified stationary distribution is to show that it is reversible
with respect to that stationary distribution. Hence the only way that anyone
makes a Markov chain for Monte Carlo that is nonreversible is to combine
reversible elementary update steps in a nonreversible way. This is all right if
one doesn’t care whether the sampler is reversible, but one should know how to
obtain a reversible sampler.

Let us confirm that the Gibbs update is reversible. In order to avoid con-
fusion about subscripts, let X denote the state at time ¢t and Y the state at
time t + 1 and subscripts again denote components. To prove reversibility we
need to show that if X has the distribution 7, then X and Y are exchangeable.
Suppose we are updating the ith component of the state vector, then X_; = Y_;
since the rest of the components are not changed and both have the marginal
m(x_;) under the stationary distribution. Conditional on these variables X;
has the conditional distribution m(x;|x_;) and so does Y; and these variables
are conditionally independent given the rest. Since this description is obviously
symmetric in X and Y these variables are exchangeable and the Gibbs update
is reversible.



20 CHAPTER 2. BASIC ALGORITHMS

Another way to think about reversibility is that the Markov chain looks the
same running forwards or backwards if started in the stationary distribution.
The kernel for the “time reversed” Markov chain that relabels the variables so
time runs backward is that same as the kernel of the original chain. So a way
to verify reversibility is to find the kernel of the time reversed chain and see if
it is the same as the original.

Now suppose that we have d elementary update mechanisms with kernels P;
that are reversible but not necessarily Gibbs and see whether composition and
mixing preserve reversibility. Again for composition, let us do the special case
of composing three kernels, the general case being similar. If X; is the current
state and Xy;1 is the result of applying the composite update P PoPs3, let Y
and Z be the intermediate states, Y resulting from applying P; to X; and Z
resulting from applying P5 to Y and X,y resulting from applying Ps to Z, then
the joint distribution of all four variables is

Pr(X; € A, Y e B, Zec(C, X1 €D)
/ / / (dxy) Py (xy, dy) Py (y, dz)Ps(2, D), (2.5)

recalling that in checking reversibility we assume that X; has the stationary
distribution 7 and hence so do the other three variables. By reversibility of Ps
we know that the conditional distribution of Z given Xy, is also given by the
kernel Ps. Similarly the conditional distribution of Y given Z has the kernel P,
and that of X; given Y has P;. So we can also write (2.5) as

/D/C/B7T(dxt+1)P3($t+1,dZ)P2(Z,dy)Pl(y,A),

from which we see that
P(X; € Al X4 =2) = // Ps(z.dz)Ps(z,dy) P (y, A)

and that the kernel for the time reversed chain is P3P, P;. Since there is no
reason in general why P; P, Ps should be equal to P3P, P, combining updates
by composition does not in general yield a reversible chain.

What happens when we combine by mixing? Now we need to consider the
joint distribution of X, X1, and the index I of the update applied. We have

1
Pr(X; € A, X411 € B,I=1) = g/ w(dz)P;(x, B).
A
By reversibility of P; this can also be written

1
E/Bw(dx)Pi(x,A).

Summing over the d possible values of i, we see that both the original and the
time reversed kernels have the same form (2.3).
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Thus mixing maintains reversibility, but composition in general does not.
What about the combination of mixing and composition discussed in the pre-
ceding section? The time reversal of the kernel (2.4) is the same because for
each term P;, --- P;, that appears in the sum the reversal P;, --- P;, also ap-
pears. Although the individual terms are not reversible, the sum is reversible.

2.2.6 More on Combining Composition and Mixing

The three ways of combining elementary update mechanisms have a number of
drawbacks if one wants to preserve reversibility. Pure composition does not pre-
serve reversibility unless one uses a composite mechanism that performs some
elementary updates more than once. P P,P3P3P,P; is reversible because it
reads the same forwards or backwards, but this doubles the amount of work per
step of the Markov chain, and it also has a very curious property when the ele-
mentary updates are Gibbs. For Gibbs updates P3P; = P3;. Updating the same
variable twice in a row is like doing it only once, because the distribution of
the update only depends on the rest of the variables, which remain unchanged.
Thus this update is the same as P; P, P3P, Py, and variable 3 is effectively up-
dated only half as frequently as variable 2. Worse, effectively the same thing
happens with variable 1. If we look at several steps we have, for example

P3 = P\P,PsP,P,P,P3P,P, P, P3P, P,

so in effect variable 1 is also only updated half as often as variable 2. But
we cannot dispense with either of the updates of variable 1 and maintain re-
versibility. One of the updates of variable 1 is essentially wasted, but cannot be
avoided.

The “random sequence scan” has the same problem whenever the last ele-
mentary update performed in the preceding scan is the same as the first elemen-
tary update performed in the next, which happens with probability 1/d when
there are d elementary updates. The simple mixture has the same problem with
the same probability 1/d, and it also has the drawback that it does not perform
each elementary update once in d iterations.

Thus for maintaining reversibility, none of the methods of combining ele-
mentary updates considered so far are satisfactory. In order to do better we
need a new idea. We can let the choice of the next update depend on which
update has just been done. We could choose in each iteration to do the update
with kernel P;, --- P;, where (i1,...,iq) is a permutation chosen uniformly at
random from among the (d — 1) x (d — 1)! permutations such that i; is not the
same as the ig used in the immediately preceding iteration. Even more simply
we could choose in each iteration choose the permutation (i1,...,%4) uniformly
at random from among the 2(d—1) permutations that cycle through the integers
in normal or reversed order and do not start with the same update just done.
With four variables these permutations are

1234 2341 3412 4123
4321 3214 2143 1432
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If the last update in the preceding iteration was P3, we use one of the six
permutations that do not start with 3. This second method has the advantage
of using fewer random variates to decide which permutation to use, only two
per iteration, one to decide whether to cycle forward or backward and one to
decide which update to start with. The first method would need d — 1 random
variates to generate a random permutation.

Neither of these two methods makes a Markov chain unless we augment the
state space of the Markov chain. Since the transition mechanism now depends
on the index I of the last elementary update done in the preceding iteration,
that must be part of the state. Hence the state variable of the Markov chain
is now the pair (X,I) where X takes values in the original state space. And
what is the stationary distribution? It can no longer be 7 because 7 lives on the
original state space, not this augmented one. It turns out that the stationary
distribution has X and I independent with X having the distribution 7 and I
being uniform on the integers 1 to d. Why? Clearly for either of the two schemes,
if I is uniformly distributed before an update, it is also uniformly distributed
after the update, because both schemes treat all the indices the same. Also no
matter which permutation is performed X;;; has the distribution = if X; has
the distribution 7.

In the case d = 2 this method behaves very counterintuitively. There are two
possible fixed scan orders Py P, and P>P;. In general these will not be equal
and the fixed scan sampler is not reversible. If we use either of the schemes
just described, we choose one of these two scan orders for the first iteration by
flipping a coin. Then in each succeeding iteration, there is no freedom left. If
we used P; P, for the first iteration, then we must also use P; P, the second to
avoid updating variable 2 twice in succession, and for the same reason we must
use P P in every iteration. Thus this form of random scan has no randomness
except for one coin flip at the beginning. In effect use one fixed scan sampler or
the other and decide which one to use by a coin flip. Neither fixed scan sampler
is reversible, but a random choice among them is reversible.

What is counterintuitive about this situation is that whether a chain is
reversible or not does not depend on the initial distribution. Since the result of
the coin flip needs to be part of the state of the Markov chain, we can use an
initial distribution concentrated on the coin flip being heads. Thus the chain is
not reversible if we decide to use the fixed scan order Py P,, but is reversible if
we imagine a coin flip that comes up heads and then use the fixed scan order
P, P,. Whether the chain is reversible or not depends on an entirely imaginary
coin flip. The actual computer simulations are the same in both cases. This
paradox tells us that a fixed scan chain that combines two elementary update
steps is essentially reversible, even though it does not appear so at first sight.

These schemes illustrate a general principle that will be used again and again
in MCMC. It is often useful to let the update mechanism in an MCMC simula-
tion depend on additional variables other than those in the original statement
of the problem. This is fine so long as one adds these additional variables to
the state space of the Markov chain and is careful to consider the stationary
distribution of the Markov chain on this augmented state space. As long as
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the distribution of interest on the original state space is easily derived from the
stationary distribution on the augmented space, a marginal or conditional, for
example, the chain will still be useful for simulation.

Other schemes that let the method of combining updates depend on the
current state are possible, but a general analysis of how to do that will have to
wait until we have studied the Metropolis-Hastings algorithm.

2.3 The Gibbs Sampler

The term “Gibbs sampler” refers to a MCMC scheme in which all of the ele-
mentary update steps are Gibbs updates. The elementary updates are usually
combined by composition P; --- P; making a so-called “fixed scan” Gibbs sam-
pler, “scan” referring to running through the variables updating them in order.
The simple mixture method of combination is usually called a “random scan”
or “simple random scan” Gibbs sampler. As mentioned above, the combination
using all d! random permutations has been called a “random sequence scan.”

The name “Gibbs sampler” was coined by Geman and Geman (1984). The
algorithm itself is a special case of the Metropolis-Hastings algorithm specifi-
cally noted by Hastings (1970) and had been used even earlier in the physics
literature, where it is called the “heat bath” algorithm. Another use in statis-
tics prior to its naming was Ripley (1979). After several years of use in spatial
statistics, particularly for Bayesian image reconstruction, the subject of Geman
and Geman (1984), the use of the Gibbs sampler for general Bayesian inference
was popularized by Gelfand and Smith (1990).

2.4 Bayesian Analysis of a Variance Components
Model

The following example comes from Gelfand and Smith (1990), a Bayesian anal-
ysis of a simple variance component model. Suppose data y;; are observed and
are assumed to have distribution

1
yiijormzﬂ(Hi,/\), 1=1,...,K, j3=1,...,J,
€
and the group means 6; are assumed to have distribution

1
GiNNormal(,u,/\), 1=1,..., K.
0

A frequentist would take the parameters p, Ag, and A, to be unknown constants,
a Bayesian treats them as random quantities with prior distributions. In order
for Gibbs sampling to be possible it is necessary that the priors have simple
forms so that the one-dimensional conditionals of the posterior be known. Here
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we take conjugate priors

1
1 ~ Normal (,uo, )
Ao

Ao ~ Gamma (a1, by)

Ae ~ Gamma (az, ba)

The six hyperparameters ug, Ao, a1, b1, az, and by are assumed to be known,
chosen so that the prior distributions represent one’s a priori opinion about the
parameters. The problem to be solved by Gibbs sampling is to obtain samples
from the posterior distribution of the parameters given the data, which it does
by simulating the joint distribution of the parameters u, Ag, and A, and the
random effects 0; given the data.

The joint distribution of the data, the random effects and the parameters
can then be written down. The unnormalized density (ignoring multiplicative
constants) is

h’(eh DR aKa My >\9a )\e) == AiK/ZE_ATE Zij(yi47_9i)2)\£(/267/\79 Zi(eiiu)[z
><e_%o(“_“o)z)\gl_16_1’1)‘9)\22_16_1’2’\6 (2.6)

Not only is this the unnormalized joint density of the data, random effects,
and parameters, it is also an unnormalized conditional density of any set of
variables given the others. If we want the conditional density of \g given the rest
of the variables, it is given, up to a multiplicative constant, by (2.6) considered
as a function of )\, the rest of the variables being held fixed. Looking only at the
factors involving A\g and collecting terms, the unnormalized density simplifies to
)\;1+K/2—167[b1+% 3, (0i—1)%] e
and we see that considered as a function of A\g, this is of the form )\gfle_b)“’
with @ = a; + K/2 and b= by + £ >_,(6; — ). Since this is the functional form
of a gamma density with parameters a and b, the conditional distribution of Ag
given the rest of the variables is Gamma(a, b), which we abbreviate to

1
Ao|rest ~ Gamma (al + K/2,b1 + 3 ;(9Z _ #)2>

Similarly

1
Acrest ~ Gamma | ag + JK/2,bs + 5 Z(yij —0;)?
j
To obtain the conditional density of p given the rest, we look at factors con-
taining p and use the identity

Z(@‘ —n)?= Z(@ —0)’ + K(0 — p)?

K3 7
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(where 0 is the mean of the 6;) giving

e

KX A A
22 (0—p)? =P (p—po)?

This is of the form e~ 3 (=) times a constant with \ = Ao+ KXg and m =
(Mopo + KXg0) /A, and so the distribution of p given the rest is

A KX\o0 1
u|rest ~ Normal < Oto + X Ao >

Mo+ KXo X+ KX

A similar calculation gives

_ 1
0;|rest ~ Normal (/\w  Acs )

o+ Jhe "o+ T

(where g; is the mean of the y;;).

Note that the conditional distribution of one 8; given the rest of the variables
does not depend on any of the other ;. Hence the components of the vector § =
(61, ...,0K) are conditionally independent given u, Ag, and A\.. Thus in principle
the updates of the #; could be done simultaneously if we had a computer capable
of parallel processing. Whether the updating is done simultaneously or not the
effect is the same, so long as we update all of the ; consecutively. In effect,
there are only four variables, the three scalar variables u, Ag, and \. and the
vector variable 6.

2.5 The Block Gibbs Sampler

This illustrates a general point about Gibbs sampling. The “variables” used
need not be scalar. So long as each “variable” is updated using its conditional
distribution given the rest derived from the desired stationary distribution, the
argument establishing the validity of the Gibbs update works. This procedure
is sometimes called “block Gibbs” because one updates a “block” of variables
from their joint conditional distribution given the rest. But it is really just the
ordinary Gibbs sampler. Nothing in the definition of the Gibbs update or proof
that it is reversible with the specified stationary distribution required that the
“variables” be one-dimensional.

The example in the preceding section is trivial, since one does the same thing
whether or 6 is considered one variable or K variables, so long as one adopts
a scan order that updates all of the 6; in a block. A nontrivial example of
“block” Gibbs is obtained by considering the variance components model with
only three “variables,” the scalars \g, and \. and the vector ¢ = (01, ...,0k, 1),
since p and the 6; are not conditionally independent given the As, this gives a
sampling scheme that is considerably different, and actually much better.

The conditional distribution of ¢ given the rest is normal with precision

matrix
vl (Mo + JA)I -l
o —Xpl’ Ao+ KNy
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that is, the upper left corner is a K x K matrix with Ag+ J\. down the diagonal
and zeros elsewhere, the upper right corner is a K x 1 column vector with all
elements —\y, the lower left corner is a 1 x K row vector with all elements —\g,
and the lower right corner is the scalar A\g + K \y. The mean vector is difficult
to specify explicitly, but is is the solution (y of the system of linear equations

J)‘egl
Vi = -
J)\eyK
Ao ko

In order to simulate from this distribution, we need a Cholesky factorization
of V™1 = LLT. Then the new value of ¢ is

G+ (LM

where z is a random vector with independent standard normal components.
The Cholesky factorization can also be used in solving for (3. The Cholesky
factorization can be done using standard numerical linear algebra routines, such
as those found in LINPACK and LAPACK. Here it can also be done by hand.
There are explicit, though rather complicated, formulas for L and L~!.

2.6 Problems with the Gibbs Sampler

The problem with Gibbs is the requirement that one be able to sample from
the conditional distribution of z; given x_; for each ¢. The beauty of Gibbs
sampling is that one can sample the joint distribution knowing only the full
conditionals, but one does need to know the full conditionals, and there is no
reason why they should known in general, though in nice Bayesian problems
with familiar sampling distributions and conjugate priors, they often turn out
to be familiar, normal, gamma, beta, and the like.

If one does not know the full conditionals or is not able to sample from them
efficiently, then Gibbs is either impossible or not competitive with other MCMC
methods. Gibbs should only be used when it is easy and does the problem that
one actually wants to do. At the first bit of difficulty, Gibbs should be abandoned
and other MCMC methods adopted. An addiction to Gibbs tends to limit one to
problems for which Gibbs works well, keeping to conjugate priors for example.

In the excitement in the Bayesian community following the publication of
Gelfand and Smith (1990) there was a great emphasis on the Gibbs sampler.
Only a few years later at a Royal Statistical Society one-day meeting on MCMC
at which three papers were read (Smith and Roberts, 1993; Besag and Green,
1993; Gilks et al., 1993), the proposer of the vote of thanks (Clifford, 1993) said
“Surely it has to be recognized that the Gibbs sampler attained prominence by
accident. Currently, there are many statisticians trying to reverse out of this
historical cul-de-sac.” There was no disagreement in the replies. Nowadays this
is well known to experts, but may still be only slowly seeping out of the primary
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literature into the general knowledge of all statisticians. So it bears emphasizing
here. The Gibbs sampler was overhyped. Reliance on the Gibbs sampler to the
exclusion of other MCMC methods was mostly a result of ignorance of those
other methods. There is no reason to prefer the Gibbs sampler to other MCMC
methods, to which we now turn.

2.7 The Metropolis-Hastings Update

Unlike the Gibbs update, the Metropolis-Hastings (Metropolis et al., 1953; Hast-
ings, 1970) update permits updating of all variables instead of just one, though
it does not require this. It works much the same way whether we update all
the variables or only a subset but the notation is a bit more complicated, so for
simplicity we first consider an update of all the variables.

Also unlike the Gibbs update, the Metropolis-Hastings update works for
any distribution 7 specified by an unnormalized density h(xz) with respect to
some measure 1 on the state space, usually counting measure for discrete state
spaces or Lebesgue measure (dz) for Euclidean spaces. In any Bayesian problem,
the unnormalized posterior density is the likelihood times the prior and so can
always be written down whenever there is agreement on the model and the
prior. Many distributions in spatial statistics are also specified by unnormalized
densities. Other examples will be seen later. There is no restriction on h(x)
other than that it actually be an unnormalized density, that is h(x) > 0, for all
x and

c= /h(x)u(dm) < 00, (2.7)

and that it can be evaluated, that is for each = we can calculate h(z). There is
no requirement that we be able to do any integrals. Even for (2.7) we do not
need to know the value of the normalizing constant c¢. We only need to know
that the integral is finite. In particular, we do not need to know anything about
any conditional distributions of .

The normalized density of 7 is, of course,

f(z) = ()

but this plays no role in the Metropolis-Hastings update. Unnormalized densi-
ties like h(z) occur throughout MCMC and every student of the subject should
become accustomed to thinking about them.

The Metropolis-Hastings update uses an auxiliary transition probability
specified by a density g(x,y) sometimes called the “proposal distribution” or
the “candidate generating distribution.” For every point x in the state space,
q(z, ) is a (normalized) probability density with respect to u having two prop-
erties: for each & we can simulate a random variate y having the density ¢(z, -)
and for each x and y we can evaluate the g(x,y). There is no necessary con-
nection between the auxiliary density ¢(x,y) and the density h(x) of the sta-
tionary distribution. We can choose any density that we know how to simulate.
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For example, if the state space is d-dimensional Euclidean space R? we could
use a multivariate normal proposal density with mean x and variance a con-
stant times the identity. If ¢ denotes a Normal(0,02I) density, then we have
q(z,y) = ¢(y — x). We can easily simulate multivariate normal variates and
evaluate the density.

The Metropolis-Hastings update then works as follows. The current position
is x, and the update changes x to its value at the next iteration.

1. Simulate a random variate y having the density ¢(z, -).
2. Calculate the “Hastings ratio”

r = Myaly,z) (2.8)

h(z)q(z,y)
3. Do “Metropolis rejection:” with probability min(1, R) set z = y.

We often say we “accept” the “proposal” y if we set the value x = y in step 3.
Otherwise we say we “reject” the proposal. When we reject, the value of the
state of the Markov chain remains the same for two consecutive iterations. Those
familiar with so-called rejection sampling in ordinary Monte Carlo should note
that Metropolis rejection is completely different. In ordinary rejection sampling,
proposals are made over and over until one is accepted. The first proposal
accepted is the next sample. In Metropolis rejection only one proposal is made,
if it is not accepted, then the Markov chain doesn’t move and X;;1 is equal to
Xt-

Note that the denominator of the Hastings ratio (2.8) can never be zero
if the chain starts at a point where h(z) is nonzero. A proposal y such that
q(z,y) = 0 occurs with probability zero, and a proposal y such that h(y) = 0 is
accepted with probability zero. Thus there is probability zero that denominator
of the Hastings ratio is ever zero during an entire run of the Markov chain
so long as h(X;) > 0. If we do not start in the support of the stationary
distribution we have the problem of defining how the chain should behave when
h(z) = h(y) = 0, that is, how the chain should move when both the current
position and the proposal are outside the support of the stationary distribution.
The Metropolis-Hastings algorithm says nothing about this. It is a problem
that is best avoided by starting at a point where h(x) is positive.

Also note specifically that there is no problem if the proposal is outside the
support of the stationary distribution. If A(y) = 0, then R = 0 and the proposal
is always rejected, but this causes no difficulties.

The special case when we use a proposal density satisfying ¢(x,y) = q(y, x)
is called the Metropolis update. In this case the Hastings ratio (2.8) reduces to
the odds ratio

_ h(y)

()
and there is no need to be able to evaluate g(x,y) only to be able to simulate
it. The normal proposal mentioned above is a Metropolis proposal. By the
symmetry q(z,y) = ¢(y — ) is equal to g(y,) = d(z — ).
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We can now write down the transition probability kernel for the Metropolis-
Hastings update. The transition probability has two terms. For accepted pro-
posals, we propose y and then accept it, which happens with probability density

p(x,y) = q(x,y)a(x,y), (29>

where a(x,y) = min(R, 1) is the acceptance probability. Hence for any set A

/ a(z, y)alz, y)u(dy)
A

is the part of P(x, A) that results from accepted proposals. If the integral on the
right hand side is taken over the whole state space it gives the total probability
that some proposal will be accepted, including the possibility that the proposal
y is equal to . Thus the probability that the proposal is rejected is

ra)=1- / a(z,y)a(z, ) u(dy), (2.10)

If the proposal is rejected we stay at x. Hence

P 4) = r(@1(.A)+ [ ata.p)ale,piutdy). (211)
Where I(z, A) was defined in (2.2). The first term is zero if ¢ A and otherwise
is r(x).

2.7.1 Reversibility and Detailed Balance

We now want to verify that the Metropolis-Hastings update is reversible, and do
this by verifying a condition called “detailed balance.” Suppose the transition
probability kernel of a Markov chain has the following form

Pz, A) = r(2)(z, 4) + /A P, y)uldy),

where p(z, ) is a subprobability density for each x and

r(z)=1- /p(x,y)u(dy)~

As we just saw, the Metropolis-Hastings update has this form with p(z,y) =
q(z,y)a(z,y). Suppose h(z) is an unnormalized density with respect to p and

h(x)p(z,y) = h(y)p(y, ), for all 2 and y, (2.12)

which is called detailed balance. Then this Markov chain is reversible and h(x)
is the unnormalized density of a stationary distribution.

To prove this we need to verify the exchangeability of X; and X;,1, but
we shall actually do a little bit more. We have already noted in Section 1.3.5
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that the transition probability P can be thought of as an operator on L?(r).
We now prove that it is a self-adjoint operator if detailed balance is satisfied.
Self-adjoint means for any functions u and v in L?(x) that (u, Pv) = (Pu,v),
where (u,v) denotes the inner product on L?(r)

(u,v) = /u(z)v(x)w(dx)

Thus self-adjoint means

[ wtrwtin . dy) = [ [ utwyetyntin) e, ay) (2.13)

All that is required for reversibility is the special case where u and v are indi-
cators of sets

Pr(X, € A X,41 € B) = / / 1a(2)1 5 (y)r(dz) Pz, dy)
// 1p(x)1a(y)m(de)P(z,dy) = Pr(X; € B, X141 € A)  (2.14)

It is not completely obvious that if (2.14) holds for all sets A and B then
(2.13) holds for all functions u and v, but this is standard measure theory.
Extend to simple functions by linearity, to nonnegative measurable functions
by dominated convergence, and to all L?(7) functions by linearity. Thus “self-
adjoint transition operator” is equivalent to “reversible Markov chain.”

In (2.13) the two sides are the same except that v and v have been inter-
changed. Hence we need to show that one side is invariant under the interchange
of u and v.

[ w@rwntan P,
— [u@p@remdn) + [ [ utn@op. ).

The first term is obviously unchanged by interchanging u and v. So we work
on the second term, except for the normalizing constant for h(x) this is

[ w@rwh@pteudonutn = [ [ umnwp.oudsnd)
~ [[ @ h@pte pudpus)

where detailed balance is used to get the first equality and the dummy variables
x and y have been interchanged to get the second. Now, except for the order
of integration, the second line is just the left hand side of the first with v and
v interchanged. Reversal of the order of integration is justified by the Fubini
theorem.
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2.7.2 Reversibility of the Metropolis-Hastings Update

We still need to prove that the Metropolis-Hastings update satisfies the detailed
balance condition (2.12).
The probability that a proposal is accepted is

a(z,y) = min(1, R) = min (1, h(y)q(y@) .

Note that if R <1 then

a(z,y) = and a(y,z) =1 (2.15)

and if R > 1 then
a(z,y) =1 and a(y,x) =

Since z and y are dummy variables in the detailed balance formula (2.12) both
cases reduce to the same thing, since they differ only by interchange of x and
y. Thus assume without loss of generality that R < 1 so (2.15) holds. Then the
left hand side of (2.12) is

h(z)p(e,y) = hz)a(z, y)a(z,y) = h<x>q<x,y>h(z ~ h(y)a(y. ),
and the right hand side of (2.12) is

h(y)p(y, ©) = h(y)q(y, z)aly, ) = h(y)q(y, z).

So both sides are the same, detailed balance holds, and any Metropolis-Hastings
update is reversible.

2.7.3 Updating a Subset of Variables

The Metropolis-Hastings update can also be done on a subset of variables, in-
cluding as a special case updating only one variable, like the Gibbs sampler.
The algorithm is essentially the same. Some changes in notation are required
because the proposal only changes a subset of the variables and hence the pro-
posal density ¢(z,y) is not a density with respect to the measure p on the whole
space. It must be a density with respect to a measure v on the subspace spanned
by the variables being updated.

For a particular example, suppose that we want to do the variance compo-
nents example by the Metropolis algorithm rather than the Gibbs sampler, but
we still want to update the variables one at a time. Suppose that we use a
normal proposal centered at the current value for the 6; and p and a log normal
proposal centered at the current value for g and A, that is we propose a new
value of A\g by generating an normal random variate z with mean zero and some
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variance (an adjustable parameter of the Metropolis update) and taking Age?
as the proposal. The reason for a log normal proposal is to keep the As positive.
These are not symmetric proposals, so the Metropolis rejection is based on the
Hastings ratio. Consider the update of p. Denoting the proposal by p/, it has
the density ¢((1/ — p)/0,) where ¢ is the univariate normal density and o, is
an adjustable parameter. This is a density with respect to Lebesgue measure
on R.

In order to keep the same notation as we used when all variables were up-
dated simultaneously, let us maintain the convention that ¢(z,y) is a function
in which both x and y take values in the state space. When the proposal only
updates some of the variables, then we will only evaluate g(x,y) when the com-
ponents not being changed are equal. To be more specific, suppose we are only
updating z;, leaving the rest of the variables _; unchanged. Then the proposal
y always satisfies y_; = x_;. We write ¢(x,y) with y having full dimension,
but when we write the proposal density ¢(z, -) only y; is variable, y_; is fixed
at x_;. Although the notation looks like a d-dimensional density, it is really a
1-dimensional density of the variable ;.

With this convention, the description of the Metropolis-Hastings update is
unchanged, but the proof of its reversibility needs notational changes. In (2.10)
and (2.11) u(dy) must be replaced by v(dy), and similar changes made through-
out the proof. We shall not go through the details, because this is a special case
of a more general Metropolis-like algorithm due to Green (submitted), and we
shall go through the proof Metropolis-Hastings-Green.

2.7.4 Why Gibbs is a Special Case of Metropolis-Hastings

Gibbs updates a variable x; from its conditional distribution given the rest. The
unnormalized joint density of all the variables is h(z) = h(z1,...,24). This is
also the unnormalized conditional density of x; given x_; (or of an block of
variables given the rest) because of conditional = joint/marginal the marginal
of x_; is a constant when we are considering the conditional of z;. So this only
changes the normalizing constant.

A Gibbs update is a Metropolis-Hastings update in which the proposal den-
sity is 7(z;|z_;). Thus

q(z,y) = h(xy, .o X1, Yiy Tit1s - -5 Td)/C

where y; = x; for i # j and c is the unknown normalizing constant that makes
h a proper conditional probability. Then the Hastings ratio is

hylaly, @) _ h@h(yr, - Y1, Tiyirrs---oya) _ hy)hle)

ha)g(z,y) — h(@)h(r,. . i1, Y, @i, xa) - h(x)h(y)

since the normalizing constant ¢ cancels. Thus this Metropolis-Hastings simu-
lates a new value of x; from its conditional given the rest and always accepts
the proposal. Hence it does exactly the same thing as a Gibbs update.
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2.8 The Strauss Process

A spatial point process is a stochastic process taking values that are point
patterns in a region of the plane or a higher dimensional space. The simplest
is a Poisson process. A Poisson process in the unit square in two dimensions is
generated by simulating a random integer N having a Poisson distribution with
mean A and then placing N points uniformly distributed in the square. The
2N coordinates of the IV points are all independent and uniformly distributed
in the interval (0,1). The Poisson process is a model of complete randomness.
The parts of the point pattern in disjoint regions are statistically independent.
The parameter \ is the expected number of points per unit area, which is the
same for all regions.

The Strauss process is perhaps the simplest non-Poisson spatial point pro-
cess. It is an exponential family of distributions having unnormalized densities
of the form

h(z) = ecn(@)+8s@) (2.16)

with respect to a Poisson process. This is called the “natural” or “canonical”
parametrization of the exponential family, with canonical parameters « and
[ and canonical statistics n(x) and s(z). The first canonical statistic n(z) is
the number of points in the point pattern and the second canonical statistic
s(x) is the number of “neighbor pairs” where a pair of points are defined to
be neighbors if they are within a distance r of each other. We can think of r
as another parameter if we like, but if we consider r a parameter rather than
a known constant, we no longer have an exponential family. Also s(x) is a
discontinuous function of 7, so the likelihood is not continuous. The family is
much less well behaved if r is taken to be a parameter.

The first task when dealing with any unnormalized density like (2.16) is to
verify that it is one. Clearly (2.16) is nonnegative, but we must verify that it
has a finite integral. To integrate with respect to the Poisson process we need
to sum over all possible numbers of points and then integrate over all possible
positions of points

C(Oz,ﬁ) — Z %e—k / .. / ean+ﬁs(z) dzy - -dx,,.
n=0

The integral is over the 2n coordinates of the n points. It cannot be calculated
analytically because s(z) is a very complicated function of the positions of the
points.

We need to consider separately the cases 3 < 0 and g > 0. If 8 < 0, we
increase the integral by setting 3 to zero, so

00y,
A" o
C(Ohﬁ) S Z Fe—kean = €_>\+)\e

n=0

So we do have a well-defined model specified by (2.16) when § < 0. If 5 > 0,
we only decrease the integral by integrating over smaller regions. Suppose we
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integrate over the regions such that each point has both coordinates in (0, d)
where d < /7. In this region, every point is a neighbor of every other point, so
s(z) =n(n—1)/2. Thus

cla, B) > i &e*)\eanJrﬁn(n*l)/QdZn
T n!

n=0

From Stirling’s approximation n! < v/2rn"*t1/2e=" so

)\n
log (n'eO‘”Jrﬁ"(”_l)/QdM) > nlog A — 3 log(2m) — (n+ 3)logn +n

+an+ fBn(n—1)/2+ 2nlogd

The leading positive term 3n?/2 grows faster than the leading negative term

—nlogn. Hence the terms of the series go to infinity and the sum is infinite.
We can also consider the Strauss process with a fixed number of points n.

Then we have a one-parameter exponential family with unnormalized density

h(z) = ePs()

with respect to the so-called binomial process, the Poisson process conditioned
on n(x) = n, that is, there are n points uniformly distributed in the region.
This process exists regardless of the sign of 8 since h(z) is bounded above by
ef(n=1)/2 " and we are integrating over a set of finite measure. When § < 0,
the Strauss process with a fixed number of points is obtained from the Strauss
process with a random number of points by conditioning on the event n(x) =
n. Hence the process with a fixed number of points is sometimes called the
“conditional Strauss process” although this is a misnomer when 3 > 0 since
there exist no unconditional Strauss processes with g > 0.

The Strauss process with fixed number of points was defined by Strauss
(1975) and proposed as a model for clustering in point patterns. The Strauss
process with a random number of points was defined by Kelly and Ripley (1976).

The Poisson process is the special case of the Strauss process obtained by
setting § = 0. Letting 8 tend to +oo gives two other interesting stochastic
processes. A general exponential family has unnormalized density

ho(xz) = eft@)0)

the notation (¢(x),6) denoting the “inner product” t;(z)0; + --- + tq(x)04 of
the d-dimensional canonical statistic ¢(x) and canonical parameter §. For any
direction ¢ in the parameter space, the limit of the distributions defined by
the unnormalized densities hgysy as s — oo is the distribution defined by hg
conditioned on the set H, defined by

Hy ={z:(t(z), ) =esssup(t(X), o) }

the set of points where (t(z), ¢) achieves its maximum value.
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Sending 3 to —oo in the conditional Strauss process, is a special case of this
where the parameter space is one-dimensional and the direction ¢ is —1. The
result is conditioning the Strauss process on the set where —s(z) achieves its
maximum value, that is, s(x) achieves its minimum value, which is zero. We get
the same result regardless of which Strauss process we condition, so we may as
well condition the binomial process. This process obtained by conditioning the
binomial process on the event s(x) = 0, that is, the distance from every point to
every other point is at least r, is called the hard core process. A similar result
is obtained by sending the two dimensional parameter of the unconditional to
infinity in the direction (0, —1). Now we get a Poisson process conditioned on
the event s(z) = 0.

Sending ( to +oo in the Strauss process with a fixed number of points results
in a binomial process conditioned on the event s(z) = n(n — 1)/2, that is, every
point is a neighbor of every other point, so all of the points are covered by a
disk of radius r centered at any of the points.

2.9 Simulating the Strauss Process

The first method proposed for simulating a Strauss process with a fixed number
of points was the Gibbs sampler (Ripley 1979). The “variables” Ripley con-
sidered were two-dimensional, the positions of points. Each elementary update
step moved one point giving it a realization from its conditional distribution
given the rest. Ripley used a random scan in his published computer code but
noted that a fixed scan could also be used.

The conditional distribution for one point given the rest is analytically in-
tractable, so rejection sampling from the uniform distribution was used.

repeat
Simulate a new value of z; uniformly distributed in the region
Calculate the number m of points in x_; that are neighbors of x;
if > 0 then
Set p = eflm—n+1)
else
Set p = ™
end if
Generate a uniform (0,1) random variate u
until u < p

This works because the proposed value of x; is accepted with probability pro-
portional to e”™, which is proportional to the conditional density of z; given
;.

This Gibbs sampler is very inefficient when the number of points n is large or
when [ is large and positive, because the rejection sampling is very inefficient.
A Metropolis algorithm is much simpler and at least as efficient. A simple
Metropolis update proposes to move one point, giving it a uniform distribution.
This is clearly a symmetric proposal. Hence the Metropolis rejection is based on
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the odds ratio h(y)/h(x) = 5@ =@ As with the Gibbs sampler, the change
s(y) — s(x) in the canonical statistic only involves the neighbors of the point
being moved. It is the number of neighbors the point has at its new position
minus the number of neighbors it had at the old position.

This is only the simplest proposal. The proposal could depend on x For
example, if 3 > 0 we could increase the probability that the new point has
many neighbors in the hope that this will make the simulation more efficient.
We could propose a new position y; for z; that is uniform in the region with
probability 1 — e and with probability €/(n — 1) uniform in the disk D; of radius
r centered at the point z; for each of the other n — 1 points. Then the proposal
probability is

a@y) = 1=+ —=> 1) (217)
J#i

Let s;(x) denote the number of neighbors of x;

$i() = Ljg,—a, | <r

J#i

So s;(y) is the number of neighbors of z; in the proposed new position. Then
a(@,y) = (1— ) + esi(y)/(n — 1) and Then q(y, @) = (1 — ¢) + es;()/(n — 1),
so this proposal is not symmetric, and we would have to use the Hastings ratio
rather than the odds ratio in the Metropolis rejection.

This proposal sometimes proposes points that lie outside the region contain-
ing the process. For such points h(y) = 0 and the proposal is always rejected.
We could alter the proposal so it only proposes points in the region, but it is
not clear that it is worth the bother.

2.10 The Metropolis-Hastings-Green Update

In order to simulate an unconditional Strauss process we need a generalization of
the Metropolis-Hastings algorithm described by Geyer and Mgller (1994), which
is a special case of a much more general algorithm due to Green (submitted).
The problem with simulating a spatial point process is that the dimension of
the problem changes as the number of points changes, and neither the Gibbs
sampler or the Metropolis-Hastings algorithm handles that.

There are many situations where one also wants to deal with a state space
that is a union of sets of different dimension. Another example is Bayesian
model selection. In the variance components example, suppose we want to test
whether 1/\g is zero. Then all the 6; are equal to p; the groups have the same
mean. Then the model reduces to

1
yijNNormal<M,)\>, 1=1,...,. K, j=1,...,J.

Suppose we keep the same priors for p and A. (6 and Mg no longer appears
in the model). We also need a prior on models, say probability ¢; on the
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large model and ¢y = 1 — ¢; on the small model. The posterior distribution
of the parameters is still well-defined, but exists on a union of sets of different
dimension. With some probability the large model is correct and the parameter
vector has dimension K + 3. With one minus that probability the small model
holds and the parameter vector has dimension 2. If we knew these probabilities
we could sample each separately, but we can only find them by sampling both
models together.

The Metropolis-Hastings-Green update makes proposals of varying dimen-
sion. Hence they cannot easily be described by a density. Thus we have a pro-
posal kernel Q(z, A) that satisfies the following condition. 7 (dz)Q(z,dy) has
a density f(z,y) with respect to some symmetric measure £ on the Cartesian
product of the state space with itself. As before, we need to be able simu-
late random variates with the distribution Q(z, -) and be able to evaluate the
density f(z,y).

The update then works as follows. As with the Metropolis-Hastings update,
the current position is z, and the update changes = to its value at the next
iteration.

1. Simulate a random variate y having the distribution Q(z, -).

2. Calculate “Green’s ratio”

f(y,z)
flx,y)

3. Do “Metropolis rejection:” with probability min(1, R) set = y.

Although the notation does not make it explicit, it is clear that we can use an
unnormalized specification of the stationary distribution 7 in defining f(x,y).
This will only multiply f(z,y) by a constant, which cancels in the ratio R.

2.10.1 Simulating the Unconditional Strauss Process

The notion of the density f(x,y) and the measure & are best explained by
example. Let us consider the following elementary update for the unconditional
Strauss process. Suppose the points are ordered 1, ..., x,, where n = n(x) is
the number of points. If there are n(xz) = m points, then attempt to add a new
point 2,41 uniformly distributed in the region, and if there are n(x) = m + 1
attempt to delete point x,,41.

A single elementary update only changes the number of points from m to
m++1 or from m+1 to m. Thus we have an infinite number of possible elementary
updates, one for each nonnegative integer m. Let S denote the region in which
the points are located, the unit square in R2. First consider the part of the
proposal that attempts to add a point. Then x is in S™, and on this set 7 has
the unnormalized density

ie—k+mo¢+s(3¢)ﬁ

m/!
with respect to Lebesgue measure on S™. The new point y,,11 is uniformly
distributed on S, and the rest of the points are not moved, x; = y; for i < m.
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Thus the joint distribution of the pair (x,y) is concentrated on a set of dimension
2(m + 1) defined by

D} ={(z,y) € S x S™ 1z =y;,i <m}.

We take part of the measure £ to be Lebesgue measure on this set. In order that
& be a symmetric measure it must have another part that is Lebesgue measure

on
D, ={(z,y) c gmtl x S™x; =y, i <m},

which is the same except x and y are exchanged, = now having the larger
dimension. Then the density f(x,y) is given by

)\m — moa—+s(T
Fa,y) = 2o M tmats()
m:

for (z,y) in D;}, and zero for (x,y) in D,,. Now consider the part of the proposal
that deletes a point, going from m + 1 points to m points. Then x € S™*!, and
on this set m has the unnormalized density

>\m+1

( )'ef>\+(m+1)o¢+s(x)[3
m+1)!

with respect to Lebesgue measure on S™*!. The proposal is not random; it
attempts to delete point x,,11 with probability one. The pair (z,y) now lies in
the set D, and the density f(z,y) is

>\m+1

( )' 67)\+(m+1)a+s(a:),8
m+1)!

fl@y) =
for (z,y) in D,, and zero for (z,y) in D;}.
When we are adding a point so (x,y) is in D}, and (y,z) is in D,,

fly,x)  AmFlple=At(mtDats(y)s A
T flzy)  Am(mt DleAmats@B T 1

eats(y)—s(2))8 (2.18)

When we are deleting a point so (z,y) is in D, and (y,z) is in D}, we have

_fwa) - mAl sy -ss (2.19)

[, y) A
which is just the reciprocal with x and y interchanged.

These elementary updates are combined by mixing or composition. The
mixing proposal is a bit tricky, so we describe it in detail. Let @Q,,(z, A) denote
the proposal kernel just described, and a,,(z,y) the acceptance probability.
There are an infinite sequence of proposal kernels for m = 0, 1, .... We combine
the elementary updates by mixing over all of them

Pz, A) = r(z)I(z, A) + % > /A Qum (., dy)am (z,y)
m=0
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where as before r(z) is the rejection probability

r(x)=1- % Z /Qm(z,dy)am(x,y)
m=0

Why divide by 2 when there is an infinite sum? For any x except the empty
realization, which has no points, there are only two nonzero kernels. If n(z) =
m > 0, then Q,,(z,S™") > 0 and Q,,(z, 5™~ ') > 0. The rest of the terms are
zero. So dividing by 2 does yield a proper kernel.

Having verified all of this algebra, let us make sure we are clear what the
algorithm does. If there are m = n(z) points, we flip a coin, and, if it comes up
heads we attempt to add a new point y,,+1 uniformly distributed in the unit
square. Both coordinates of y,,4+1 are Uniform(0,1). We accept the proposal
with probability min(1, R) where R is given by (2.18). If the coin comes up tails,
we attempt to delete point x,, if m > 0, and if m = 0 we make no proposal.
We accept the proposal with probability min(1, R) where R is given by (2.19).

We can combine this update by composition with other updates. One useful
update simply permutes the labels of the n points. Clearly this does not change
the distribution, since the density does not depend on the labels of the points.
Hence this proposal is always accepted. If we look at the effect, we see that this
is equivalent to always deleting a random point rather than x,,, because we have
just permuted the labels of the points. The point of this trick is to simplify the
argument above.

Another possibility is to combine this dimension-changing update with the
dimension-maintaining update used for simulating the conditional Strauss pro-
cess that moves a point rather than adding or deleting one. Geyer and Mgller,
however, found that was not helpful. A chain with updates that only add and
delete worked better.

Still another possibility is to use the nonuniform density (2.17) to locate the
point being added. This would add a factor ¢(z,y) to the denominator of (2.18)
and the numerator of (2.19).

2.10.2 Reversibility of the Metropolis-Hastings-Green Up-
date

To show that this algorithm is valid, we need to show that is satisfies a detailed
balance condition, which can be written with a bit of abuse of notation as

m(dx)Q(z, dy)a(z,y) = m(dy)Q(y, dz)a(y, x),

the meaning being that integrating with respect to either side produces the same
results, that is

//u(x)v(y)w(dx)@(x, dy)a(z,y) (2.20)

is the same if « and y are interchanged (or if w and v are interchanged) for all
L?(r) functions v and v.
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Substituting the definition of the function f in (2.20) we get

/ / w(@)o(y) ()& (dz, dy)a(z, y) (2.21)

As with the proof for the Metropolis-Hastings update, we may assume without
loss of generality that R < 1 so that

a(z,y) = Fla, and aly,z) =1

Then (2.21) becomes

J[ st metdn.an TS — [ s

_ / / (@)v(y) f (y, )& (dz, dy)aly, )

/ / 2, y)E(dy, dz)a(z, )

where the third equality is the interchange of dummy variables. Now this is equal
to (2.21) with u and v interchanged except for the order of integration, and this
interchange is justified by the requirement that £ be a symmetric measure.

It remains to check that detailed balance implies reversibility. The kernel
for an elementary update is

Pz, A) = r(z)I(x, A) + /A Q(z. dy)a(z, y)

where

=1 / Q. dy)alz.y).

Calculating the inner product (u, Pv) gives

[u@p@r@ns) + [[ u@edn Q. dat.y).

which we need to show is unchanged by interchange of v and v. As before, the
first term is obviously unchanged, and now that the second term is unchanged
is trivial since the second term is (2.20). We have already verified that.

2.10.3 Bayesian Model Selection

We can use Green’s algorithm to do model selection for the variance compo-
nents model. Because there are two models, we now must be more careful
about constants. We can have an unknown normalizing constant for the whole
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posterior, but the relative likelihoods of the models must be known. Including
all constants, the likelihood times the prior for the big model becomes

(2m) =K/ NI K 2= % Ty (0is=00)° (970)—K/2 Af/%-%" 3, (0i—)?

2 1

I'(a1)

1 _ 1 .
btlll a1—1_—biXg bgz/\ten 16 b2/\ecl

x (2m) /20 R F o) o ey

(2.22)

and the likelihood times the prior for the small model is

(27T)_JK/2)\6JK/2€7% Ez‘j(yij*/i)2

x (2m) 2y 2o B o L payaat b (293)
F(ag)
The Gibbs update for the small model uses the one-dimensional conditionals
Aopo + JK Ay 1
t ~ N 1
plrest ~ Norma ( Mo+ JEN, ot JEN

1
Ae|rest ~ Gamma | ag + JK/2,b; + = E (yij — p)?
2 7

These are the only two variables in the model, so “the rest” here just refers to
the other variable.

Next we want a Metropolis-Hastings-Green update that jumps between mod-
els. A possible proposal is the following. Going down from the big model to the
small model, set 6; = p for all ¢ and A\g = oo while leaving p and A\, unchanged.
Going up from the small model to the big, propose

Aoty Ae ~ Gamma (a1 + K/2,b;)

Aopt + J Ay 1
Mo+ Jhe Ao+ I

0;|pt, Ae, Ao ~ Normal (

The latter is just the Gibbs update in the big model. So is the former for the
special case 0; = u for all . Of course, this proposal if always accepted would
not produce the correct distribution. We need to do Metropolis a rejection.
Going down the proposal is deterministic, so f(z,y) is just (2.22), where the
current position z is in the parameter space of the big model, y in the parameter
space of the small model, and p and A, have the same values in both. Going
up f(x,y) is (2.23) times

1 a1 +K/2ya1+K/2—1 _p,\
b 1+ )\ 1 126
T(a, + K/2) 0 ¢

_ 12
N o <_Ae+2he 5 [o. - D ) (2.24)
6 e

%
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The ratio of the two, (2.22) divided by the product of (2.23) and (2.24), is the
ratio R used for the Metropolis rejection in Green’s update.

(e +K/2) 1 1
co  Tlar)  pf72 (Ao + JA)K/?

oxp (=23 30,(5 — 6:)° = 3 3,0 — 1)°)

12
exp (~ e St = = 252 5, [, - 2] )

R =

This is Green’s ratio for a step up from little to big, and the reciprocal of the
ratio for a step down from big to little.

This sampler seems to work well, at least for some data. Illustrative code
for the Gibbs sampler, the block Gibbs sampler, and the Gibbs-Green sampler
for model selection are described in Appendix A.



Chapter 3

Stochastic Stability

This chapter discusses asymptotics of Markov chains, or as Meyn and Tweedie
(1993) call it the “stochastic stability” of Markov chains. We shall see that in
most respects Markov chains are no so different from independent samples, and
hence Markov chain Monte Carlo is not so different from ordinary independent-
sample Monte Carlo.

In particular, the law of large numbers and the central limit theorem still
hold for many Markov chains, although the conditions that must be verified
in order to know whether they hold are more complicated than in the case of
independent sampling. Whatever one does in independent-sample Monte Carlo
can also be done in MCMC.

The difference between Markov chains and independent sampling is that
with independent sampling there is a tight connection between the size of errors
that can occur and the probability of the relevant events. To take the simplest
possible example, suppose we are interested in the probability of a set A and
have independent simulations X7, X5, ... from the distribution of interest 7.
Consider the question of what is the probability that n samples will completely
miss the set A thus giving us a Monte Carlo estimate of zero for the true
probability 7(A), which we assume to be nonzero. The absolute error may be
small if 7w(A) is small, but the relative error is not. This probability is

[1—m(A))"

which goes to zero exponentially fast, and what is more important, at a rate
which is determined by m(A). For Markov chains we usually have the exponential
convergence to zero. For so-called geometrically ergodic chains, for m-almost any
starting point x the number of iterations s4 that the chain takes to hit A has
a moment generating function, that is, for some r > 1 the expectation of r°4 is
finite (Nummelin, 1984, Proposition 5.19). Thus by Markov’s inequality, there
exists a constant M < oo such that

Pr(sa>mn) < Mr "

43
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which says the same thing as in the independent case except that we usually
have no sharp bounds for M and r. With independence we know that M =1
and r = 1/[1 — 7w(A)] will do. For a Markov chain we only know that some
M < oo and r > 1 will do.

This is not of merely theoretical concern. In practical situations, it may take
a very large number of iterations to get a sample that is reasonably representa-
tive of the stationary distribution.

3.1 Irreducibility

The weakest form of stochastic stability is irreducibility. Among other things,
if a Markov chain has a stationary distribution and is irreducible, then the sta-
tionary distribution is unique. Irreducibility also implies that the law of large
numbers holds. It has many other important consequences. One should never
use a chain that is not irreducible for Monte Carlo. It is generally easy to demon-
strate. When one cannot demonstrate irreducibility for a sampling scheme, one
should find a different sampling scheme for which one can demonstrate irre-
ducibility. This is always possible. There are many ways to construct samplers
with a specified stationary distribution.

3.1.1 Countable State Spaces

Irreducibility is the one notion that has a different definition for discrete and
continuous state spaces. Since both definitions are widely used, one should know
both. Recall from Sections 1.3.2 and 2.2.2 that for a countable state space the
transition probabilities are described by a matrix P with entries p(x,y) and that
the n-step transition probabilities are given by A Markov chain on a countable
state space is irreducible if for any points x and y in the state space there exists
an integer n such that p"(x,y) > 0, that is, if for some n there is positive
probability that the chain can move from z to y in n steps. The colloquial
version of this is that the chain can get “from anywhere to anywhere.”

In order to see how this definition works we need an example with a discrete
state space.

3.1.2 The Ising Model

The Ising model is a spatial lattice process. The state is a vector © = {z; : i €
S} where S is a subset of vertices of the infinite rectangular lattice Z2, the set of
all pairs of points in the two-dimensional plane R? having integer coordinates.
In the figure, the circles represent the vertices of the lattice. Associated with
each node i there is a random variable x;, and together these random variables
form the state = of the spatial lattice process. Vertices joined by lines are called
neighbors. The relation of being neighbors is denoted by ~, if vertices ¢ and j
are neighbors we write i ~ j. In the figure, the vertices colored gray are the
neighbors of the vertex colored black. In the infinite lattice, every vertex has
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four neighbors. When we look at a finite region S, some vertices have neighbors
outside of S.

The random variables x; making up the state of the Ising model have two
possible values. These are often coded as zero and one, but for reasons of
symmetry —1 and 41 is a better choice. When we illustrate realizations of an
Ising model, we will just show a black and white image each pixel representing
a variable ;.

The probability model for the vector x is, like the Strauss process, a two-
parameter exponential family with unnormalized density

h(z) = e~ (@) +Bt2(@) (3.1)

where the canonical statistics are defined by

tl(a:) = ZCEZ

i€S

to(w) =) > @iz, (3.2)

i€S jrvi

and

When the x; take values in {—1,+1}, the first canonical statistic is the number
of black pixels minus the number of white pixels (or vice versa depending on
whether black is chosen to code for +1 or —1), and the second canonical statistic
is the number of concordant neighbor pairs (same color) minus the number of
discordant neighbor pairs. When the x; take values in {0, 1}, and use the same
definitions of the canonical statistics, the same family of stochastic models are
defined but the parameterization is different.

The notation in (3.2) is deliberately ambiguous about what happens at the
boundary of the region S. There are three different ways in which the boundary
is commonly treated. The first is to condition on the boundary. The sums in
(3.2) extend over all pairs ¢ and j such that ¢ is in S and j is a neighbor of 4
so that when 4 is at the edge of the region j may lie just outside the region.
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The variables z; for j ¢ S are not part of the state of the stochastic process,
they are fixed and can be thought of as another parameter of the model. The
second way is to sum only over pairs ¢ and j that are neighbors and both in
S. Then vertices at the edge of the region have fewer neighbors than the rest.
This method is referred to as “free boundary conditions.” The third way is to
eliminate the boundary altogether by gluing the edges of the region S together
to form a torus. Then the set S is no longer a subset of the infinite lattice,
but each vertex has four neighbors and there is no need to specify data on
a boundary. Using a toroidal lattice is also referred to as imposing “periodic
boundary conditions” because we can think of extending our finite region to
the whole infinite lattice by periodic repetition. All three kinds of boundary
conditions are artificial in one way or another. We will say more about dealing
with boundary conditions presently.

A Gibbs or Metropolis sampler updating one vertex at a time is very simple.
The Gibbs update chooses a new value for z; from its conditional distribution
given the rest, which is proportional to h(x). The only terms that matter are
those containing z;, hence this conditional has the unnormalized density

h(ifo i) = eeit9 i)
The only sum required in calculating the unnormalized is the sum of the four

neighbors of z;, and the only sum required in calculating the normalized condi-
tional distribution is over the two possible states of x;

h(zilz—s)
h(IZ = O|$_1) + h(l‘z = 1|1‘_,‘)

p(xilz—i) =

The Metropolis update is simpler still. The proposal y has the sign of x; reversed
and all the rest of the z; unchanged. The odds ratio is

R— h(y) — e 20@i—2Bx; 305 ;@5 (3.3)

This is a symmetric proposal so the proposal is accepted with probability
min(1, R).

3.1.3 Coding Sets

The elementary update steps are combined in any of the usual ways, usually
by fixed scan, random scan, or random sequence scan. A fixed scan can be
either a “raster scan” in which one scans along rows, and the rows follow one
another in order. A better way is a scan by “coding sets” (Besag, 1974; Besag,
et al., 1995). If we color the lattice like a checkerboard, the red squares are one
coding set and the black squares the other. The colors here are not the random
variables, they are just a way of describing sets of vertices of the lattice. The
random variables in the red coding set are conditionally independent given those
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in the black coding set and vice versa, since no vertex in the red coding set is a
neighbor of any in the black coding set. For ¢ and j not neighbors we have

h(zx) = eOTi BT Yy T g0 HBT 3005 T o term ot containing x; or x;

Hence these variables are conditionally independent given the rest by the fac-
torization criterion. If i and j are neighbors, the density contains a term e’%:%s
and these variables are not conditionally independent by the same criterion.

If a fixed scan updates all of the variables in one coding set and then all the
variables in the other coding set, the order of updating within coding sets does
not matter. While updating the red coding set, no update changes any neighbor
of a red vertex, since no neighbors are red. Thus when a red vertex is updated it
makes no difference how many other red vertices have been updated since neither
the Gibbs nor the Metropolis update rule depends on any variables except the
one being updated and its neighbors. If we had a computer that could do parallel
computations, we could even update a whole coding set simultaneously. Thus
when scanning by coding sets there are really only two block variables (the two
coding sets). So the sampler is effectively reversible, as with any fixed scan with
only two variables.

3.1.4 Irreducibility of Ising Model Samplers

Irreducibility is simplest for the Gibbs sampler, because anything is possible.
When we update a variable x;, it can receive either of the two possible values.
One of the probabilities may be small, but that does not matter when discussing
irreducibility. It only matters that both probabilities are nonzero.

A fixed scan Gibbs sampler can go from any state x to any other state y
in one scan. It is possible, not very likely but the probability is nonzero, that
each ¢ where x; # y; will be changed and each i where x; = y; will be left
unchanged. The same logic applies to any scan chosen by a random sequence
scan. A random scan cannot go from any x to any y in one step, because each
step of the chain only changes one vertex. But if x and y differ at n vertices,
then a random scan could choose to update those n vertices in n iterations, each
update changing the variable. Again, this is not very likely, but it only matters
that the probability be nonzero. Thus any Gibbs sampler for an Ising model is
irreducible.

The logic here applies to many samplers besides Gibbs samplers for Ising
models. We say a Markov chain transition probability satisfies a positivity con-
dition if p(xz,y) > 0 for all x and y, that is if the chain can go from any state
to any other in one step. Clearly, positivity implies irreducibility, since it says
that p™(z,y) > 0 for the special case n = 1. Just as clearly, positivity is not
a necessary condition, and the implication that positivity implies irreducibility
is rather trivial. However one often hears that a chain is irreducible “because
the positivity condition holds” so one has to know what positivity means in this
context.

Metropolis samplers are a bit more complicated. The problem is that posi-
tivity does not hold for elementary updates and whether it holds for a scan de-
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pends on the scan. When the odds ratio (3.3) is greater than one, the proposal
is always accepted, so the variable being updated cannot remain the same. For
a random scan, this is no problem. The same argument we used for the Gibbs
sampler, says that if  and y differ at n vertices, the random scan could choose
to update those n vertices in n iterations, each update changing the variable,
thus moving from = to y in n steps.

Suppose we have a symmetric Ising model (o« = 0) and periodic boundary
conditions. Suppose the lattice size is even, and consider the state composed of
vertical stripes of alternating colors. Each site has two black neighbors and two
white neighbors and iji z; = 0. Hence R = 1 and and a Metropolis update
is always accepted. If we do a scan by coding sets, we will go through a whole
coding set and change every vertex in the coding set. This changes the pattern of
vertical stripes of alternating colors to horizontal stripes of alternating colors.
The state of the system is just a 90° rotation of the original state. Hence
the scan through the other coding set does the same thing and changes the
pattern back to vertical stripes. The state is not the same as the original; every
vertex has changed color. But one more complete scan does take us back to the
original state. Although there are 27 possible states if there are 2¢ vertices, the
Metropolis sampler using a fixed scan by coding sets only visits two states, if
started with alternating stripes. It is not irreducible.

A symmetric Ising model with periodic boundary conditions can also fail to
be irreducible when a raster scan is used. For that we need a lattice size that is
odd and a checkerboard pattern.

It seems that fixed scan, Metropolis updates, and discrete state spaces do
not mix well. If one uses Metropolis updates, perhaps it is best to use a random
scan.

3.1.5 Mendelian Genetics

Another stochastic process with a discrete state space is Mendelian genetics.
Consider a pedigree or genealogy of individuals such as that shown in the figure.
The large squares, circles, and diamonds represent individuals (male, female,
and unspecified, respectively). The small dots represent marriages. From each
marriage node lines go up to the parents and down to the children.

Everyone has two copies of genes that are not on sex chromosomes, one
copy inherited from their father and one from their mother. These copies are
not necessarily identical. A number of variants of a gene called alleles are
usually found in any large population. A gene passed from a parent to a child
is equally likely to be either of the two copies of the gene in that parent, the
one inherited from the grandfather or the one from the grandmother. This
specifies the probability distribution of all the genes in the pedigree except for
the individuals at the top of the pedigree, called founders, whose parents are
not recorded. The usual assumption made about the genes of founders is that
their genes are randomly drawn from the population gene pool. This requires
that the population allele frequencies be specified. Then the probability model
for genes in the pedigree is completely specified.
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The random variables of this probability model are usually taken to be the
genotypes of the individuals, which say which alleles an individual has, but
not which parent they were inherited from. Denote the alleles by ai, ..., aym,.
Then there are m possible genotypes a;a; where both alleles are the same and
m(m — 1)/2 possible genotypes a;a; where i # j. Denote the population allele

frequencies by p1, ..., pm. Then the founder genes have a multinomial distri-
bution. The probability of genotype a;a; is p? and the probability of a;a; is
2pip;.

Conditional on parental genotypes, the probability distribution genotypes
of children is easy to work out. There are four possible states for the child,
each having probability 1/4. These four possible states are not necessarily
distinguishable depending on the genotypes of the parents. If both parents
have the same genotype ajas, then the child is aja; or asas with probability
1/4 and ayas with probability 1/2. If one parent is aja; and the other is asas,
then the child is ajas with probability one. Other cases can be worked out
similarly.

If we denote the probabilities of founders by p(g) and the conditional prob-
abilities of children given parents by p(g:|9¢(:), gm(:)) Where f(i) and m(i) are
the father and mother of 7. Then the probability of a vector of genotypes
g=1(91,--.,gm) is given by

H P(9il956)» Im(i)) H p(9i)
children 4 founders 1

It is easy to draw independent samples from this distribution. Draw founders
first with the specified probabilities. Then draw every child whose parents
have already been drawn with the specified probabilities, and repeat this step
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until everyone has been drawn. A much harder problem is to simulate the
conditional distribution of genotypes given observed on some of the individuals
in the pedigree.

We often cannot see genotypes. A standard example is a recessive genetic
disease like cystic fibrosis or phenylketonuria. There are two alleles, conven-
tionally denoted A and a, the normal allele and the disease allele, respectively.
The possible genotypes are then AA, Aa, and aa. A recessive disease is one
in which one normal gene is enough for normal function, so it is impossible to
distinguish the AA and Aa genotypes from the observable characteristics of the
individual, which are called the phenotype. Individuals with the disease pheno-
type are known to have genotype aa, but individuals with the normal phenotype
can have genotype AA or Aa. Denote these probabilities by p(datalg;). Then
the joint distribution of phenotypes (data) and genotypes is given by

h(g) = II  patalg) [ ploilorey gme) ] plo)  (3:4)

all individuals 7 children 4 founders 1

The genetics that requires MCMC is to simulate the conditional distribution of
genotypes given data. The unnormalized density is given by (3.4). Probability
models like this with discrete phenotypes and genotypes are called Mendelian,
after Gregor Mendel who formulated the laws of genetics in 1865, to distinguish
them from probability models for continuous traits like height and weight, the
study of which is called quantitative genetics.

A Gibbs sampler for a Mendelian genetics problem is a bit more complicated
than one for the Ising model, but not much. The conditional distribution of one
individual given the rest only depends on that individuals neighbors in the
graph, which are that individuals parents, children, and spouses. In the figure,
the neighbors of the individual colored black are colored gray. As always we
obtain the conditional for one variable given the rest by keeping only the terms
involving that variable.

h(gilg—:) = p(datalg)p(gilgriy, om) [ P(95il9r0) 9me)

children j
of individual ¢

if individual 7 is not a founder and

h(gilg—:) = p(datalg:)p(g:)  []  P95l9r0)r Imii))

children j
of individual ¢

if individual 7 is a founder. A Gibbs update of individual 7 calculates the unnor-
malized density h(g;|g—;), normalizes it to add to one when summed over the
possible genotypes, and gives g; a new value from this normalized conditional
distribution. If we start in a possible state, one in which all individuals have
genes that could have come from their parents, the Gibbs update is well defined
and always results in another possible state.
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3.1.6 Irreducibility of Mendelian Genetics Samplers

Sheehan and Thomas (1993) give the following proof of the irreducibility of of
the Gibbs sampler for a recessive genetic trait. Individuals with the disease
phenotype are known to have genotype aa. We can consider them fixed. The
Gibbs sampler need only update the individuals with normal phenotype. The
positivity condition does not hold. Suppose the sampler uses a fixed scan in
which individual 7 is updated before his parents. Consider going from the geno-
type in which ¢ and his parents are AA to a genotype in which i is Aa. When
i is updated, his parents have not yet been updated, they are still AA which
implies that ¢ must also be AA, so he cannot change in one scan. After his
parents have changed, then he can change, but this takes more than one step of
the Markov chain. It would not help if all individuals were updated after their
parents. It would still take more than one scan to change from any state to any
other, though it is a bit less obvious.

Sheehan and Thomas’s proof use a path from any state to any other that
goes through the state in which all individuals with the normal phenotype are
Aa. If we start in any possible state, the Gibbs update has two properties
(1) any individual can remain unchanged with positive probability and (2) any
individual whose parents are both Aa has positive probability of being changed
to Aa regardless of the genotypes of any children or spouses. The latter occurs
because an Aa individual could have resulted from a marriage of Aa parents
and can pass either allele to any child. Thus in one scan all founders can be
changed to Aa. In the next scan all children of founders can be changed to
Aa. Succeeding scans can change to Aa any individual whose parents have been
changed to Aa in a previous scan, while leaving everyone else unchanged. After
some number of scans less that the total number of individuals, every individual
is Aa. This shows that any possible state can be taken to this special state with
positive probability. By reversing the path, the chain can go from the special
state to any other possible state.

The Gibbs sampler is not always irreducible. The proof applies only to
problems in which there are only two alleles. The ABO blood group has three
alleles A, B, and O. The gene makes red cell surface antigens, proteins that stick
out of the cell membrane of red blood cells and are recognized by the immune
system. The A and B alleles make slightly different proteins and the O allele
is nonfunctional and makes no protein. There are six genotypes AA, BB, OO,
AB, AO, and BO, but only four distinguishable phenotypes AB, A, B, and O,
respectively, both A and B antigens on red cells, only A, only B, and neither.
Consider now the very simple pedigree with two parents and two children. The
children have blood types AB and O and hence have known genotypes AB and
0O. The blood types of the parents are not known, but each must have passed
an O allele to the OO child and each must have passed an A or a B to the AB
child. Thus the parents are AO and BO, but we don’t know which is which.
The two possibilities are equally likely.

The Gibbs sampler for this problem is not irreducible. The only two indi-
viduals we need to sample are the parents, since the children are known. When
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we update the AO parent, the genotype cannot change. The AB child must
get an A allele from some parent, and the other parent, currently BO does not
have one. The same goes for the other parent. A Gibbs sampler updating one
individual at a time cannot work. A different sampler is required.

3.1.7 Contingency Tables
3.1.8 General State Spaces

Irreducibility for general state spaces is more complicated in theory but simpler
in practice. The theory must deal with the problem that one cannot “get to”
any state if the distribution is continuous. Points have probability zero and so
are never hit. On the other hand, all real applications of MCMC on general state
spaces are irreducible. The practical problems with irreducibility only arise on
discrete state spaces.

As always in general state spaces, we talk about probability of hitting sets
rather than points. If ¢ is a nonzero measure on the state space, a Markov
chain is called p-irreducible if for any point x and any measurable set A such
that ¢(A) > 0 there exists an integer n such that P™(z, A) > 0.

There are equivalent ways to state this condition that use some different
kernels. The kernel

Uz, A) =Y _ P"(z,4) (3.5)
n=1

is the expected number of times the chain visits the set A in an infinite run.
The chain is ¢-irreducible if U(z, A) > 0 for all = and all ¢-positive sets A. The
kernel L(x, A) is defined as the probability that the chain started at a ever hits
the set A. A formula for L(x, A) is rather complicated (Meyn and Tweedie,
1993, p. 72) and not of immediate interest. What is important is that the chain
is p-irreducible if L(z, A) > 0 for all x and all p-positive sets A.

The reason why an arbitrary measure ¢ rather than the stationary distri-
bution 7 is that the definition applies to arbitrary Markov chains, including
those that do not have a stationary probability distribution. If the chain has a
stationary distribution 7, then it is w-irreducible if it is p-irreducible for any ¢.
So for MCMC where we always construct chains to have a specified stationary
distribution 7 we could always check mw-irreducibility, if we so desired, but we
do not have to use 7 if that is inconvenient.

If a chain is @-irreducible for any ¢ then there is a mazimal irreducibility
measure 1 having the following properties (Meyn and Tweedie, 1993, Proposi-
tion 4.4.2)

(i) The chain is ¥-irreducible.

(ii) A measure ¢’ is an irreducibility measure if and only if it is dominated by
1, that is, 1(A) = 0 implies ¢’(A) = 0.

(ili) If ¢p(A) = 0 then B = {x: L(z,A) > 0} also has ¢-measure zero.
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The point of the irreducibility measure ¢ is to define a class of null sets
which the chain does not need to hit. The maximal irreducibility measure 1 is
the irreducibility measure having the smallest class of null sets. The measure
itself is not unique, but the class of null sets of the maximal irreducibility mea-
sure is unique. If the chain has a stationary distribution 7 and is @-irreducible,
then the chain is recurrent (Meyn and Tweedie, 1993, Proposition 10.1.1), the
stationary distribution is unique (Proposition 10.4.4), and the stationary dis-
tribution is a maximal irreducibility measure (Proposition 10.4.9). Any other
maximal irreducibility measure ) has the same null sets, ¢(A) = 0 < 7(A) = 0.
We can always use 7 as the irreducibility measure, but there will be fewer sets
to check if we use another measure ¢ dominated by 7, and this may be more
convenient.

Before continuing with general state spaces, let us stop and compare with
the definition for countable state spaces. The definition for countable state
spaces is essentially w-irreducibility in the case where every point has positive
m-probability. All points of w-probability zero must be excluded from the state
space, since if 7({y}) = 0, then by (iii) above, the set B = {z : L(x,y) > 0}
satisfies 7(B) = 0. But by the definition of irreducibility for countable spaces B
is the whole state space, which is impossible. Hence we must have 7({y}) > 0
for all y.

If we apply ¢-irreducibility to countable state spaces, can use a measure
o concentrated at a single point y. Thus it is enough to show that that the
chain can go from any point x to one single point y. It is not necessary to
show that the chain can get to any other point, that follows from (iii) above. In
the Mendelian genetics example, it was enough to show that the sampler could
get from any state to the special state in which every individual with normal
phenotype has genotype Aa. The proof could have stopped there.

3.1.9 Veriftying ¢-Irreducibility

For most problems on continuous state spaces -irreducibility is easy to ver-
ify. First consider a sampler that satisfies a very simple positivity condition, a
Metropolis sampler that updates all variables at once with a proposal density
q(z, -) and stationary density h(z) that are everywhere positive. Then

P(x, A) > /A o, y)a(z, y)u(dy)

so if p(A) > 0 then P(z, A) > 0 because the integrand is strictly positive. Hence
the chain is p-irreducible.

Next consider a sampler that updates one variable at a time, but still has ev-
erywhere positive proposals and acceptance probabilities. If there are d variables
we prove irreducibility by induction on d. The induction hypothesis assumes
that starting at = (x1,...,24) updating x1, ..., x4—1 has positive probability
of hitting any set B of positive Lebesgue measure in R4~!. Write Q;(z, B) for
this probability. The base of the induction, the case d = 1, was proved in the
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preceding paragraph. For any set A of nonzero Lebesgue measure in R? and for
any x € R? write 2 = (z_g4,74) and

Ax_d :{{EdGR:((E,d,{Ed) GA}

for the “sections” of A, the possible values of x; when the other z_; is held
fixed. It is a standard fact of measure theory that the sections are measurable
sets and if A has positive measure then so does A, _, for z_,4 in a set of positive
Lebesgue measure. Write Q2 (z_4, C) for the probability that x4 € C given x_4.
Then the preceding sentence says Q2(z_q, Az_,) > 0 for z_g4 in a set of positive
Lebesgue measure. Since

P(z,A) = /Q1($7d$7d)Q2($7d,Ax,d)

is the integral a function that is not zero almost everywhere Qa2(z_q4, 4, _,) with
respect to a measure @Qq(x, -), which is nonzero by the induction hypothesis,
we have P(x, A) > 0. That proves @-irreducibility where here ¢ is Lebesgue
measure on R<.

Those unfamiliar with measure theory should take my word for it that these
calculations involve only the elementary bits of measure theory that justify re-
placing integrals with respect to area or volume by iterated univariate integrals.
They are only mystifying to the uninitiated.

These calculations have the drawback that they require positivity, something
which we do not want to have to satisfy in general. For example, the first MCMC
simulation ever (Metropolis et al., 1953) used the Metropolis algorithm for a
point process and the proposal was to move the point to a position uniformly
distributed in a ball around the current position. We would like to be able to
show that simulation to be irreducible as well.

Theorem 1 Suppose

a) The state space of the chain is a second countable topological space.

)
b) The state space is topologically connected.

¢) Every nonempty open set is p-positive.

(
(
(
(d) Ewvery point has a p-communicating neighborhood.

Then the chain is p-irreducible. If all of the conditions hold except (b), then
every connected component is @-communicating.

Some of these terms need explanation. A topological space is second count-
able if there is a countable family of open sets U such that every open set is
a union of sets in U. Every separable metric space, in particular any subset
of a Euclidean space R?, has this property. A topological space is connected
if it is not the union of disjoint open sets. A set B is p-communicating if for
every p-positive subset C' of B and every point x in B, there is an n such that
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P"™(xz,C) > 0. This is the same as the definition of p-irreducibility, except that
it is applied to a subset rather than the whole space.

Before proving the theorem, let us see how it works. Consider a Metropolis
sampler for the uniform distribution on any connected open set S in R¢ that
makes a proposal that is uniform in the ball B(x,¢) of radius e centered at
the current point . Because the uniform density is constant, the odds ratio
is always zero or one. Every proposal that falls in S is accepted, and every
proposal that falls outside is rejected. Checking the conditions of the theorem,
(a) holds because the state space is a subset of R%, (b) holds by assumption,
(c) holds if we take S to be the state space, and (d) holds by a variation of the
argument using the positivity condition. For any point x € S there is a ball
B(x,0) contained in S, with 0 < § < /2. Then for any y € B(x,d) we have
B(z,6) C B(y,e). So for any y in B(z,d) and any ¢-positive C' C B(z,J), we
also have C' C B(y,¢), so the proposal hits C' with positive probability. This
says that B(z,d) is a ¢-communicating neighborhood of . Thus the theorem
says this sampler is irreducible.

If the state space is not connected, then y-irreducibility may not hold. Sup-
pose the state space consists of two open sets S; and S3 separated by a distance
greater than . Then the sampler just described is not irreducible. It can never
move from S; to Sy or vice versa.

The interaction of conditions (b) and (d) is delicate. Consider a Gibbs
sampler for the uniform distribution for the open set in R? shown in the figure.
The coordinate axes are horizontal and vertical. The update of the first variable

moves to a position uniform on the intersection of the horizontal line through the
current point with the gray region, and similarly for the update of the second
variable except the line is vertical. Neither update can ever move from one
square to the other and the chain is not irreducible. If the state space is taken
to be the open set that is the gray region in the figure, it is not connected.
So condition (b) doesn’t hold, since the squares are disjoint and open. We
can make the space connected by adding the point where the squares touch,
but then condition (d) doesn’t hold, since this new point does not have a ¢-
communicating neighborhood. Every neighborhood intersects both squares and
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the chain never moves from one square to another.

Having seen how the theorem works, let us see why it is true. If A and
B are any @-communicating sets such that ¢(A N B) > 0, then AU B is ¢-
communicating. The reason is that for any = € A, the chain must eventually
hit AN B, and from there it must hit any ¢-positive C' C B. Formally

Uz, C) > P™(z,dy)U(y,C),
ANB

where U(x, A) is defined by (3.5). For some m, P™(x, A) > 0, because A is -
communicating, and U(y, C') > 0 because B is ¢-communicating. By symmetry,
the same holds if z € B and C' C A. Hence AU B is p-communicating.

Now choose for each point in S a ¢-communicating neighborhood W that
is an element of U, which is possible because every neighborhood of a point
x contains a neighborhood of z that is an element of U and subsets of -
communicating sets are p-communicating. Let the set of such W be called
W. Then W is countable because U is countable. Consider the sequence V7,
Vo, ... of sets defined as follows. V; is any element of WW. Then for each k
define Vj41 to be the union of Vi and any W) € W that intersects Vi but is
not wholly contained in it. If for some k there is no such W, let V,, = V} for all
n > k. FEach Vj is ¢-communicating by induction. The intersection of Vj and
Wj, is nonempty and open and hence @-positive by (c¢). Hence the argument
above shows their union is p-communicating. Let V = |J;—,; Vi. Then V is ¢-
communicating. because any = € V' lies in some V}, and any @-positive A C V
intersects some V.

Now there are two logical possibilities. V = S in which case the chain is
irreducible or V and S\ V are disjoint open sets and (b) is violated. Then V
is a p-communicating connected component and the same construction shows
that each connected component is p-communicating.

If this theorem can’t be used to prove t-irreducibility, then we are really in
the discrete case in disguise. Consider Gibbs samplers for the uniform distribu-
tions on the regions on each side of the figure. The one on the left is irreducible

the one on the right is not. The theorem doesn’t apply to either one, because
neither has a connected state space. The theorem says that each of the squares
is p-communicating, but topology is no help with the question of whether the
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chain can move from one square to another. No general argument is likely to
help. As in with discrete state spaces, a special argument is needed for each
problem.

3.1.10 Harris recurrence

If a chain is ¥-irreducible and has a stationary distribution 7 then there exists
a set N with w(N) = 0 such that L(xz, A) =1 for all z ¢ N and all ¢-positive
Aand P(z, N) =0 for all x ¢ N (Meyn and Tweedie, 1993, Proposition 9.0.1).
Note that the definition of t-irreducibility only requires L(z, A) > 0, but re-
quires it for all z. Something even stronger is true, not only is any -positive set
A hit with probability one, it is hit infinitely often with probability one (Meyn
and Tweedie, 1993, Proposition 9.1.1) when started at any = ¢ N. This null set
N of starting points from which bad things happen is a nuisance. The point of
Harris recurrence is to eliminate it. A ¢-irreducible chain is Harris recurrent if
L(z,A) =1 for all x and all ¢-positive A. Any v-irreducible chain can be made
into a Harris chain by removing the null set N from the state space. This does
no harm since the chain can never hit N from outside N.

Harris recurrence essentially banishes measure theoretic pathology. It would
be very strange if a Markov chain that is an idealization of a computer simula-
tion would be v-irreducible but not Harris recurrent. If null sets matter when
the computer’s real numbers are replaced by those of real analysis, then the
simulation cannot be well described by the theory.

Note that any irreducible chain on a countable state space is always Harris
recurrent. Irreducibility requires that we eliminate from the state space all
points of m-measure zero. That having been done, the only remaining 7-null set
is empty, and irreducibility trivially implies Harris recurrence. The difference
between -irreducibility and Harris recurrence is only an issue in general state
spaces.

Fortunately, an irreducible Gibbs or Metropolis sampler is always Harris
recurrent under very weak conditions. Tierney (1994) gives the following two
simple propositions. If a Gibbs sampler is ¥-irreducible and P(z, -) is absolutely
continuous with respect to 7, then it is Harris recurrent (Corollary 1). A -
irreducible chain that iterates one Metropolis-Hastings elementary update is
always Harris recurrent (Corollary 2). The condition on the Gibbs sampler
merely says that the chain cannot hit 7-null sets. w(A) = 0 implies P(x, A) = 0.

The situation is only a bit more complicated for Metropolis-Hastings sam-
plers that update one variable at a time. Chan and Geyer (1994) give the
following (Theorem 1). Suppose the stationary distribution 7 has an unnor-
malized density h(z) with respect to Lebesgue measure on R?, each proposal
distribution has a density with respect to Lebesgue measure on R, and all of
the unnormalized conditional densities make sense, that is, h(x) considered as a
function of some of the variables, the rest held fixed, is (1) not identically zero
and (2) integrable with respect to Lebesgue measure on the subspace spanned
by those variables. If the Metropolis-Hastings sampler for each conditional dis-
tribution obtained by updating only a subset of variables is ¢-irreducible, then
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Metropolis-Hastings sampler for the unconditional distribution is Harris recur-
rent. This sounds complicated, but the conditions are necessary. Assuming each
elementary update is “nice” with no measure theoretic pathology, the only way
a variable at a time Metropolis-Hastings sampler can fail to be Harris recurrent
is if for some starting position x some variable z; has a positive probability of
never being updated in an infinite run of the chain. This cannot happen if the
chain that starts at x and keeps x; fixed is ¢-irreducible, and we need to verify
this for each starting position x and every subset of variables held fixed.

No theorem has been found that establishes Harris recurrence for general
Metropolis-Hastings-Green samplers, but there is a general method involving a
“drift condition” that can be used for any Markov chain. This method will be
explained in Section 3.7.5.

3.2 The Law of Large Numbers

We now return to the law of large numbers mentioned in Section 1.3.4 and give a
precise statement. Suppose we have a Markov chain with stationary distribution
7w and g is a m-integrable function so the integral

)= Eng(X) = / o) (dz)

exists. Let
1 n
fin =~ Z;gom
=

denote the sample average of g(X) over a run of the Markov chain. We then
have the following two results.

Theorem 2 For a p-irreducible chain with stationary distribution w, condi-
tional on the starting point x, the sample mean [i, converges almost surely to
1, for m-almost all x.

When ¢-irreducibility is strengthened to Harris recurrence, the bad null set of
starting points for which convergence fails disappears.

Theorem 3 For a Harris recurrent chain with stationary distribution m, the
sample mean [i,, converges almost surely to pu regardless of the initial distribution
of the chain.

The latter follows from Theorems 17.0.1 and 17.1.6 in Meyn and Tweedie (1993).
The former follows from Birkhoff’s ergodic theorem (Breiman, 1968, Theorem
6.21) together with the condition for a Markov chain to be ergodic given in
Theorem 7.16 in Breiman (1968), which uses the criterion of indecomposability,
which in turn is implied by w-irreducibility (Nummelin, 1984, Proposition 2.3).

Again 1)-irreducibility leaves us with a bad null set of starting points for
which convergence fails. From now on we shall always require the stronger
Harris property and no longer need to mention these null sets.
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In the presence of Harris recurrence the law of large numbers says exactly
the same thing for Markov chains as it does for independent sampling. If the
function g(X) is integrable, then the strong law of large numbers holds. There
is almost sure convergence of the sample mean to its expected value with respect
to the stationary distribution.

3.3 Convergence of the Empirical Measure

The law of large numbers tells us that for each fixed function g the sample mean
of g(X') converges to its expectation with respect to 7 for almost all sample paths
of the Markov chain. Since a countable union of null sets is a null set, it also
says that for any countable family of functions {g;} all of the sample means of
the ¢;(X) converge to their expectations simultaneously with probability one.
To be precise about null sets one last time, there is a null set IV of sample paths
of the Markov chain and for all sample paths not in N all of the sample means
of the g;(X) converge.

By using continuity, we can go from a countable family to an uncountable
one. We want to show that

=3 (X0) = Eeg(X) (3

simultaneously for all bounded continuous functions g with probability one (that
is, for almost all sample paths of the Markov chain). Another way to say this
is that the empirical distribution P,, that puts probability 1/n at each of the
points of an n-sample converges in distribution to m. The left hand side of (3.6)
is integration with respect to this empirical distribution

[ ot@patiz) = >~ g0
i=1

If for a particular sample path of the Markov chain

[ s@Patdn) [ gan(aa

for all bounded continuous functions, this is by definition convergence in distri-
bution of P,, to .

Theorem 4 Suppose the state space of the Markov chain is a separable metric
space and the chain is Harris recurrent, then P, converges in distribution to w
with probability one.

Let B denote the countable family of sets consisting of open balls with cen-
ters at the points of some countable dense set and rational radii and all finite
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intersections of such balls. Then, for almost all sample paths of the Markov
chain,

P, (B) = %Z 15(X;) —» n(B), forall BeB (3.7)
i=1

By Corollary 1 of Theorem 2.2 in Billingsley (1968), (3.7) implies P,, converges
in distribution to . A similar result under different regularity conditions is
proved by Meyn and Tweedie (1993, Theorem 18.5.1).

This theorem is not very deep, being a straightforward consequence of the
law of large numbers, but gives us an important way to think about MCMC.
An n-sample X1, ..., X,, obtained from a single run of the Markov chain ap-
proximates the stationary distribution 7 in the sense described by the theorem.
The empirical distribution for this cloud of points gets closer and closer to m as
n goes to infinity. In this way we can think of the n-sample as being “from” w
even though the X, are not independent, nor are they identically distributed,
although as n goes to infinity the distribution of X, converges to 7, which is
the next form of convergence we shall discuss.

3.4 Aperiodicity

The law of large numbers can hold for a Markov chain even though the marginal
distributions do not. The simplest example is the deterministic Markov chain
on a two-point state space that alternates between the points. Call the points
0 and 1 then

X, =n mod 2

if we start at X; = 1 and
X,=(n+1) mod?2

if we start at X; = 0. The chain is clearly irreducible since it can go from 0
to 1 in one step and from 1 to 1 in two steps. The stationary distribution puts
probability 1/2 at each point by symmetry, or we can check 7P = P directly,
which written out in matrix notation is

a (7 o) =

Hence the law of large numbers applies, as can also be checked by direct calcu-
lation. But the marginal distribution of X,, does not converge to 7. It is always
concentrated at one point, either 0 or 1 depending on whether n is odd or even
and what the starting point was.

It is worth pointing out that this is a Metropolis sampler where the proposal
is to go to the other point. The proposal is always accepted because the odds
ratio is always one.

This example illustrates a general phenomenon. The state space of any -
irreducible Markov chain can partitioned into sets Dy, D1, ..., Dg_1 and N
such that

)

o[

)

pol—
=

)

o=
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(i) P(xz,D;) =1, when z € D; and j =% —1 mod d.
(i) $(N) =0,

This partition is unique up to null sets if d is chosen as small as possible (Meyn
and Tweedie, 1993, Theorem 5.4.4). The chain is said to be aperiodic if d = 1
and periodic if d > 1. In the periodic case the marginals cannot converge, since
if we start with Xy in D; then we have Pr(X,, € D;) = 1 for i = n mod d.
Since the distributions of X,,, and X,, have disjoint supports for m # m mod d,
convergence is impossible.

Fortunately we have the following theorems.

Theorem 5 Any y-irreducible sampler that has P(x,{x}) > 0 for x € A where
P(A) > 0 is aperiodic.

Assume to get a contradiction that the sampler is periodic. Then we must have
Y(AN D;) > 0 for one of the D; in the cyclic decomposition of the state space.
But then for x € AN D; we have P(z,D;) > P(x,{z}) > 0. But the cyclic
decomposition requires P(x, D;) = 0 for € D,. The contradiction proves the
sampler must be aperiodic.

The theorem wouldn’t be true without any conditions on the sampler, since
our deterministic two-point sampler is Metropolis and not aperiodic.

Theorem 6 Any y-irreducible Gibbs sampler is aperiodic.

The argument is taken from Liu, Wong and Kong (1995, Lemma 3.2). It uses
the point of view that the transition probabilities define an operator on L2(r).
When working with nonreversible samplers, we need L?(7) to be a complex
Hilbert space. A complex function w is an eigenvector of the transition operator
P associated with the eigenvalue \ if Pu = Au. A periodic chain always has an
eigenvector u associated with the eigenvalue w = €2>7/¢, the d-th root of unity,
given by

d—1
u(z) = Zwklpk (x) (3.8)
k=0

since
-1

d—1 d—1 d
(Pu)(x) = Zwkp(vak) - Zwlek—l mod d(z) - Zwarlle (.’,E) - wu(x)
k=0 k=0 k=0

For a fixed scan Gibbs sampler, the transition operator is a product of operators
for elementary updates P = P, - -+ P,. The P; for a Gibbs sampler have the spe-
cial property of being projections, that is they are self-adjoint and idempotent.
We have shown that Gibbs updates are reversible and that this is equivalent to
the operator being self-adjoint. Idempotent means P? = P;, something we have
also noted: repeating a Gibbs elementary update twice is the same as doing it
once. Thus by the analog of the Pythagorean theorem for Hilbert spaces

[ull® = [ Prull* + (I = Py)ul?
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for any function u. Hence either ||Pul| < |jul| or ||(I — P;)ul| = 0. The latter
implies that P;u = u so u is an eigenvector associated with the eigenvalue 1. If
the latter is true for all 7, then Pu = u, which is false for the particular u given
by (3.8). Hence we must have || Pu|| < |lu|| for at least one i, which implies

[P < [Pl [[Pell < 1

But then
[Pull <[P flull <1

since ||P|| < 1 and w is a unit vector. But this contradicts
[Pull = [[wul| = |w] flul} = 1

So a fixed scan Gibbs sampler cannot be periodic. Neither can a random scan
or a random sequence scan sampler be periodic, by slight variants of the same
argument.

3.5 The Total Variation Norm

A bounded signed measure is a real-valued countably additive set function de-
fined on a o-field. Any signed measure p has a decomposition p = p* — u~
as the difference of two positive measures with disjoint supports. The total
variation norm of y is

il = o7 (X) + 1™ (X)

where X is the whole space. An equivalent definition is
Il = sup [ fan (39)
[fI<1

where the supremum is taken over all measurable functions f such that | f(x)| <
1 for all z.
The total variation norm gives bounds for the measure of sets

sgplu(A)l <l < 2s12p|u(z4)|

where the sup runs over all measurable sets.

3.6 Convergence of Marginals

Theorem 7 For an aperiodic Harris recurrent chain with stationary distribu-
tion m and any initial distribution A

[AP" — x| = H/)\(dx)P"(x, ) —m|| =0, as n — oo (3.10)

Moreover, the left hand side is nonincreasing in n.
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This is Theorem 13.3.3 and 13.3.2 in Meyn and Tweedie (1993).

If Xy has the distribution A, then AP™ is the marginal distribution of X,,.
The theorem says this marginal distribution converges to 7 in total variation.
A trivial corollary is that this marginal converges in distribution to m, since
convergence in total variation implies convergence in distribution.

In the special case where X is the measure concentrated at the point x, (3.10)
reduces to

|P"(x, -) —m| — 0, as n — 0o (3.11)

3.7 Geometric and Uniform Ergodicity

3.7.1 Geometric Ergodicity

A Markov chain is said to be geometrically ergodic when the convergence in
(3.11) occurs at a geometric rate, that is when there is a constant p < 1 and a
nonnegative function M (x) such that

||P"(:L‘, ) _ 7T|| < M(m)p” for all n. (312)

When this happens, something a bit stronger is actually true, and Meyn and
Tweedie (1993) take this as the definition. A Harris recurrent Markov chain
with stationary distribution 7 is geometrically ergodic if there exists a constant
r > 1 such that

> Pz, ) — 7| < oo, forall . (3.13)
n=1
Note that for this series to be summable, each term must go to zero, which
implies (3.12) holds with p = 1/r.
The total variation convergence in (3.12) implies that

[P (2,C) = m(C)] < M(x)p"

holds for any set C. In fact, something stronger is true, but we need some
preliminary definitions before we can state it.

3.7.2 Small and Petite Sets

A set C' is small if there is an integer m, a real number § > 0, and a probability
measure ) on the state space such that

P™(x, A) > 6Q(A), z € C' and A a measurable set. (3.14)

If Q(C) = 1, this is referred to as a “minorization condition” for for the m-step
transition kernel P™. It is a deep theorem of Jain and Jamison (1967) that any
i-irreducible chain has -positive small sets.

Small sets are not a convenient notion if the chain is periodic, since any small
set must be contained in one of the D; in the partition defining the periodic
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behavior. So Meyn and Tweedie (1993) define a closely related concept of “petite
set.” If a(n), n =0, 1, ... defines a probability distribution on the nonnegative
integers, then

Ky (z,A) = Za(n)P"(x,A) (3.15)

is the kernel of the Markov chain having the following update mechanism: gen-
erate a random integer N with distribution a, run the original chain N steps.
This gives a random subsample of the original chain. The sample is “with re-
placement” if a(0) > 0 so that N = 0 is possible. A set C' is petite if there is
a sampling distribution a, a § > 0, and a probability measure @ on the state
space such that

Kq(z,A) > 0Q(A), 2z € C and A a measurable set. (3.16)

Every small set is petite (use the sampling distribution concentrated at m)
and if the chain is aperiodic and irreducible every petite set is small (Meyn and
Tweedie, 1993, Theorem 5.5.7). The only difference between the concepts is
when the chain is periodic. In MCMC we have little interest in periodic chains,
but it does no harm to use the more general term, following Meyn and Tweedie.

Petite sets can be rather large. For any t-irreducible chain, there is an
increasing sequence C7; C Cy C - - of petite sets that covers the state space. So
7(C;) increases to 1 as i — oo.

3.7.3 Feller chains and T-chains

A Markov chain on a topological state space is called a Feller chain if P(-,0)
is a lower semicontinuous function for every open set O. The requirement that
the kernel P be lower semicontinuous can be expressed as

liminf P(x,,0) > P(x,0), whenever z,, — x.

n

Meyn and Tweedie (1993) call a Markov chain a “T-chain” if the following
conditions hold

(i) There exists a sampling distribution a and a kernel T'(z, A) such that
T(-,A) is a lower semicontinuous function for any measurable set A.

(ii) For each x, the measure T'(z, -) is nonzero.

The point of the concept is the following (Meyn and Tweedie, 1993, Theorem
6.0.1) if every compact set is petite then the chain is a T-chain and conversely
if the chain is a T-chain then every compact set is petite. So if we can verify
that a chain is a T-chain, we immediately have a wealth of petite sets.
Verifying that a chain is a T-chain usually a simple application of Fatou’s
lemma. Consider a Gibbs sampler. Say x is the current state and y is the
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state after one fixed scan, and suppose that all of the elementary updates have
densities, then the density of y given x has the form

P3(yslye, y1)p2 (Y23, y1)p1 (Y1 |73, 22)

when there are three variables, and similarly for other numbers of variables.
Suppose for each fixed value of y the integrand is a lower semicontinuous function
of x, which in this case happens when x5 +— ps(y2|z3, y1) is lower semicontinuous
and (z3,x2) — p1(y1|Ts, z2) is lower semicontinuous. Then by Fatou’s lemma

liminf P(x,, A)
= lim inf /// P3(Ysly2, y1)P2(Y2|Tn,3, Y1)P1 (Y1703, Tn,2) dy1 dys dys
n A
> /// lim inf [p3(y3|y2, y1)p2(y2|2n,3, y1)P1 (Y1203, Tn.2) | dyr dys2 dys
A n

= /// P3(yslye, y1)p2(y2|T3, y1)p1 (Y1 |w3, 22) dy: dya dys
A
= P(x,A)

So the kernel itself is lower semicontinuous, and the chain is actually Feller as
well as being a T-chain.

Now consider Metropolis-Hastings algorithm, this time with only two vari-
ables to keep the equations shorter. Here we throw away the rejection part
of the kernel, since it need not be lower semicontinuous. Let T'(z, A) be the
probability that the chain moves from x to A and every proposal in the scan is
accepted. Then P(z, A) > T(x, A) and

liminf T'(z,, A) > 1iminf// P2(Y2|Tn,2, y1)01 (Y1202, Tn,1) dy1 dyz
n n A
> // lim inf [p2 (y2| 2,2, y1)p1 (Y1 20,2, Tn,1) | dyr dyo
A n

:// p2(ye|re, y1)p1(y1|w2, 1) dy1 dy2
A
=T(x, A)

and T'(z, A) is lower semicontinuous if the p; are lower semicontinuous func-
tions of their x arguments, just as with the Gibbs sampler. Now the p; have the
Metropolis form (2.9). These will be lower semicontinuous if both the proposal
and acceptance densities are lower semicontinuous functions of their z argu-
ments. Since x appears in both the numerator and denominator of the Hastings
ratio, the only simple condition that assures this is that unnormalized density
h(x) is actually a continuous function of 2 and that the proposal density ¢(x,y)
is separately continuous in z and y. We also have to verify part (ii) of the
definition of T-chain, which held trivially for the Gibbs sampler. T'(x, -) will be
a positive measure for each x if every possible elementary update has positive
probability of being accepted.
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Verifying that a Metropolis-Hastings-Green sampler is a T-chain is more
difficult. The fact that the proposals are discontinuous with respect to Lebesgue
measure means that we have to consider more than a single elementary update
step. That was also the case with Gibbs and Metropolis, but what constitutes
a “full scan” in a Metropolis-Hastings-Green sampler is unclear.

Consider the unconditional Strauss process. An indirect proof that this
sampler is a T-chain is given by Geyer and Mgller (1994). The set C,,, = {x :
n(z) < m} is petite, because from (2.19) we see the probability of a step down
is bounded below by %e“’/)\ (assuming e~ /A < 1, otherwise it is bounded
below by %) because removing a point always decreases the number of neighbor
pairs so [s(y) — s(x)]8 > 0. If z = @, the realization with no points, then the
probability it stays there is at least % Thus

P (2, {@}) = P*(,{2})P" (2, {2})

(3.17)

Hence for any x € C,,
P"(xz, A) > Q

where § is given by (3.17) and @ is the probability measure concentrated at
the empty realization @. This verifies directly that C,, is small, hence petite.
The compact sets of the state space are the closed bounded sets, that is closed
subsets of some C,,. Since every (measurable) subset of a petite set is petite,
this proves that every compact set is petite. Hence the sampler is a T-chain.

The only reason we care about T-chains is for what they tell us about petite
sets, so having directly proved that compact sets are petite, we no longer care
about the T-chain property. It does hint, however, that a direct proof of the
T-chain property should be possible.

3.7.4 Absorbing and Full Sets

A set S is said to be absorbing if P(x,5) =1forall x € S. A set S is said to be
full if (S¢) = 0, where 1) is a maximal irreducibility measure. When the chain
has a stationary distribution 7, a set S is full if 7(S) = 1. Every absorbing set
is full if the chain is ¢-irreducible (Meyn and Tweedie, 1993, Proposition 4.2.3).

If the chain is started in an absorbing set S it never leaves. Thus it makes
sense to talk about the chain restricted to S. Restriction to an absorbing set
does not change the kernel except to restrict the domain.

If the chain is -irreducible and started outside of .S, the law of large numbers
says that almost all sample paths hit S and never leave. Moreover since 7(S) =
1, the part of the state space outside S is uninteresting from the standpoint of
Markov chain Monte Carlo. We don’t want any samples from a set of m-measure
zZero.
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3.7.5 Drift Conditions

How do we verify geometric ergodicity? The basic tool is a so-called “drift
condition.” We say a Markov chain satisfies the geometric drift condition if
there exists a measurable function V(x) > 1, possibly taking the value +oo but
finite at some x, a petite set C, and constants A < 1 and b < co such that

PV (z) < AV (x) + bleo(z), for all x (3.18)

where

PV(@) = [ Plady)V () = BV(X0)|Xi1 = 2]

If V(x) = oo the drift condition is satisfied vacuously for that x.

A weaker drift condition is useful in establishing Harris recurrence. A
Markov chain satisfies the positive drift condition if there exists a measurable
function V(x) > 1, possibly taking the value +oo but finite at some z, a petite
set C', and a constant b < oo such that

PV(z) <V(r)—1+ble(x), for all = (3.19)

If the chain is -irreducible, any solution V' (z) of the geometric drift condi-
tion satisfies

(i) The set S ={x:V(x) < oo} is absorbing and full.
(ii) V is unbounded off petite sets.
(iii) [V dr < 0.

by Lemma 15.2.2 and Theorem 14.3.7 in Meyn and Tweedie (1993), and any
solution V(z) of the positive drift condition satisfies (i) and (ii) by Lemmas
11.3.6 and 11.3.7 in Meyn and Tweedie.

Condition (ii) means that every sublevel set {z : V(z) < r} is petite, for
any r € R. Combining that with the fact that there is an increasing sequence of
petite sets C; whose union is the whole space, we see that V(x) goes to infinity
at infinity where “infinity” means away from petite sets.

Condition (i) means that the set S satisfies w(S) = 1, so although V(x) is
allowed to take the value co, it can only do so on a 7w-null set, and we can restrict
the chain to the absorbing set .S.

Since condition (ii) must hold for any solution of the drift condition, it
does no harm to impose it as a requirement. This gives a simpler equivalent
formulation (Meyn and Tweedie, 1993, Lemma 15.2.8). A Markov chain satisfies
the geometric drift condition if there exists a measurable function V(z) > 1
unbounded off petite sets, possibly taking the value 400 but finite at some z, a
petite set C', and constants A < 1 and L < oo such that

PV (z) <AV (x)+ L. for all (3.20)
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For any function V' > 1 define the V-norm by

lullv = sup / fdu. (3.21)
| fI<V

Note the resemblance to the alternative definition (3.9) of the total variation
norm. The only difference is that here the supremum is over all functions f
dominated by V. The total variation norm is the special case V = 1.

The geometric drift condition implies (Meyn and Tweedie, 1993, Theorem
15.0.1) that there are constants r > 1 and R < oo such that

> Pz, ) =7y <RV(z)  forall o (3.22)
n=1

holds for all z. This, of course, says nothing about x such that V(x) = oo.

Comparison with the definition of geometric ergodicity (3.13) shows that
(3.22) is stronger except that geometric ergodicity requires that the right hand
side be finite for all x, which is not so in (3.22) when V(z) = co. But if we
restrict the chain to the absorbing full set S = {x : V(z) < oo }, the geometric
drift condition implies that the chain restricted to S is geometrically ergodic.

If the chain is ¥-irreducible and there is an everywhere finite solution to the
positive drift condition, then the chain is Harris recurrent (Meyn and Tweedie,
Theorem 11.3.4). The geometric drift condition implies the positive drift con-
dition, so an everywhere finite solution to the geometric drift condition also
implies Harris recurrence.

Thus in practice the nuisance of V' being infinite at some points does not
arise. One verifies the geometric drift condition using a V' that is everywhere
finite. Why then allow for the possibility V(x) = co? For every geometrically
ergodic chain, there is a V satisfying the geometric drift condition (Meyn and
Tweedie, 1993, Theorems 15.4.2 and 15.0.1), but the solution may take the
value +oo at some points. Thus not only can one establish geometric ergodicity
by verifying the geometric drift condition, but one loses nothing by taking this
approach. If the chain is geometrically ergodic, then there is a function V' that
makes the geometric drift condition hold. Similarly, for every Harris recurrent
chain, there is a V satisfying the positive drift condition (Meyn and Tweedie,
1993, Theorem 11.0.1). Whether one can actually find such a function is another
question, of course.

Further comparison shows that (3.22) is much stronger than (3.13) when
V' is everywhere finite, because of the appearance of the V-norm rather than
the total variation norm in (3.22) and also because of the explicit formula for
the dependence of the right hand side on z. Thus verifying the geometric drift
condition implies something stronger than mere geometric ergodicity. One might
call this V-geometric ergodicity, but Meyn and Tweedie apply that name to the
situation where the left hand side of (3.22) is only known to be finite for all x.
The still stronger (3.22) is called V-uniform ergodicity.
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3.7.6 Verifying Geometric Drift
Bivariate Normal Gibbs

Verifying geometric drift ranges from the easy to the extremely difficult. To
start, let us consider the Gibbs sampler for a bivariate normal distribution.
Of course, one doesn’t need MCMC to sample this distribution. This is a toy
problem that makes a useful simple example for demonstrating a variety of
techniques.

We may as well consider a symmetric normal distribution in which the two
variables have the same variance 02 and mean zero. Their correlation is p. Then
the conditional distribution of Y given X is normal with mean pX and variance
72 = 02(1 — p?), and vice versa. Since both updates use the same distribution,
this Gibbs sampler is essentially an AR(1) time series, which is defined by
Zp = pZn_1 + e where e Normal(0,72). The bivariate state of a fixed-scan
Gibbs sampler for the bivariate normal is formed by taking consecutive pairs
(Zpy Zny1) from the univariate AR(1) time series.

Thus we can find out many things about this Gibbs sampler by looking in
the time series literature. In particular, it is well known that this sampler is
not only geometrically ergodic but satisfies much stronger properties. But let
us, work through establishing the drift condition.

Since second moments are easy to calculate, we first try V(z,y) = 1 +
axz® + by? for some positive constants a and b. This is clearly unbounded off
compact sets, and compact sets are petite because this is a Gibbs sampler with
continuous update densities. Suppose we update y last in the scan, so in order
to take a conditional expectation PV for the whole scan, we first take the
conditional expectation given x which gives a function of = alone and then take
a conditional expectation given y, where this y is the value in the preceding
scan. The first conditional expectation gives

E(V|X) =1+ ax® +b(p*z? + 7%) = (a + bp®)x? + constant

From (3.20) we see there is no need to keep track of constants. Then the second
conditional expectation gives

PV (z,y) = (a+ bp?)p*y* + constant
Thus we have geometric drift if we can choose a and b so that
(a+bp°)p* <D,

which happens if
a<b(p~®=p?)

For example, if p = .99 then b = 1 and a = .04 will do.

Unconditional Strauss Process

Now consider the unconditional Strauss process. As we have already seen, sets
of the form C,,, = {x : n(x) < m} are petite. In order that V(z) be unbounded
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off petite sets it only need be a function of n(x) that goes to infinity as n(x)
goes to infinity, say V(z) = H(n(x)). Since n(z) can only change by one each
step, we need

H(n(x) —1) < AH (n(z))

for all large enough 2. This suggests we take V (z) = () for some fixed ¢ > 0
to be chosen later.

If n(x) is large enough, steps down will have a Hastings ratio greater than
one and be accepted with probability one and steps up will have a Hastings

ratio less than € chosen as small as we please. Then for such x we have
PV(x) < ecln(@)=1] 4 %Eec[n(x)+1]

(e +ee®) V(x)

= N

and this will be less than AV (x) for some A < 1 and all large enough x if we
choose ¢ small enough so that e™¢+ce® < 2. For example, we could use ¢ = 1,
A =1/2, and € = .04. From (2.19) we see the acceptance probability of a step
down is greater than one if

R> %e—a >,

and from (2.18) we see the acceptance probability of a step up is less than e if

R <

e* <e.

n(x)
Both will hold whenever n(x) > Ae®/e. For n(z) < Ae®/e we have
PV(.’E) < ec[n(z)-{-l] < ec[Aeo‘/E-&-l] - L

Putting the two bounds together we have (3.20).

A Theorem of Roberts and Tweedie

Roberts and Tweedie (submitted) give a general theorem on geometric ergodic-
ity of Metropolis samplers on R? that iterate a single elementary update with a
“random walk” proposal of the form ¢(x,y) = f(y—x) where f is any density sat-
isfying f(x) = f(—x). They use a drift function of the form V(z) = h(x)~/2,
where h(x) is the unnormalized density of the stationary distribution. The
conditions under which a drift function of this form can be used to establish
geometric ergodicity can be roughly stated as h(z) must have exponentially de-
creasing tails and asymptotically round contours. These conditions are violated
by many models of practical interest, but the paper does show how the tech-
nical issues involved in proving geometric ergodicity using drift conditions are
attacked. Presumably similar methods can be used with drift functions specifi-
cally tailored to the problem to establish geometric ergodicity for problems for
which this specific choice does not work.
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3.7.7 A Theorem of Rosenthal

Establishing the geometric drift condition tells us that a chain is geometrically
ergodic (even V-uniformly ergodic) but doesn’t tell us anything about the con-
stants 7 and R in (3.22). By combining the geometric drift condition with a
minorization condition like (3.14) we can say something about these constants.

Theorem 8 Suppose V() > 0 is an everywhere finite function and satisfies a
geometric drift condition

PV(z) <AV + L, for all x. (3.23)
for some A < 1 and some L < co. Suppose that the minorization condition
Pz, -) > 0Q(), for all z with V(z) <d (3.24)

holds for some § > 0, some probability measure Q, and some d satisfying

2L
d> "= 3.25
> T (3.25)

Then for 0 <r < 1 and any initial distribution v of the Markov chain

k
”VPk _ 7TH < (1 _ 5)7’]6 + (a*(lfr)AT) <1 + % + EVV(X))

where
1 1+2L+ )\

14+d

This is Theorem 12 in Rosenthal (to appear). The drift condition (3.23) is
slightly different from the ones previously described, but if V satisfies (3.23)
then 1+ V satisfies (3.18) with C' = {z : V(x) < d} which is petite because
of the minorization condition (3.24) and a slightly larger A\. Note that (3.25)
implies that a~! < 1, but A is always greater than one and may be very much
larger. Thus it may be necessary to choose r very close to zero in order that
a~ (=" A" be less than one and the right hand side go to zero as k — oo.

o and A=1+2Nd+1L)

Bivariate Normal Gibbs Again

Let us see how this works with the Gibbs sampler for the bivariate normal. First
we must redo the drift condition calculation Section 3.7.6 keeping track of the
constants to obtain L. But consideration of the minorization condition shows
us that we can use a different drift function.

Since the conditional distribution of (X,Y") at time ¢ only depends on the
distribution of Y at time ¢t — 1 (using a fixed scan that updates x and then y),
the minorization condition will hold for all x if it holds for any x hence sets of
the form R x A are petite and we may as well use a function of y alone. Let us
use V(x,y) = by
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Then
PV (xz,y) =b[r* + p* (7% + p*y°)]

Hence PV < AV + L with
4

A=p
and
L =b7r%(1+ p?).

Thus we must choose d satisfying

2b72(1 2 2b72
> T(+p)— T = 2bo?
1_p4 2

d =
L—p

The small set on which the minorization condition needs to hold is
C={(z,y): V(z,y) <d},
which is of the form R x A with
A={y:lyl <Vd/b}.
The conditional distribution of X and Y at time ¢ + 1 given Y; = yo has the

densit
' 1 (y—px)*\ 1 (z = pyo)?
exp (_ y—p ) exp (_ PYo )
VonrT 272 2rT 272

Taking the inf over all yo such that |yo| < d/b gives

L <_ (y - px)Q) L (_(x”/’d/w) (3.26)

2T 272 2nT 272

Integrating with respect to y gives

L o (Ll i)

272

2T

and then integrating with respect to x gives

5 =20 (-iﬁ) <20 <—p\/3) : (3.27)

where @ is the standard normal cumulative distribution function, that is, (3.26)
is a proper probability distribution times ¢.

Note that if p is very close to one, then (3.27) is extremely small. If p = .99,
then § < 3.28 x 10723, On the other hand, if p = .9, then § < 0.0035, which
is not so bad. The parameters to be chosen are b, d, and r which together
determine the bound. Some experimentation seemed to show that b = 1 and
d = 12.4, just a little above its lower bound 2b/(1 — p?) = 10.526, were about
optimal. This makes a~! = 0.9518 and A = 20.900. If we now choose r so the
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two rate constants (1 — )" and o~ (=" A" are about equal, we get r = 0.0160

making (1 —8)" = o=~ x A" = 0.999976. Hence

|[vP* — 7| < (0.999976)F (2 + % + EVV(X)> = 7.263158(0.999976)"
if we start at any point where V(X) = bY? = 0.

Thus when p = .9 we get a useful bound. It does say that to reduce the total
variation norm to .01 we need 270,000 iterations, which is rather conservative,
but is doable.

If p = .99 the bound is completely useless. It gives on the order of 10723
iterations to reduce the bound much below one, and that is completely beyond
any foreseeable available computer power. It is also ridiculously conservative. It
is possible to use a minorization condition on the n-step kernel P™ rather than
on P, which would give a better bound. But this would draw the wrong lesson
from this toy problem. In problems of real practical interest, it is rarely, if ever,
possible to say anything useful about n-step transition probabilities. Hence the
appropriate lesson here seems to be that this theorem can be used to prove fast
convergence, but that when convergence is moderately slow the bound becomes
so conservative as to be useless.

3.7.8 Uniform Ergodicity

When the bound in the definition of geometric ergodicity is uniform, that is
when there is a constant R < oo such that

S|P (@, ) =7 < R, forall x. (3.28)

n=1

we say the chain is uniformly ergodic. This implies

sup ||P"(x, -) — m|| — 0, as n — oo, (3.29)
all ©

which Meyn and Tweedie take as the definition of uniform ergodicity. This
makes sense because (3.29) also implies (3.28) by Theorems 16.2.1 and 15.0.1
in Meyn and Tweedie (1993).

Uniform ergodicity is implied by the geometric drift condition if the drift
function V is bounded. Since any solution V' of the geometric drift condition is
unbounded off petite sets, boundedness of V' implies that the whole state space
is petite. Conversely, if a chain is uniformly ergodic, then the whole state space
is petite and there exists a bounded solution of the geometric drift condition
(Meyn and Tweedie, 1993, Theorem 16.2.1).

Thus we obtain a very simple criterion for uniform ergodicity, that the whole
state space be petite. In particular, if the chain is a T-chain and the state space
is compact, then the chain is uniformly ergodic. No drift condition actually
need be verified. For example, any Markov chain on a finite state space is uni-
formly ergodic. The chain is trivially a T-chain because z — P(x, A) is trivially
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continuous for each A, since any function on a discrete space is continuous. The
entire space is compact because any finite set is trivially compact. But this
criterion also applies to more complicated examples. The Gibbs or Metropolis
samplers for the Strauss process with a fixed number of points n are T-chains by
the Fatou’s lemma argument of Section 3.7.3. The state space is compact, since
it is a closed and bounded subset of R?" (or in the case of periodic boundary
conditions a compact manifold of dimension 2n). It is also easy to show the
minorization condition directly: 0 < s(z) < n(n — 1)/2 implies that h(x) is
bounded and bounded away from zero and that this in turn implies that there
is a § > 0 such that P(x, A) > du(A) for all points  and all measurable sets A,
where p(A) is the Lebesgue measure of A.

It is possible that a chain can be uniformly ergodic when the whole state
space is not compact. A trivial example is independent sampling. A sequence
X1, Xo, ... of independent, identically distributed random variables with distri-
bution 7 is trivially a Markov chain with stationary distribution 7 and transition
probability kernel P(x, A) = w(A), for all x, and this is trivially a minorization
condition for the whole space.

A nontrivial example of this phenomenon is a hierarchical Poisson model for
data on pump failures at a nuclear power plant used by Gaver and O’Muircheartaigh
(1987) who used empirical Bayes calculations that did not involve MCMC.
Gelfand and Smith (1990) used this as an example where a fully Bayes analysis
could be done using the Gibbs sampler. Tierney (1994) showed that this Gibbs
sampler is uniformly ergodic, even though the state space is an unbounded
region of R? and hence noncompact.

In general, however, one has no right to expect a Markov chain on a non-
compact state space to be uniformly ergodic. For example, any sampler for
the unconditional Strauss process that adds or deletes at most one point per
iteration cannot be uniformly ergodic. Write S™ as before for the set of all
realizations with exactly m points. Then for any n > 0 and any z € S™*"+!

[1P™(x, ) = 7l| = |[P"(2,5™) = =(S™)] = w(5™)
Since the chain cannot get from S™ "+ to S™ in only n steps. Hence

sup 1P (, -) = =] = =(5™)

for all n, the left hand side cannot converge to zero, and the chain is not uni-
formly ergodic.

Another simple example is the Gibbs sampler for the bivariate normal. From
the standard theory of AR(1) time series we know that the conditional distribu-
tion of Y,, given Yy = ¥ is normal with mean p®"y. The unconditional variance
of Y,, is 02 and the conditional variance given Y = y must be less since condi-
tioning reduces variance. Hence for y > 0

Pr(Y, <0[Yp =y) < ®(p*"y/0) (3.30)

In order for the chain to be uniformly ergodic this must be bounded uniformly in
y, more precisely, for any € > 0 there is a n, such that |®(p*"y/o)—m(Y <0)] < e



3.8. THE CENTRAL LIMIT THEOREM 5

whenever n > n, for all y. Clearly, this can’t hold since (Y < 0) = 3 and (3.30)
converges to 1 as y — oc.

3.8 The Central Limit Theorem

The assertion of the Markov chain central limit theorem (leaving aside momen-
tarily the question of whether it is ever true) is the following. As when we were
discussing the law of large numbers, define for any function g(X)

H = Ewg(X)

and

Then the law of large numbers says that fi,, converges almost surely to p, and
we know this holds for any initial distribution for any Harris recurrent chain
with stationary distribution 7. The Monte Carlo error fi,, — p, how far a Monte
Carlo estimate of p based on a run of the chain of length n is from the true
value, converges to zero as the run length n goes to infinity. The central limit
theorem asserts

Vi (fin — 1) == N(0,02). (3.31)

Root n times the Monte Carlo error converges in distribution to a normal dis-
tribution with mean zero and some variance o2, so fi,, +1.960/\/n is an approx-
imate 95% confidence interval for the unknown true value u. In real problems
there is never any way to calculate o2, but it can be estimated from the same
run of the chain that produced the estimate fi,,. This is a familiar situation.
Even with independent, identically distributed samples we rarely know the true
variance, use the sample standard deviation s in place of ¢ in calculating the
confidence interval.

One simple result about the central limit theorem is that if the chain is Harris
recurrent, then if (3.31) holds for any initial distribution then it holds for every
initial distribution (Meyn and Tweedie, 1993, Theorem 17.1.6). Since the initial
distribution does not effect the asymptotics, there is no harm in pretending that
the initial distribution is the stationary distribution 7, which allows us to make
connections with the theory of stationary stochastic processes.

A stochastic process X1, Xo, ... is stationary if for any positive integers n
and k

(X1, X0) 2 (Xngts oo Xnar)

meaning that the left hand side is equal in distribution to the right hand side.
Any consecutive block of variables of length k has the same distribution. A
Markov chain is a stationary stochastic process if X; has the stationary distri-
bution 7. Thus we can obtain a Markov chain central limit theorem from limit
theorems for general stationary processes, including theorems about stationary
time series.
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3.8.1 The Asymptotic Variance

The variance o2 in the limiting distribution in the central limit theorem cannot
simply be Var, g(X) as it would be for independent sampling. The variance of
the left hand side in (3.31) is

02 =nVar (fi,) = % ZVar(g(Xi)) + % Z Z Cov(g(X;),9(X;))
i—1 =1 j—=1

Since the initial distribution makes no difference to the asymptotics, we may
assume stationarity, in which case

Yo = Var(g(X;))

is the same for all 7 and

Vi = Cov(g(Xi), 9(Xitk)) (3.32)
is the same for all k. (3.32) is called the lag k autocovariance of the stationary
time series g(X1), g(X2), .... Thus stationarity implies

n—1 n k
. _
Cn=0F2) (3.33)
k=1
and o2 converges to
o? :’YQ+22’)/]€ (3.34)
k=1

as n — oo if the series on the right hand side is summable. We can expect
(3.34) to be the asymptotic variance if everything is well behaved.

3.8.2 Geometrically Ergodic Chains

The necessary conditions for such theorems involve so-called “mixing coeffi-
cients.” There are several varieties of which we will look at three, so-called
[-mixing, p-mixing, and ¢-mixing. The reader should be warned that the def-
initions given here apply only to Markov chains and that the definition for a
general stationary process is slightly different, for which see Bradley (1986).

G-Mixing
The mixing coefficient G(n) is defined for a Markov chain by

I J
B(n) =4sup > > [Pr(Xg € A;and X, € B;) — w(A;)m(B;))|
i=1 j=1
where the supremum is taken over all partitions Ay, ..., A; and By, ..., By of

the state space by measurable sets.
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This mixing coefficient is related to the total variation norm as follows. An
alternative definition of the total variation norm of a signed measure p is

J
il = sup D u(B))
j=1

where again the supremum is over all measurable partitions of the state space.
Thus

J
ZlP" ,Bj) = n(B)| < [|P"(x, -) — =],

for all measurable partltlons By, ..., By and
J J
S IP" (A By) = w(A)(B) = X | [ [P By) = (B (o)
j=1 j=1 174

J
<> [ 1P By~ w(B)ir(d)
< [ 1P ) = (o)

i

SO

I J
n) =3 D [PM(Ai B) — w(Ai)n(B;)|

i=1 j=1

_22 / |P" (@, -) - llr(da)
/ 1P (2, ) — rllm(dz)

If the Markov chain is geometrically ergodic then (3.22) and [V dr < co imply
there is an r > 1 such that

i r"B(n) < oo
n=1

so B(n) goes to zero exponentially fast. This implies a central limit theorem.
A chain is said to be f-mixing if 5(n) — 0 and S-mixing exponentially fast if
B(n) < Ap™ for some A < oo and p < 1.

Theorem 9 If a Markov chain is geometrically ergodic, then it is (B-mizing
ezponentially fast. For any function g such that [|g|*T¢dr < oo for some
€ > 0 the central limit theorem (3.81) holds for the stationary chain, and the
asymptotic variance is given by (3.84). If the chain is Harris recurrent the
central limit theorem holds for any initial distribution.
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This follows from a well-known stationary process central limit theorem (Ibrag-
imov and Linnik, 1971, Theorem 18.5.3). This connection between geometric
ergodicity and mixing conditions was noted by Chan and Geyer (1994). Chan
and Geyer only showed that geometric ergodicity implies a weaker form of mix-
ing called a-mixing, but the proof of the stronger (-mixing is essentially the
same, and [-mixing is need for some forms of empirical process central limit
theorems (Arcones and Yu, 1994; Doukhan, Massart and Rio, 1994).

It is possible to have o2 = 0, in which case the interpretation is that /n(fi, —
) converges in distribution to the degenerate distribution concentrated at the
origin, which is the same thing as convergence in probability to zero. An example
of such behavior is the periodic chain on two states mentioned in Section 3.4.
The average over a full period is the same as the average over the stationary
distribution. Thus /i, is exactly y for even n and off by at most 1 max(g(0), g(1))
for odd n. So fi,, — p = O(1/n) and v/n(ji, — p) converges to zero.

The Liapunov condition [ |g|*"¢dr < co can be suppressed, by considering
the actual function V used in the geometric drift condition.

Theorem 10 If a Markov chain is V-uniformly ergodic, then for any function
g such that g> < V the central limit theorem (3.31) holds for the stationary
chain, and the asymptotic variance is given by (3.34). If the chain is Harris
recurrent the central limit theorem holds for any initial distribution.

This is Theorem (17.5.4) in Meyn and Tweedie (1993). A very similar result is
given by Chan (1993).

Which of the two theorems one uses depends on what what one knows. If
it is not known whether g has 2 + ¢ moments, then Theorem 10 or the similar
theorem in Chan (1993) must be used. If one wants central limit theorems for
many functions, all of which are known to satisfy the Liapunov condition, then
Theorem 9 will be more useful, since there is no need to find a different drift
condition for each function g.

p-Mixing

A stronger mixing condition is p-mixing. The mixing coefficient p(n) is defined
for a Markov chain by

sup COr(u(Xi),W(XHn))
w,weEL? ()
\/Var(E{u(XiJrnﬂXi})
Var(u(Xi))

p(n)

(3.35)

sup
ueL?(m)

A chain is p-mixing if p(n) — 0, as n — oo.
Thinking of P as an operator on the Hilbert space LZ(7) as in Section 1.3.5

we have
[P ull n
= || P".

p(n) =
uw€L2(m) ]
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The nth p-mixing coefficient is just the norm of P". Because ||P|| < 1 (shown
in Section 1.3.5) if ||P™]| < 1 for any m

[P < Py

and so if a chain is p-mixing, then it is p-mixing exponentially fast.

In (3.35) it is usual to consider only real functions u and v, so L?(r) is
considered a real Hilbert space. In defining the spectrum it is necessary to
consider it a complex Hilbert space, but this makes no difference since P takes
real functions to real functions, which implies || P(u + iv)||? = || Pul|* — || Pv]|?,
so the supremum over real functions is the same as the supremum over complex
functions.

For any bounded operator T" on a Hilbert space, the spectrum of T is the set
of complex numbers A such that T'— AI is not invertible. If the state space is
finite, so P is a matrix, then the spectrum of P is the set of right eigenvalues of
P, the set of A such that Pu = Au for some vector u. We have already seen that
complex numbers are needed in the proof of theorem 6. If a chain is periodic
with period d, then ¢2™/¢ is an eigenvalue, and this is complex if d > 2. If the
chain is reversible, so P is self-adjoint, then the spectrum is real.

If the state space is not finite, the notion of eigenvalues and eigenvectors may
be insufficient to describe the spectrum. A function can fail to be invertible for
two reasons, either it is not one-to-one or it is not onto. For a linear operator on
a finite-dimensional vector space, these two collapse into one, but in general A
can be in the spectrum of P because P — AI is not one-to-one, which means that
(P —AI)u = 0 has a nonzero solution u and u is an eigenvector of P (also called
eigenfunction to emphasize that u is a function on the state space) or P — A
is not onto, which means that there is a v that is not of the form (P — A\ )u for
any u in L3(m).

The spectrum of a bounded operator T is always a compact subset of the
complex plane. The supremum of |A| for all A in the spectrum is called the
spectral radius r(T). It is always true that »(T) < ||T||, so for a transition
probability operator P which has ||P|| < 1, the spectrum is a closed subset
of the unit circle in general and a closed subset of the interval [—1,+1] for
self-adjoint P. A more precise bound is given by the spectral radius formula

r(P) = lim ||P"|*/".

If a chain is not p-mixing, then ||P™|| =1 for all n and (P) = 1. If the chain is
p-mixing, then there are constants A < oo and b < 1 such that p(n) < Ab™ and
r(P) < lim AY™b=1b< 1.

So a chain is p-mixing if and only if the spectral radius of P considered to be a

operator on L3(r) is strictly less than one.

A method of demonstrating p-mixing has been devised by Schervish and
Carlin (1992) and Liu, Wong, and Kong (1995). The connection between these
methods and p-mixing was pointed out by Chan and Geyer (1994). These
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methods can only be applied to Gibbs samplers or other Metropolis-Hastings
schemes in which all proposals are accepted for reasons explained by Chan and
Geyer (1994).

The condition that a Markov chain be p-mixing is overly strong for obtaining
a central limit theorem. What is important is that the spectrum not contain
the point 1, that is, that the operator I — P, called the Laplacian operator of
the chain be invertible. Clearly p-mixing implies this (r(P) < 1 implies that 1
is not in the spectrum).

Theorem 11 If a Markov chain has an invertible Laplacian operator, then the
central limit theorem (3.81) holds for the stationary chain, and the asymptotic
variance is given by (3.34). If the chain is Harris recurrent the central limit
theorem holds for any initial distribution.

This is a simple corollary of a theorem of Gordin and LifSic (1978) as is pointed
out by Chan and Geyer (1994).

¢-Mixing

A stronger mixing condition is known as ¢-mixing. For a Markov chain this is
equivalent to a condition known a Doeblin’s condition (Bradley, 1986, p. 175)
which is equivalent to uniform ergodicity (Meyn and Tweedie, 1993, p. 384).
Thus another method of establishing p-mixing is to establish uniform ergodicity.
If the chain is uniformly ergodic, then the central limit holds for all functions
in L?(7).

3.9 Estimating the Asymptotic Variance

A central limit theorem is not much use without a method of estimating the
asymptotic variance o2. Three methods are presented in this section and a

fourth method in the next section.

3.9.1 Batch Means

Given a Markov chain X7, Xs, ... and a function g for which there is a central
limit theorem (3.31), fix an integer m, let [ be the smallest integer greater than
or equal to m/n and define the batch means

1 kl

ﬂn,kzjl Z 9(Xi), k=1,....,m—-1
i=(k—1)xl4+1
1 n
Anm = T i N X’L M
Hn, n—1I(m-—1) Z 9(Xi)

i=(m—1)*l+1

It follows from the functional central limit theorem (Meyn and Tweedie, 1993,
Section 17.4) that the m batch means fi,, j, are asymptotically independent and
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identically distributed Normal(yu,o?). Hence large sample confidence intervals
for ;1 can be constructed using Student’s ¢ distribution. If # and s? are the
sample mean and standard deviation of the batch means then = £1¢,/95/\/m is
a 100(1 — )% confidence interval for p, where ¢, /5 is the appropriate ¢ critical
value for m — 1 degrees of freedom.

How does one choose the batch length I? A good recommendation (Schmeiser,
1982) is that the number of batches should be small, no more than thirty. Us-
ing t rather than normal critical values correctly adjusts for a small number
of batches, but nothing adjusts for batches that are too small. So the batches
should be as large as possible. One might use as few as ten batches if one were
worried about the batches being too small.

3.9.2 Overlapping Batch Means

Although the theory of batch means is very simple, it is inefficient compared to
a simple modification called overlapping batch means (Meketon and Schmeiser,
1984; Pedrosa and Schmeiser, 1993). For any batch length I, define

1 jHl-1
,[Ln,l,jzj ZQ(XZ'), j:1,...,n—l—|—1
i=j
and
n—I+1
Gry = ——— Z (Amtj — fin)? (3.36)
™ n—1+1 = 7

It follows from the central limit theorem for ji,, and uniform integrability, which
always holds under exponentially fast G-mixing that 6371 converges to o2 in
probability as n — oo and I/n — 0. Hence fi, £ 1.966,,;/+/n is an asymptotic
95% confidence interval for u.

How does one chose the batch length for overlapping batch means. Now the
choice is more difficult. In order for 677217 ; to be a consistent estimator [ must be
“large” and [/n must be “small.” There seem to be no good criteria for choosing
[ unless n is very large, in which case a wide range of choices should be good
enough. If n is “small” then no choice of [ will be good.

3.9.3 Examples
Bivariate Normal Gibbs

One nice property of the Gibbs sampler for the bivariate normal distribution
is that we can calculate its asymptotic variance exactly. Suppose we want to
calculate the expectation of g(X,Y) =Y. For the stationary chain, the Y;, have
variance o2 (not the variance in the central limit theorem but the marginal
variance of Y) and correlation Cor(Y;,Y; ) = p?*, thus the variance in the
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Figure 3.1: Output of the Gibbs sampler for the bivariate normal distribution
with mean zero, variance one, and correlation p = .99. The starting position was
(0,0) and the run length 10,000. The statistic plotted is the second component
of the state vector.

central limit theorem is

Var(Y;) +2 > Cov(V;, Yiey)
k=1

o? <1 +2ip2k>

i=1

2
2 P
_ o (14
=0
1— p?

Figure 3.1 shows a run of length 10,000 of a Gibbs sampler for the bivariate
normal distribution with a rather high correlation p = 0.99. The second variable
Y of the state (X,Y") of the Markov chain is plotted.

Recall that in Section 3.7.6 we were able to show that this sampler is geomet-
rically ergodic, hence a central limit theorem exists for any function satisfying
a Liapunov condition and for Y in particular, but we were unable to get a tight
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Figure 3.2: Overlapping batch means for the output shown in Figure 3.1. 9501
batches of length 500. Squares mark the 20 nonoverlapping batch means used
in the ordinary batch means analysis.

bound on the convergence rate of the sampler in Section 3.7.7. A glance at
Figure 3.1 shows that a run length of 10,000 is not long enough for the sampler
to make many excursions to the extremes. The sample does have 0.0267 of its
points above +2 and 0.0154 below —2 as compared to 0.025 for the stationary
distribution 7 (which is standard normal), but only seven excursions above 1.96
make an appreciable contribution to the empirical expectation 0.0267 and only
four excursions below —1.96 make an appreciable contribution to the empirical
expectation 0.0154. So this Markov chain sample behaves something like an
independent sample of size smaller than ten.

Figure 3.2 shows the batch means for batches of length 500. The ordi-
nary batch means method uses the means of the twenty nonoverlapping batches
marked by squares in the figure. The mean and sample standard deviation are
0.145 and 0.484 giving a 95% confidence interval for the true mean y = 0 of
0.145 4 2.093 - 0.484/+/20 = (—0.082,0.371).

The estimated variance from the overlapping batch means is 81.27, which
gives a confidence interval 0.145 4+ 1.96 - 1/81.27/10000 = (—0.032,0.321). The
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Figure 3.3: Metropolis sampler for the Strauss process with fixed number of
points n(z) = 50 defined by (2.16) with canonical parameter § = .126. The
vertical coordinate is the canonical statistic s(x) which is the number of neighbor
pairs. The run of length 100,000 was started at a realization of the Poisson
process (8 = 0). The plot only shows every fifth point, though all points were
used in analyses.

correct theoretical value of the asymptotic variance is (14 p?)/(1— p?) = 99.50.
Much of the underestimation of variance by the overlapping batch means esti-
mator results from [, not being u. If p were used (3.36) in place of fi,, the
estimate would be 95.14. There is, however, no way to correct for this, no way
to widen the interval to account for something like degrees of freedom.

Conditional Strauss Process

Figure 3.3 shows a run of length 100,000 of a Metropolis sampler for a Strauss
process with a fixed number of points. The distribution is bimodal with one
mode near s(x) = 175 and another near s(x) = 825. Realizations in the low
mode look much like those of a Poisson process. The points are almost inde-
pendent. Realizations in the high mode have one cluster containing most of the
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points and a few scattered points outside. The Strauss process is not a very
interesting model for clustering. It only serves as an interesting simple example
of a spatial point process.

For this run, the mean of the canonical statistic s(x) is 523.5 and the method
of overlapping batch means with batch lengths of 2,000 estimates 0 = 38981764
giving a confidence interval of 523.5 £ 38.7 for the true expectation of s(x).

3.9.4 Time Series Methods

A family of methods that are more complicated than batch means but also pro-
vide more information estimate the lagged autocovariances ~; in (3.34) directly
using the obvious estimator

n—k
Vi = — Z[Q(Xl) — ) [9(Xigr) — fin)

n -
1=1

This estimate is biased downwards, and one might think that dividing by n — k
rather than n would give a better estimate, but as we shall presently see, the
estimates for large k are already too noisy and must be downweighted still
further. Priestley (1981, pp. 323-324) discusses this in more detail. A naive
estimate of 02 would be (3.34) with 4, plugged in for 4, but it has long been
known that this estimator is not even consistent (see Priestley, 1981, p. 432).
For large k the variance of 4y is approximately

o1 =
Var(fx) ~ — <v§ +2y° %i) (3.37)

m=1

(Bartlett, 1946), assuming [ g* dm < oo and sufficiently fast mixing (p-mixing
suffices). Figure 3.4 shows the estimated autocovariance function, 7y as a func-
tion of k, with “large k confidence intervals calculated from (3.37) for the run
shown in Figure 3.3.

In order to get an estimator of o2 that is even consistent, it is necessary to
downweight the 9, for large k.

62 =40 +2> wk) (3.38)
k=1

where w is some weight function, called a lag window, satisfying 0 < w < 1.
Many weight functions have been proposed in the time-series literature. See
Priestley (1981, p. 437 ff. and p. 563 ff.) for a discussion of choosing a lag
window.

Typically one expects the autocovariance function to decline smoothly to
zero and to be positive for all k, so it would seem that one could just truncate
the sequence 7, where it goes negative, but autocovariances can be negative, and
usually nothing is known about the true autocovariance function of a sampler,
so this approach is less than rigorous, except in one special case, when the chain
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Figure 3.4: Empirical autocovariance function for the Metropolis sampler in
Figure 3.3. The dotted lines are +1.96 times the asymptotic standard deviation
of v given by (3.37).
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Figure 3.5: Plot of yor +725+1 versus k for the Metropolis sampler in Figure 3.3.

is reversible. Geyer (1992) noted that the function I'y, = o +v2k41 is a strictly
positive, strictly decreasing, and strictly convex function of k if the chain is
reversible.

Thus for reversible chains it is rigorously correct to use any of the following
three estimators based on using one of the three known properties of the “big
gamma” function. The initial positive sequence estimator is the sum

M

0% =40+ 291 + ka (3.39)
k=2

where M is the largest integer such that the [ are strictly positive for k = 2,
M.

The bulge in the figure above lag 450 is not like the behavior of a true “big
gamma” function, so it makes sense to further to reduce the estimated ') so
that they are nondecreasing

.y

f;cmon) = min (fl, .. ,fk)



88 CHAPTER 3. STOCHASTIC STABILITY

and then replace I by ffcmon) in (3.39). This gives the initial monotone sequence
estimator.

The smaller bulges that make Figure 3.5 nonconvex can also be eliminated
by taking the function k — fffon) to be the greatest convex minorant of f’l, R
I'as, 0, and replacing I by IA‘E:OH) in (3.39). This gives the initial convex sequence
estimator. For any function g, the greatest convex minorant is supremum of all

convex function h < g. It can be constructed by the pool adjacent violators
algorithm (Robertson, Wright and Dykstra, 1988, pp. 8-11).

For the run shown in Figure 3.3, the initial positive sequence estimator is
44.97x10%, the initial monotone sequence estimator is 42.91x10%, and the initial
convex sequence estimator is 42.47 x 10°. Recall that the overlapping batch
means estimator was 38.98 x 10°, which now seems too small. Increasing the
batch length from 2,000 to 10,000 makes the overlapping batch means estimator
47.53x10%. The choice of batch size can make a large difference in the estimator.

So which should one use, batch means, overlapping batch means, a lag win-
dow estimator using a window from the time series literature, or one of the
initial sequence estimators? Ordinary batch means is the simplest and performs
reasonably well. Overlapping batch means is better (Meketon and Schmeiser,
1984). Unfortunately there is no good way to choose the batch length, one just
chooses it to be reasonably long and hopes that is good enough. Any attempt
to make a good choice by some adaptive procedure makes batch means more
complicated than time series methods. The initial sequence methods provide a
reasonable default lag window estimator, but do require that one use a reversible
chain.

The choice of method is not as important as the choice to use some method.
Variance calculations are still a rarity in the MCMC literature. Some have
argued that because the do not diagnose “nonconvergence” there is no point
in using them, that is, when [ is very badly estimated because the run is far
too short, then the estimate of o2 will be a gross underestimate. The same
argument could be applied to all uses of confidence intervals—since they don’t
tell you when they fail to cover the true parameter value there is no point in
using them—which is obvious nonsense. The right way to think about variance
calculations is that they are the only way to say anything quantitative about the
accuracy of an MCMC sampler or about the relative accuracy of two MCMC
samplers. The following quotation from Geyer (1992) is still good advice.

It would enforce a salutary discipline if the gold standard for com-
parison of Markov chain Monte Carlo schemes were asymptotic vari-
ance (asymptotic relative efficiency) for well-chosen examples that
provide a good test of the methods. Experience shows that it is easier
to invent methods than to understand exactly what their strengths
and weaknesses are and what class of problems they solve especially
well. Variance calculations seem to be the only sufficiently stringent
standard for such investigations.
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3.10 Regeneration

A very different method for estimating Monte Carlo error uses regeneration. A
set «v in the state space is said to be an atom if

P(z,-)=P(y, -), for all z,y € a. (3.40)

This says the transition probabilities are the same from every point in the atom.
Let 19, 71, ... denote the times of visits to the atom, that is X; € « if and only if
j = 7; for some i. The 7; are called regeneration times because the past history
of the chain is forgotten. Because of (3.40) the future paths started from any
two states in the atom have the same probability laws. In particular, segments
of the sample path between regeneration times

X'ri,+la s 7X7'i+17

which are called tours, are independent and identically distributed.
If we are interested in calculating the expectation of a function g, the sums

Ti

Zi: Z g(Xk)7 Z:1727
k=T1;_1+1

over the tours are independent and identically distributed random variables, as
are the tour lengths

Ni:Ti_Tifly i:1,2,....

If the chain is Harris recurrent and the atom has positive probability under
the stationary distribution, the atom is said to be accessible. An accessible atom
is visited infinitely often with probability one, and there is an infinite sequence
of regenerations. By the renewal theorem

and by an analog of Wald’s lemma in sequential sampling
E(Z) = BE(N)u (3.41)

where = E(g(X)) (Nummelin 1984, pp. 76 and 81).
Another way to see this uses the identity

1 k+1
— 1.(X;) =
nz ( ) To+N1+"'—|—Nk-

By the law of large numbers for Markov chains, the left hand side converges
to m(«). By Harris recurrence, 7 is almost surely finite. Hence by the law of
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large numbers for independent random variables, the right hand side converges
to 1/E(N;). Then

1 1 & i+ 4 7
- Xi)=— Xi) +
S

and the same argument shows that the left hand side converges to p and the
right hand side converges to E(Z;)/E(N;). It is not clear that this argument
can be made noncircular, since the usual proofs of the law of large numbers and
facts about Harris recurrence use regeneration, but it does help understand the
phenomenon.

If Z; — puN; has finite variance 72, then there will be a central limit theorem

for B P
. 2k 1+ k
_ Pk _ Ly 3.42
I e T Nt + N (3.42)
Write v = E(N;). Then

- - 2
Vk(fip — p) = M 2, Normal (0, 7—2>
ng v
by Slutsky’s theorem. The condition that Z; — u/V; have finite variance is a
necessary and sufficient condition for the central limit theorem for V& (Zy, — pmy,)
and hence is the weakest possible condition for a Markov chain central limit
theorem. Being a necessary condition, it holds whenever there is a central
limit theorem, such as when the chain is geometrically ergodic and g satisfies
a Liapunov condition, but there seem to be no tools for verifying the condition
other than those that apply in the absence of regeneration. When the geometric
drift condition has been established with a drift function V' that is bounded on
the atom « and satisfies g < V, then both Z; and N; have finite variance by
Theorem 14.2.3 in Meyn and Tweedie (1993).

If we average over a fixed number of complete tours, the numerator and
denominator in (3.42) have the correct expectations by (3.41). The estimator [
has a slight bias because the expectation of a ratio is not the ratio of the expec-
tations, but the bias is asymptotically negligible and usually small in practice
if the number of tours is large.

This property of the numerator and denominator have the correct expecta-
tions is preserved if we take a random number K of complete tours, so long as
K is a stopping time, that is, the decision to stop at time k is made using only
information available at time k, in particular it does not make use of (Z;, V;)
for ¢ > k. Then if Z; and N; have finite variance

E <Z Zl) = uE (Z Ni> (3.43)

Var (ZK:(Zi — uM)) =’ E(K) (3.44)

i=1
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(3.43) is the analog of Wald’s lemma with random stopping, and (3.44) says that
the natural estimate of 72 would have an unbiased numerator and denominator
if the true value of u were used the deviations. These follow from

(Zz) = uE(K)

E (i Ni> = vE(K)

K
ar (Z Z; — KW> = Var(Z;)E(K)
x
ar (Z N; — Ku> = Var(N;)E(K)
i=1

K K
Cov (Z Z; — K v, Z N; — Ku) = Cov(Z;, N;)E(K)

i=1 i=1

which in turn follow from Theorem 5.3 and Remark 5.7 in Chapter I of Gut
(1988).

The law of large numbers and the central limit theorem continue to hold
for random stopping. If K(t), t > 0 is a family of positive-integer-valued ran-
dom variables such that K(t) — +oo almost surely as ¢ — oo (not necessarily
stopping times), then

ik () = 1, t— oo.
This follows from Theorem 4.1 in Chapter I of Gut (1988). If Z; and N; have
finite variance then

2
~ D T
K(t) (furcty — p) — Normal (0, V2>
follows from Theorem 3.1 in Chapter I of Gut (1988) and the delta method.

3.10.1 Estimating the Asymptotic Variance
From (3.44)

K
Z (Zi — Nijig)? (3.45)

is an approximately unbiased estimate of 72, only approximately unbiased be-
cause we have plugged in [ix for ;1 and because the expectation of a ratio is not
equal to the ratio of the expectations when K is random. A consistent estimator

of v is, of course
1 X
=g 2N
i=1



92 CHAPTER 3. STOCHASTIC STABILITY

Then 6% = 77 /0% estimates the variance in the central limit theorem. This
simple estimate has fairly good properties. It is analogous to the ratio estimator
in finite population sampling.

Another possibility, discussed by Ripley (1987, pp. 160-161) is to jackknife
the estimator pg. This will generally produce similar answers to the simple
ratio estimator, leading to the conclusion that the biases are unimportant. See
Section 3.10.7 for an example.

3.10.2 Splitting Markov Chains

Any Markov chain on a discrete state space has accessible atoms. Any point
with positive probability is one since (3.40) is satisfied trivially when « only
contains one point. But that is not much help unless the atom has fairly large
probability so the regeneration rate 7(«) is fairly large. And how does one find
atoms for a chain with a continuous state space?

Nummelin (1978) and Athreya and Ney (1978) independently invented a
method for constructing atoms for Markov chains on general state spaces. The
method is used throughout the modern theory of Markov chains on general
state spaces, which is laid out in the books by Nummelin (1984) and Meyn and
Tweedie (1993). Mykland, Tierney and Yu (to appear) apply the technique to
Markov chain Monte Carlo. The construction below follows Mykland, Tierney
and Yu (to appear) who followed Nummelin (1984). The terminology has been
changed to follow Meyn and Tweedie.

Suppose that we have a Harris recurrent Markov chain satisfying the fol-
lowing minorization condition: for some nonnegative measurable function s and
some probability measure v such that [ sdr >0

Pz, A) > s(x)v(A) for all points « and measurable sets A. (3.46)

This is similar to the minorization conditions (3.14) used in the definition of
small sets and (3.24) used in Rosenthal’s theorem, but it is more general in
replacing a constant § with a function s(x). It is also less general than (3.14)
in that one must minorize the kernel P rather than an iterated kernel P™.

Condition (3.46) allows the following construction of a chain on an enlarged
sample space, called the split chain, that has an atom and that is related to
the original chain by marginalization. We add to the state space a {0, 1}-valued
variable S, that is the indicator of the atom. Thus the state of the split chain
is the pair (X,S) where X takes values in the original state space.

The transition law of the split chain is described as follows. Note that if
is whole state space 1 = P(x, E) > s(x)v(E) = s(x), so 0 < s < 1. At time ¢
the state of the split chain is (X, S;). If S; = 1 then X1, is generated from
the distribution v, otherwise X;;1 is generated from the distribution

P(Xe, ) = s(Xov(-)
1-— S(Xt)

(3.47)

which is a normalized probability distribution because of the minorization condi-
tion (3.46). Then generate a Uniform(0, 1) random variable U and set S =1
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if U < s(X¢41) and otherwise set Spy; = 0. It is clear that the distribution of
(X441, St+1) does not depend on the value of X; when S; = 1. Thus the set of
points @ = { (X, S) : S =1} is an atom of the split chain.

Moreover, the sequence X7, X, ... is a Markov chain with kernel P, since

PI‘(Xt+1 € A‘Xt = l‘)

x, A) — s(x)v(A)
1—s(x)

= PI‘(St = 1|Xt = JZ)Z/(A) + PI‘(St = O|Xt = Jf) P(

Pz, A) — s(x)v(A)
1—s(x)

= s(x)v(A) + (1 = s(z))
= P(x, A)

So we have not disturbed the distribution of the X component of the state
(X, S). The split chain has a stationary distribution in which X has the marginal
distribution 7 and the conditional distribution of S given X has the density s(x)
with respect to 7. The probability of the atom is thus [ sdr and the atom is
accessible.

Because of the Markov property, the S’s are conditionally independent given
the X'’s and the conditional distribution of S; given all the X’s depends only
on X; and X411 (Nummelin, 1984, p. 62)

r(x,y) =Pr(S; = 11Xy =2, X441 =v)

_ s(@)v(dy)
P(x,dy)”’

where the last term is a Radon-Nikodym derivative. For every x such that
s(x) > 0, the measure P(x, -) dominates v and hence v has a density f, with
respect to P(z, ). Then r(z,y) = s(z) f2(y).

We could thus simulate the split chain by first simulating X5, X5, ... using
the original transition mechanism, and then go back later and simulate S; as
independent Bernoulli random variates with success probability (X, X;41).

3.10.3 Independence Chains

Tierney (1994) proposed a simple special case of the Metropolis-Hastings al-
gorithm called “independence” chains, something of a misnomer, because the
proposals are independent, not the samples. The method proposes a new state
y from a density ¢(y) that does not depend on the current state z. Thus the
Hastings ratio (2.8) becomes

_ h(y)q(x)
h(@)a(y)’

where h(z) is an unnormalized density of the stationary distribution, both h
and ¢ being densities with respect to the same measure pu.

It is not clear that this idea is interesting used by itself. It should be com-
pared to importance sampling using ¢(x) as an importance distribution, which

(3.48)
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will be explained in Section 5.4. But no comparison seems to have been done,
and it is not clear that independence chains have any advantage over impor-
tance sampling. Roberts and Tweedie (submitted) show that an independence
chain is geometrically ergodic if and only if h(x)/q(z) is bounded, in which case
importance sampling is guaranteed to work well too.

3.10.4 Splitting Independence Chains

Mykland, Tierney and Yu (to appear) give the following simple recipe for split-
ting independence chains. Let ¢ be an arbitrary positive constant. Define

wie) = 2,
s(z) —Kmin{w(cx),l},

vtay) = gomin{ "2 1} a(uputay

where K is chosen to make v a probability measure. Without knowing K it
is impossible to simulate the split chain by simulating S; from its conditional
distribution given X; and X7 from its conditional distribution given X; and
S¢. Thus Mykland, Tierney and Yu (to appear) propose a method of simulating
Sy from its conditional distribution given X; and Xy, which differs a bit from
the general scheme described in Section 3.10.2 in that we only set S; = 1 when
the Metropolis update from X; to X,y is not a rejection. It uses the function

max § s wigy [ w(z) > cand w(y) > ¢,
r4(%,y) = { max @, @ , w(z) <cand w(y) < ¢, (3.49)
1, otherwise.

The overall update then goes as follows. Given X; = z, propose a y with density
¢ and accept the proposal with probability min(R, 1) where R is given by (3.48),
that is Xy = y if the proposal is accepted and X1 = = otherwise. If the
proposal is not accepted, set S; = 0. If the proposal is accepted, set S; = 1
with probability r4(z,y) given by (3.49) and S; = 0 otherwise. Note that S; is
generated after X1, which can be confusing if one is not careful.

Since this scheme does not refer to the normalizing constant K, it can be
carried out. Although it works for any positive ¢, Mykland, Tierney and Yu (to
appear) claim that it will be more efficient if ¢ is chosen to be near the center
of the distribution of the weights w(X) when X has the stationary distribution.
This does not appear to be correct. See Section 3.10.6.

The chain can be started with an arbitrary value for X; or it can be started
at the regeneration point by setting Sy = 1 and sampling X; from v. This can
be done without knowing the normalizing constant K by rejection sampling.
Repeatedly simulate a y with density ¢ and a Uniform(0,1) random variate u

until v < min {@, 1}. Then y has the distribution v. Set X; = y.
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3.10.5 Metropolis-rejected Restarts

The independence proposal idea does have interesting application to restarting
Markov chains (Tierney, 1994). Restarting a Markov chain is an old idea of
questionable validity that will be discussed further in Section 4.5. If a Markov
chain is very slowly mixing, then it seems to make sense to “restart” the Markov
chain at some other point of the state space rather than wait for it to get there
by itself. But this changes from an algorithm that converges, however slowly,
to a known stationary distribution to an algorithm with unknown and generally
unknowable properties. One thing is clear from Theorem 7, restarting always
increases the distance from the marginal distribution of X; to the stationary
distribution 7.

If, however, one wants to do something with restarts, it is not clear that
they should ever be accepted without Metropolis rejection. If one attempts
a restart y, then doing a Metropolis rejection with the Hastings ratio (3.48)
preserves the stationary distribution and, if done at the beginning or end of
each scan, preserves the Markov chain structure as well. We call this method
Metropolis-rejected restarts. It is merely the composition of the original update
mechanism with Tierney’s “independence chain” update. It gives at least some
of the benefits of restarting with none of the drawbacks.

3.10.6 Splitting Metropolis-rejected Restarts

Let @@ denote the kernel for the split independence chain update described in
Section 3.10.4. It updates the state (X, S). Let P denote any other kernel that
preserves the same stationary distribution for X, which we trivially extend to
an update rule for (X,S) by leaving S alone. Then the composite kernel QP
preserves the stationary distribution of the split chain, and the times ¢t when
S; = 1 are regenerations, because then the update of X by the @ kernel does
not depend on the value of X;.

Formally @ moves from (X¢,S;) to an intermediate state (X', 5’), and P
moves from (X', 5") to (X¢41,St41). Since P doesn’t change S, we have S’ =
Si+1. In practice, though, our mechanism for the split independence chain
update does not produce (X', S;11) given (X, S). Instead it produces X’ and
Sy given X;. We cannot produce S; until we have produced the X’ for the next
iteration. Thus the algorithm goes as follows.

Set So =1
Generate 2’ from v by rejection sampling
fort=1,2,...do
Simulate z from P(z’, -).
Simulate y from ¢
Simulate v Uniform(0,1)
Calculate R given by (3.48)
if (u < R) then
=y
Simulate u Uniform(0,1)
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Calculate 74 (z,y) given by (3.49)
if (u <7ra(z,y)) then
s=1
else
s=0
end if
else
=z
s=0
end if
Set X; = x and S; = s.
end do

The looping is a bit confusing if not explained. P is done at the top of the
loop, though it is supposed to follow ). The reason it that the loop begins
in the middle of the iteration. At the top of the loop we have X;_1 = x and
X' =12' and S;_1 = s. The loop begins by using P to generate X; = x. Then
it generates the 2’ for the next iteration so it can generate the s = S; for this
iteration. At the bottom of the loop we output (X¢, St). The only state used in
the following iteration is .

The code starts at the regeneration point. Sy = 1. The value of X is
irrelevant, since the conditional distribution of X following a regeneration is
independent of the previous value. In order to do this the first value of X’
cannot be generated by the same code as used in the loop, we must generate a
sample from v using rejection sampling as described at the end of Section 3.10.4.
This gives the z’ value needed at the top of the loop.

3.10.7 Splitting the Strauss Process

The scheme of the preceding section is implemented for the Strauss process with
a fixed number of points in the program regen.c described in Appendix A.
The restart distribution is the binomial process (all points independently and
uniformly distributed). Thus the density ¢ is constant and the Hastings ratio
for the Metropolis rejected restarts is simply

R Z% — exp{B[t(y) — t(x)]}

where we are now using ¢(z) to denote the canonical statistic, number of neigh-
bor pairs to avoid confusion with the splitting function s(x). (3.49) can also be
simplified to

exp{—fminft(z) — ¢, t(y) — |}, t(z) > and t(y) >,
ra(z,y) = § exp{—Fminl[c’ —t(z),c —t(y)]}, t(z) < and t(y) <,
1, otherwise.
(3.50)
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where ¢ = (logc) /beta. To start off the simulation we need one realization from
v which is sampled by repeatedly simulating realizations x from the binomial
process and uniform random variates v until

u < exp{f[t(z) - ¢]}.

The same process with 5 = .126 and n(z) = 50 as in Figure 3.3 was used.
Since realizations from the binomial process only resemble realizations in the low
mode of the Strauss process with ¢(z) around 175, the first run of the sampler
was done with ¢ = 175. About 45% of accepted restarts were regenerations,
but the overall regeneration was only 2.9% because few restarts were accepted.

During this run, both the state x at the time of the attempted restart,
the proposed restart y, and an indicator of whether the restart was accepted
were written out. This permitted estimation of the expected regeneration by
averaging r4(x,y) over iterations in which a restart was accepted. Figure 3.6
The figure shows that using ¢’ = 162 should increase the regeneration rate to
66.2% of accepted restarts. Note that this is nowhere near the center of the
distribution of ¢(x) under the stationary distribution, which is about 480. If ¢/
were set there, the sampler would not regenerate at all. The prediction from
this calculation was borne out by another run with ¢’ = 162 in which 66.8% of
accepted restarts were regenerations for an overall regeneration rate of 4.6%.

This run proceeded to the first regeneration point after 100,000 iterations
which was iteration 100,488 during which there were 4,628 tours, giving a mean
tour length 21.7 (standard error 1.27). Taking u to be the expectation of the
canonical statistic t(z), the estimator was i = 448.36. The estimator (3.45) was
72 = 6.67 x 10® giving an estimator 62 = 6.67 x 10%/21.7% = 1.42 x 106 for the
variance in the central limit theorem and +/62/4,628 = 17.49 for the standard
error of fi.

For comparison we computed the time-series estimators using the same run,
which gave 18.01 for the standard error of /i using the initial positive sequence
and monotone sequence estimators and 17.98 using the convex sequence estima-
tor.

Another comparison used the jackknife. This procedure makes a bias cor-
rection to fi giving 449.33 for the estimator of p. The estimated standard error
is 17.66. The bias correction made by the jackknife is only 0.2the same as that
calculated by the simple ratio estimate.

To see how well the estimation did we ran the sampler about nine times
longer giving a total of 41,488 tours, including the run already used for esti-
mation. This gave a new estimate ji = 479.12 with standard error 6.34. The
difference between the two estimates is 30.76, which is about 1.7 estimated
standard errors. So the Estimation of standard errors seems to have worked
well.
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Figure 3.6: Expected regeneration rate versus the constant ¢’ (3.50) for the
Metropolis sampler with split Metropolis-rejected restarts for the Strauss pro-
cess with 50 points 3 = .126. The horizontal coordinate is ¢’ and the vertical
coordinate is the estimated fraction of accepted restarts that will be regenera-
tions.



Chapter 4

Running Markov Chains

Right Thing n. That which is compellingly the correct or appropri-
ate thing to use, do, say, etc. Often capitalized, always emphasized
in speech as though capitalized. Use of this term often implies that
in fact reasonable people may disagree. “What’s the right thing for
LISP to do when it sees ‘(mod a 0)’? Should it return ‘a’, or give a
divide-by-0 error?” Oppose Wrong Thing.

Wrong Thing n. A design, action, or decision that is clearly in-
correct or inappropriate. Often capitalized; always emphasized in
speech as if capitalized. The opposite of the Right Thing; more gen-
erally, anything that is not the Right Thing. In cases where ‘the
good is the enemy of the best’, the merely good—although good—is
nevertheless the Wrong Thing. “In C, the default is for module-
level declarations to be visible everywhere, rather than just within
the module. This is clearly the Wrong Thing.”

—The Jargon File

This chapter is about the practice of Markov chain Monte Carlo, about the
Right Things to do and to say about what one has done. “Right Thing” is
meant in the hacker’s sense explained in the epigraph. The practice of Markov
chain Monte Carlo has been controversial (see Gelman and Rubin, 1992; Geyer,
1992; and the accompanying discussion), and it is likely that this chapter will
not be the last word on the subject. The use of “Right Thing” and “Wrong
Thing” concedes, as the definition says, that “reasonable people may disagree.”
Still it is important here, as everywhere in statistics, that we think about what
is the Right Thing.

4.1 Many Short Runs

An old way of thinking about Markov chain Monte Carlo is what I have dubbed
“many short runs.” It does the following, start the chain with a sample from
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some starting distribution pg. Run the chain m steps, throwing away all but
the last iterate. This produces one sample from the distribution poP™. We
know from the convergence of marginals that if the chain is Harris recurrent
and aperiodic that poP™ can be made as close to the stationary distribution
7w as we please if we only take m large enough. Repeat this procedure n times
producing n independent identically distributed samples from g P™. Compute
estimates by averaging over these samples.

This is generally an absolutely horrible procedure, so bad that no one can
now be found to defend it, although it was often recommended in papers written
several years ago. The problem is that if m is taken very large, say 100,000,
the procedure is so inefficient that is essentially precludes being able to do
complicated problems. But if m is taken to be small, say 100, there will be no
reason to believe that pgP™ is close to the stationary distribution w. Even if
we have bounds on ||pugP™ — 7| from Theorem 8, they will generally be very
conservative except in the easiest of problems and will not give a tight bound
for m as small as 100. Moreover the procedure is still inefficient. Both wrong
and inefficient, many short runs manages to do Markov chain Monte Carlo in a
way that depends critically on information that is usually unknown and perhaps
unknowable. It is clearly the Wrong Thing.

In hindsight it seems that the main reason why many short runs appealed to
people is that it seemed to permit avoidance of Markov chain theory or indeed
any theory of dependence in stochastic processes. The samples are independent
(though from the wrong distribution poP™) and so the ordinary asymptotics
of i. i. d. sampling seems to apply. A little more thought shows the situation is
more complicated than that. The Monte Carlo estimate only converges to the
correct answer if m and n both go to infinity. So this theoretical justification
is also clearly the Wrong Thing; Markov chains should involve Markov chain
theory.

4.2 One Long Run

Diametrically opposed to “many short runs” is “one long run.” Start a chain
at some point Xy run for N steps and average over the samples. The starting
position can be any point xq in the state space or can be a realization Xy from
any starting distribution po. Similarly the length of the run can be any random
integer N, though for the reasons given in Section 3.10 it seems best that N be
a stopping time.

One long run is the Right Thing in MCMC. All of Markov chain theory can
be directly applied to it. One can even say that anything else is not Markov
chain Monte Carlo. A method that uses Markov chain updates but doesn’t let
the chain run isn’t using Markov chains, it’s fighting the Markov chain.

There are a variety of schemes intermediate between many short runs and
one long run. They use some combination of three different ideas: subsampling,
burn-in, and restarting. Subsampling and burn-in are special cases of one long
run. Subsampling changes the Markov chain, but one still does one long run of
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the new chain produced by subsampling. Burn-in is just one particular method
of choosing a starting point for the run. Restarting is a special case of one long
run only if the “restarting” is produced by regeneration. Any other form of
restarting is not one long run.

4.3 Subsampling Markov Chains

A subsampled Markov chain with fixed spacing m, is the chain Xg, X, Xom, - - -
obtained by taking every mth sample from the original chain. The subsampled
chain is also a Markov chain. Its kernel is P™, where P is the original kernel.

We can also have a chain with random spacing. If M is a random integer
with distribution P(M = m) = a(m), and My, Ms, ... are i. i. d. samples from
this distribution, then Xo, Xar,, Xar,+us,, - - . obtained by taking samples with
spacing My, Mo, ... is again a Markov chain with kernel (3.15).

Subsampling with random spacing has not been discussed in the applied
literature, although it is used as a basic theoretical tool by Meyn and Tweedie
(1993). It would be important if the chain were close to periodicity. Then
subsampling with fixed spacing that is a multiple of the approximate period
could result in a horrible loss of efficiency. Subsampling with a random spacing
that is not periodic cannot interact badly with a periodic or almost periodic
chain.

4.4 Starting Methods and “Burn-in”

Asymptotically, the starting position does not matter if the chain is Harris
recurrent. The law of large numbers and the central limit theorem have the
same limits regardless of the starting position, and if the chain is aperiodic the
total variation convergence of marginals also does not depend on the starting
position. If the starting position is a random variable Xy from an arbitrary
starting distribution g, this also does not affect the asymptotics.

For a finite sample, the starting position does matter. Figure 4.1 illustrates
the problem.

We know the stationary distribution for the variable plotted is standard
normal. The section of the path before iteration 300 does not matter asymp-
totically, but unless the sample size is huge this “initial transient” causes large
errors. 114 points have y > 10. The probability of this event under the sta-
tionary distribution is 1.3 x 107274, The asymptotics will eventually make
the initial transient irrelevant, but “eventually” is a very long time, more than
102999 jterations.

To get good answers with practical sample sizes we must throw away the
initial transient. Just be safe we might as well throw away a bit more, say every-
thing before iteration 500. On my workstation this code takes 24 microseconds
per iteration plus 2300 microseconds in initialization and wrap-up. So throwing
away even 10,000 iterations would only lose a few seconds.
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Figure 4.1: A run of the Gibbs sampler for the bivariate normal with the same
stationary distribution as in Figure 3.1 but started at (1000, 1000) instead of
(0,0). The second component y of the state vector (x,y) is plotted. Small dots
show the whole run (axis at left). Large dots show the portion of the run from
iteration 251 to the end (axis at right).
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So the question arises, how long do we have to run to avoid an initial tran-
sient. This period for which the sampler is allowed to run without generating
output has been called “burn-in” or “warm-up.” In that terminology, the ques-
tion becomes “How much burn-in do we need?”

This is not the usual formulation of the burn-in question. What is usually
asked is “how long must the chain be run until it reaches equilibrium?” Of
course it never does reach equilibrium. The marginal distribution of X, is
never exactly 7 unless the chain was started with a realization from 7. But we
could ask how long the chain must be run to reduce ||uoP™ = 7| to less than
some prespecified tolerance. The people who formulate the burn-in question
this way never say why one would want to start the run with an X, whose
marginal distribution is near w. With many short runs it is critical that the
distribution of X,, be as near m as possible, but with one long run it does not
matter. All that is required is that the starting position not be so far out in the
tail that there is an “initial transient” that will require an extremely long run
to wash out. If we start the run at some point that would occur with reasonable
probability in the sample of the size we intend to collect, that is enough. There
is no bonus for “starting when the chain has reached equilibrium.”

It is important to realize that the burn-in question as posed usually has no
answer. Unless the Markov chain is uniformly ergodic, there is no fixed amount
of burn-in that will do the job for all starting points. This could be taken as
the definition of uniform ergodicity. By Theorem 16.2.1 in Meyn and Tweedie
(1993) a chain is uniformly ergodic if and only if there exists a petite set C' and
an M < oo such that the expected time for the chain to hit C' started at = is
less than M for all z. For the Gibbs sampler for the bivariate normal we know
the expectation of Y;, given Y is p?"Y;. So even if we decide on a burn-in of
10? iterations. This will not be enough if the chain starts at Yy = 10100,

Even if the chain is uniformly ergodic, so the “burn-in question” does have a
finite solution, the answer may be entirely useless. Consider the Gibbs sampler
for the Ising model, an archetype of a slowly mixing Markov chain.

The symmetric Ising model with a = 0 has what the physicists call a phase
transition. The probability distribution induced by the model can be radically
different for parameter values that are only slightly different. More precisely,
there is a value (. for the second canonical parameter such that for g < 3., the
distribution of ¢ (X) for a square lattice of size n with free or periodic boundary
conditions converges to a unimodal distribution as n — oo. Conversely, if
B > (., then the distribution of ¢;(X) converges to a bimodal distribution.
Kindermann and Snell (1980) give a very readable introduction to these issues.
The critical value of § is . = %sinh_l(l) = 1log(1 + v/2) = 0.4406868.

If we keep the lattice size fixed and let § vary, the distribution of ¢;(X)
makes a smooth transition from unimodal for § < (. to bimodal for 3 > (..
The sharp transition only occurs in the limit as n — oco. For lattices of even
moderate size, any Markov chain Monte Carlo scheme that only updates a single
site per elementary update step will be very slowly mixing. Figure Figlsing
illustrates the problem. In a run of 10,000 iterations, the sampler only makes
one crossing from one mode to the other. For larger lattice sizes the problem
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Figure 4.2: A run of the Gibbs sampler for the Ising model on a 32 x 32 toroidal
lattice with critical parameter values, o = 0, 3 = .44, started at the all-black
image. The top panel is a time series plot of values of the first canonical statistic
t1(X), black minus white pixels. The bottom panel is a time series plot of the
second canonical statistic t2(X), concordant minus discordant neighbor pairs.
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Table 4.1: Hitting times for the Gibbs sampler for the Ising model for various
lattice sizes. Time for the Gibbs sampler for the Ising model with « = 0 and § =
203, = .88 started at a random realization from the Ising model with o = =0
to reach the set t1(z) > u, where mu is the approximate expectation of ¢;(X)
calculated using a run of 10,000 iterations of the Swendsen-Wang algorithm
(Section 5.2). The first column gives lattice size (n x n lattice), the other
columns give the minimum, median, mean, and maximum of 50 runs.

n  min median mean max
16 9 36.0 109.02 746
32 44 135.5 725.88 5105
64 172 545.5  7432.58 77361
128 640  2634.0 76846.58 525720

gets much worse. Any sampler that only updates a single pixel at a time is
useless for large lattices.

There is a simple fix that eliminates the worst of the problem. If & = 0 and
the distribution is symmetric, we can use the symmetry taking

L
Hn = % lzzlg(Xz) +g(_XZ)

to be our estimate of E,g(X), where —z is the image obtained from z by
reversing the colors of all pixels. Even when a # 0 a trick called “mode jumping”
can be used. At the end of each scan propose to move from x to —z and use
Metropolis rejection to maintain the correct stationary distribution, the odds
ratio being

R= _ €—2at1 (x)

because t1(—z) = —t1(x) and t2(—z) = ta(x). It is not clear whether this mode
jumping idea has wide applicability. There seem to be other applications beside
the Ising model. Usually there is no simple proposal like x to —x for the Ising
model that jumps between modes.

Even for the Ising model this trick of symmetrizing or mode jumping only
fixes the worst problems. Though the sampler works much better, it is still bad.
In particular, the burn-in problem is intractable.

It is clear that the notion of finding a fixed amount of burn-in that will
suffice for all runs is hopeless. The distribution of the times to hit the part of
the state space that has high probability under the model has a very long tail.
Since the median remains small, it is clear that a moderate amount of burn-in,
say 1,000 iterations will work a fair amount of the time, but it is clear that it
takes an enormous amount of burn-in, more than 1,000,000 iterations to be sure
of convergence most of the time for the 128 x 128 lattice. The situation rapidly
becomes wore with larger lattices.
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The burn-in problem goes away if we start from a better starting point.
From the all-black image, the high-probability region of the state space was hit
in less than 10 iterations for 50 runs for each of these lattice sizes.

The moral of the story is that if we start from a good starting point almost
no burn-in is necessary, but if we start from a bad starting point there is no
telling how much burn-in is required. This suggests that the “burn-in” question
is a problem that has been studied from the wrong perspective. If a sampler
is not uniformly ergodic, there is no fixed amount of burn-in that is sufficient.
Even for samplers that are uniformly ergodic, so there is in principle some fixed
amount of burn-in that is sufficient, the amount may be so astronomically large
that it is useless in practice. Thus the emphasis should be placed on finding a
good starting point.

It is fortunately not necessary that one be able to easily construct a good
starting point. It is only neccessary that one be able to recognize a good starting
point when the sampler reaches it. Suppose there is a subset C of the state space
that we think consists of useful starting points. If we start the chain a some
point xg and let it run until the first time 7¢ that it hits the set C. We can then
take the position X, where the chain enters C' as the starting point of the run.
There is no reason why this random starting position X, is worse than X, for
some fixed burn-in time n. In practice it is much better. If one starts in C' one
is not “out in the tail” of 7w and there is no initial transient.

Nothing in this analysis tells one how to find good starting points. The only
point I am trying to make is that burn-in does not relieve one of the necessity
of determining good starting starting points.

4.5 Restarting Markov Chains

Once we have started questioning “many short runs” the question arises as to
why the Markov chain is restarted at all. Theorem 7 says that restarting always
increases the distance from the marginal distribution of X; to the stationary
distribution 7, and this agrees with the intuition that the chain has gotten
approximate stationarity it is senseless to destroy the stationarity by restarting.

There is a research tradition that poses the following question, in which
restarting seems to make sense. Suppose an update mechanism corresponding
to a kernel P, a starting distribution pg, and a number of iterations n are fixed.
How does one make choices of numbers b, d, and m so that if we restart m
times, throw away b samples at the beginning of each run, and use every dth
iteration, we will have optimal performance according to some loss function?
Say we choose total variation norm, so the question is what choices of b, d, and
m make

[n/m]
> D moPt
i=1 g

It is often said that restarting may give better answers. In the worst case,
suppose the chain does not mix at all, just stays put wherever it is started. This
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chain is, of course, not irreducible, but there are irreducible chains arbitrarily
close to this worst case in behavior. Then the estimate of a function g(z) from
one run of the chain is g(Xy), the function evaluated at the starting position.
The estimate obtained from a chain restarted n times using a restarting distri-
bution @ is g(Xo) + >, g(X;) where the X, are independent samples from
Q@ (the restarts). Clearly this can be a better answer than g(Xp), but unless
(Q = 7 this “better” answer is wrong.

In general, the analysis of when restarting might produce a better answer
is very difficult (Kelton and Law, 1984; Fishman, 1991) and in any case misses
the point in practical applications of Markov chain Monte Carlo. If a sampler
is so slowly mixing that one run of reasonable length does not give satisfactory
answers, then the solution is not restarts, which will also give unsatisfactory
answers, but a different sampler that mixes better. The Metropolis-Hastings
algorithm gives enormous scope for inventing samplers. There are many more
ideas to try when the first one fails.

Despite some heated discussion in the literature of the validity of restarting
(Gelman and Rubin, 1992; Geyer, 1992; and the accompanying discussion),
there seems to be no theory that could be applied to practical examples that
justifies restarting Markov chains, there seems to be no example where pure
restarts have been shown to be superior to Metropolis-rejected restarts, and
it is hard to imagine an example in which restarts were superior to methods
such as simulated tempering (Section 5.3) using the distribution ¢(x) as a “hot”
distribution rather than for restarts.
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Chapter 5

Tricks and Swindles

“Swindle” is used in classical Monte Carlo to refer to any cute trick that seems
to get something for nothing. It hasn’t been used much in the Markov chain
Monte Carlo literature. A more colorless term is “variance reduction” but that
is so mild as to be misleading in Markov chain Monte Carlo. In a situation in
which a swindle is needed in MCMC the sampler that has been implemented
may not converge or at least there is worry that it doesn’t converge. Being
irreducible, it does, of course, converge eventually. What is meant is that there
is very low probability of obtaining a representative sample of the stationary
distribution in the number of iterations we are willing to contemplate. So we
are trying to get an improvement in convergence time from perhaps 1020 to 103
iterations.

Reduction in variance doesn’t measure the kind of efficiency gains that are
needed here. Suppose we are trying to calculate the probability of a set. Then
since probabilities are between zero and one, the variance of our estimator can
never be greater than one, no matter how far the chain is from convergence. We
are trying to get the variance down to something reasonably small, say 1074,
So we need a factor of 10* in variance reduction, but we need a factor of 10'7
improvement in running time to get it. This just says that it doesn’t make much
sense to talk about variance before asymptotics kicks in and the square root law
becomes valid.

Is it possible to get improvements by enormous factors like 10'7? There
are two algorithms that are know do give that kind of improvement in some
problems. No doubt there are other algorithms still to be invented with simi-
lar properties. The first of these, the Swendsen-Wang algorithm deals with a
generalization of the Ising model called the Potts model.

5.1 The Potts Model

The Potts model (Potts, 1952) is a generalization of the Ising model that allows
more than two values for the random variables at the lattice sites and also for
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interations between lattice sites that are not nearest neighbors. At each lattice
site there is a variable x; taking values in a finite set. We will call the elements
of this set “colors” thinking of the state vector z = {z; : i € S} as an image
with pixels of different colors. A Potts model has an unnormalized density of
the form

h(x) = exp Zai(aji) + Zﬁijl[zi:mj] (5.1)

i<y

where for each lattice site i there is a real-valued function alpha; on the set of
possible colors and for each pair of lattice sites ¢ and j there is a real number
Bij-

Note that there is no mathematical structure imposed on the set of colors.
The model treats all the colors symmetrically, and the interaction term only
depends on whether two colors are the same or different. There is no notion
of some colors being more similar than others. Thus any finite set can be
substituted for the colors. Moreover, the model does not require any particular
structure of the lattice. The lattice sites can also be an arbitrary set. All that
is required is the specification of a ;; for each pair of lattice sites.

Allowing «; to depend on ¢ is important in applications in image processing,
where the task is to reconstruct the true image given a corrupted version. Then
«; incorporates the information about the ith pixel obtained from the corrupted
image.

To derive the Ising model as a special case of the Potts model, let x; take
values in {—1,1}, let o(z;) = ax;, and let 8;; = 0 unless i ~ j, in which case
Bij = B. Then we get

h(CC) =eXp @ E T; + 6 E 1[wL:xJ]
i i~j
Since

Yowiwi = lpma = O L]

] in~g in~J
=2 A=, — N
i~

where N is the number of lattice sites. Comparing with (3.1) we see that this
special case of the Potts model is an Ising model. The only difference is that the
parameter value (3 for the Ising model with parametrization (3.1) corresponds
to 23 with the Potts model parametrization.

Like the Ising model the Potts model exhibits phase transitions. For a
symmetric model o;(z) = 0 with §8;; = [ for first nearest neighbor interactions
and §;; = 0 otherwise and r colors, the critical parameter value is . = log(1 +

VF).
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5.2 The Swendsen-Wang Algorithm

The Swendsen-Wang algorithm (Swendsen and Wang 1987) was the first of a
family of algorithms now called “cluster” algorithms by statistical physicists
(Wang and Swendsen, 1990). They can be applied to any Potts model in which
the dependence is attractive, that is, all the 3;; are nonnegative.

The clever trick in the Swendsen-Wang algorithm is the addition of a large
number of variables called “bonds” to the state space, one bond for each pair
of variables. For each pair ¢ and j there is a random variable y;; taking values
in {0,1}. The value y;; = 1 indicates there is a “bond” between pixels i and j.

In order for this addition of variables to be useful for MCMC, there must
be a stationary distribution 7 defined on the whole state space (pixels and
bonds) such that we can easily learn about the distribution of interest, the Potts
model for the pixels, by sampling 7. For the Swendsen-Wang algorithm the
joint distribution of the pixels and bonds is specified by specifying the marginal
distribution of the pixels to be the Potts model (5.1) and then specifying the
conditional distribution of the bonds given the pixels. This gives the pixels the
marginal distribution of interest.

The conditional distribution of the bonds given the pixels is particularly sim-
ple. The bonds are conditionally independent given the pixels, the distribution
of a single bond being

Yii, Bij > 0and x; = z;
Py = 1]z) = ¢ - !
0, otherwise

where the +;; are constants to be determined later. The Swendsen-Wang algo-
rithm proceeds by “block” Gibbs sampling the two sets of variables pixels and
bonds. It first samples from the conditional distribution of bonds given pixels
just described and then samples from the conditional distribution of pixels given
bonds, which we now have to figure out.

First note that any two bonded pixels must be the same color, hence so must
any two pixels connected by a chain of bonds. Thus if we think of the set of
lattice sites as the vertices of a graph and the bonds as edges, any maximal
connected component of the graph must have all pixels the same color. A
maximal connected component is a set of vertices that cannot be divided into
two subsets with no edges connecting them and that is not a subset of any
larger set with the same property. Call the maximal connected components
“patches.” These can be found by standard computer science algorithms. The
function sw. c described in Appendix A is an example. Conditional on the bonds
a patch must have all its pixels the same color, so the only randomness in the
conditional distribution of pixels given bonds is the colors of the patches.

The joint distribution of pixels and bonds is

i ; iilie. =2 ij —Yij 1 ij andz; =z

P(m,y) X Heal(%) Heﬁj [ J]1[({3”>Oand:c¢=9cj)0ry1:j=0] (’sz]] (1 - ’yij)l Y J) Pij>0mnd al
i i<j

This is also the conditional distribution of pixels given bonds when considered

as a function of x for fixed y. Let A denote the set of patches and x 4 the color
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of patch A. Note that P(z|y) = 0 unless for each ¢ and j either y;; = 0 (the
pixels are not bonded) or 8;; > 0 and x; = z; (the pixels are bonded hence they
must be the same color). For possible y, those satisfying this condition,

Py x § [ ew [Zam)] [T e (2l (1= gyt )

AcA icA i,jEA
i<j
X H H ePilimimeg) (1 — ;) li0i>0andzi=z;)
A,BEAIcA
A<B JjEB
ijllz;=x; 1(;,>0andz; =z ;
o { H exp [E Oti(ﬂ?A)]} H H ePializimag) (1 — ;)81 >0undei=2;)
AcA i€A A,BeAicA
A<B j€B

because x; = x; whenever ¢ and j are in the same patch and y;; = 0 whenever 7
and j are not in the same patch, and because the terms dropped in going from
the second line to the third are constant (do not depend on x). The notation
A < B means that each pair of patches only enters once.

We now choose 7;; to make the last term cancel

1— iy =e P

which gives

P(aly) < [T exp [Z m(xA)]

AcA i€A

This says that with these particular choices of the 7;; the colors of the patches
are conditionally independent given the bonds, and the probability z4 = x is
proportional to exp [Y,c 4 ai(w)].

Thus the Swendsen-Wang algorithm performs block Gibbs updates in which
the bonds are conditionally independent given the pixels and the colors of
patches are conditionally independent given the bonds. It is thus easy to carry
out given code for finding maximal connected components of a graph. Even
this in not necessary. There is a variant called Wolff’s algorithm (see Wang and
Swendsen, 1990) that updates only a single patch in each elementary update
step.

Despite its simplicity, the Swendsen-Wang algorithm is certainly nontrivial.
Statistical physicists worked on simulation of Potts models and similar spatial
lattice processes for three decades before its discovery.

5.3 Simulated Tempering

Simulated tempering
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5.4 Importance Sampling
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Chapter 6

Likelihood Inference and
Optimization

This chapter deals using MCMC to do likelihood inference in problems where
the likelihood cannot be evaluated analytically and must be approximated by
Monte Carlo. It also deals with other optimization problems in which the objec-
tive function (the function to be minimized or maximized) cannot be evaluated
analytically and must be approximated by Monte Carlo.

6.1 Likelihood in Normalized Families

The kind of problem to which Monte Carlo likelihood inference was first applied
is that of Gibbs distributions or Markov random fields. Examples are the Ising
and Potts models and the Strauss process. If we restrict ourselves to finite-
volume models that can be simulated on a computer these are just exponential
families with untractable normalizing constants. They have unnormalized den-
sities with respect to some measure A on the state space of the form

ho(z) = elt@)0),
where t(z) = (t1(x),...,tqs(x)) is a d-dimensional statistic and § = (61, ...,04)

is a d-dimensional parameter, called the canonical or natural statistic and pa-
rameter. The notation (t(z), ) denotes the standard inner product on R?
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where the normalizing constant ¢(6) is defined by

(0) = [ holauldo). (6:2)

What makes likelihood inference for these models hard is that the integral (6.2)
is analytically intractable, so the log likelihood

1(6) = log fo(x) = (i(x),6) —logc()

is also analytically intractable. Neither the log likelihood or its derivatives
can be calculated exactly, and this makes ordinary methods of likelihood infer-
ence impossible. Monte Carlo methods for such problems have been given by
Ogata and Tanemura (1981, 1984, 1989), by Penttinen (1984), and by Geyer
and Thompson (1992).

It turns out that much of theory of Monte Carlo likelihood does not use
any properties of exponential families, so Geyer (1994) defines the following
generalization, called there a normalized family. Let {hy : 6 € ©} be any
family of unnormalized densities with respect to some measure A on the sample
space, that is for each 6, we have hg(x) > 0 for all z and [ hg(z)A(dz) is finite.
Define the normalizing constant by (6.2) and the normalized densities by (6.1).
These families are a natural generalization for Monte Carlo likelihood because
any distribution specified by an unnormalized hy can be simulated by MCMC.
The log likelihood of the family is

1(0) = log (6.3)
As always we are free to add any term to the log likelihood that does not depend
on ¢. Here we subtract log f, () where 1 is any point in the parameter space.

As it stands (6.2) cannot be evaluated by Monte Carlo, because it is not an
integral with respect to a probability measure. Thus we rewrite it as an integral
with respect to Py, the probability distribution with density f.

c(0) = /hg(x))\(dz)

=) [ 34 fulo)rds) (6.4

o he(X)
~ U h(X)

This formula is only correct if Py dominates Py, that is, hy(z) = 0 implies
he(xz) = 0 for all . Then both integrals in (6.4) can be taken over the set
{z: hy(x) # 0} to avoid division by zero.

Combining (6.3) and (6.4) we get

ho(z) | g ho(X)

W) =los 7, oy o8 v (%)
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Having written the intractable integral as an expectation, we can calculate it
by Monte Carlo

—logE,

) )
n _ (6.6)
- e e s (3 2 )

=1

where X1, X», ... are a Markov chain with stationary distribution Py, and E,,
denotes expection with respect to the empirical distribution of the sample, the
probability measure that puts mass 1/n at each X;.

If the chain is Harris recurrent, then for each # in the parameter space,
1,(0) 23 1(6), but the null set of sample paths for which convergence fails may
depend on 6. Since a countable union of null sets is a null set, we can say that
for any countable subset O, of the parameter space, that for almost all sample
paths

1,(0) — (), for all 8 € ©,.

That is, we have simultaneous pointwise convergence of I, to [ on ©.. More
than that we cannot get without some continuity assumptions about the unnor-
malized densities. Geyer (1994) proves the following.

Theorem 12 For a normalized family of densities { hg : 0 € O}, if the param-
eter set © is a separable metric space, the evaluation maps 0 — hg(x) are

(a) lower semicontinuous at each 6 except for x in a Py nullset that may
depend on 0 and

(b) upper semicontinuous for the observed x,

and if the Markov chain sampler is Harris recurrent, then the Monte Carlo log
likelihood (6.6) hypoconverges to the exact log likelihood (6.5) with probability
one. Also (6.5) is upper semicontinuous and the normalizing constant (6.2) is
lower semicontinuous.

The theorem as stated in Geyer (1994) contains a superfluous condition that the
maps 0 — hg(x) be upper semicontinuous at almost all z rather than just at the
observed x. This was assumed only to prove measurability of certain suprema,
but this measurability is automatic when the parameter space is a Borel subset
of a complete seperable metric space.

The main conclusion of the theorem is that [,, hypoconverges to [ with proba-
bility one. This is a form of convergence of functions that is weaker than uniform
convergence and is exactly the right form for optimization. Geyer (1994) gives
several equivalent definitions, one of which is that [,, hypoconverges to I if both
of the following conditions hold

(i) For every 6 € © and every sequence 6,, — 0

limsup,,(6,,) < 1(0).

n—oo
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(ii) For every 6 € O there is some sequence 6,, — 6 such that

liminf 1, (6,) > 1(0).

n— o0

More can be found in Attouch (1984). The two conditions are very different.
Condition (i) is one-sided continuous convergence. It implies locally uniform
convergence: for any r > [(6), there is a neighborhood W of § such that

ln(p) <, whenever ¢ € W.
Condition (ii) is weaker than pointwise convergence. It does not even imply

1,(0) — 1(6).
Although



Appendix A

Computer Code

Code for examples used in the book is found in the directory

“charlie/Isles/Stat8931.895/Text

(This is a local directory at the University of Minnesota School of Statistics.
The code is not currently available on the web.)

The README file in this directory gives a brief explanation of how to run
the code if one has Splus. This probably doesn’t work after all this time because
of changes to Splus.

Currently available code is described below.
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Directory
VarComp

VarComp

VarComp

Strauss

Strauss

Strauss

Strauss

Normal
Ising

File
gibbs.f

block.f

jump.f

fix.c

fixgib.c

var.c

regen.c

norm.c
ising.c
st.c

APPENDIX A. COMPUTER CODE

Sampler

Gibbs sampler for variance components model from
Gelfand and Smith (1990).

Block Gibbs sampler for the same variance compo-
nents model.

Sampler for model selection comparing the same
variance components model to the model with all
group means the same. Uses Gibbs within mod-
els and Metropolis-Hastings-Green to jump between
models.

Metropolis sampler for the Strauss process with
number of points fixed following Geyer and Mgller
(1994).  Uses reversible scan described in Sec-
tion 2.2.6.

Gibbs sampler for the Strauss process with number
of points fixed, using rejection from uniform distri-
bution to generate from full conditionals, following
Ripley (1979).

Metropolis-Green sampler for the Strauss with ran-
dom number of points following Geyer and Mgller
(1994).

Metropolis sampler for the Strauss process with
number of points fixed (like fix.c but without the
reversible scan) using Metropolis-rejected restarts
from the binomial process and splitting following
Mykland, Tierney and Yu (to appear).

Gibbs sampler for multivariate normal.

Gibbs sampler for the Ising model.

Swendsen-Wang sampler for the Ising model with
periodic boundary conditions.
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