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1 Markov Transition Matrices

A Markov transition matrix, also called a stochastic matrix is a square
matrix whose rows are probability vectors, meaning their entries are nonneg-
ative and sum to one. If P is a Markov transition matrix, we denote its
entries p(x, y), rather than pij , where x and y range over a finite set S called
the state space.

The Markov chain interpretation of P is that p(x, y) is the probability
that the Markov chain is in state y at time t + 1 given that it was in state
x at time t. If X1, X2, . . ., Xν is a Markov chain with transition matrix P ,
then this means

p(x, y) = Pr{Xt+1 = y|Xt = x}, t = 1, . . . , ν − 1, x, y ∈ S.

Thus P determines everything about the law of the Markov chain except
the marginal distribution of X1, which is called the initial distribution of
the Markov chain.

1.1 Eigenvectors Associated with Eigenvalue One

1.1.1 Right Eigenvectors

Let e1 denote the column vector having all elements one. Then the
requirement that each row of P sum to one can be written

Pe1 = e1 (1)

which says that e1 is a right eigenvector of P associated with the eigenvalue
one. There may be more right eigenvectors associated with the eigenvalue
one, but there is always at least one.

Another way to write (1) is

(I − P )e1 = 0 (2)

where I denotes the identity matrix of the same dimension as P . This says
that the set of right eigenvectors of P with eigenvalue one is the null space
of the linear operator

f 7→ (I − P )f (3)

that is represented by the matrix I − P .
In general, a right eigenvector of P associated with the eigenvalue one,

that is, an h such that Ph = h is called a harmonic function. In the finite
state space case “harmonic vector” might be more appropriate, but this
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terminology was developed in the theory of general Markov chains where h
is a function on the state space, as it is, of course, in the finite dimensional
case too, as we acknowledge when we write its coordinates h(x) and the
equation Ph = h as∑

y∈S

p(x, y)h(y) = h(x), for all x ∈ S.

The linear operator (3) represented by the matrix I − P is called the
Laplacian operator. It arises again in the general theory.

1.1.2 Left Eigenvectors

Since I −P does not have full rank, the null space of the linear operator

ν 7→ ν(I − P )

that is represented by the matrix (I − P )T is also not the zero subspace,
since both left and right null spaces have the same dimension by a basic
theorem of linear algebra Halmos (1958, Theorem 1 of Section 50).

Thus there also exists a vector ν satisfying

νP = ν

which is a left eigenvector of P associated with the eigenvalue one. It is a
consequence of the Perron-Frobenius theorem that ν can always be taken to
be a probability vector.

1.1.3 Invariant Probability Vectors

A probability vector π is said to be invariant for a transition matrix P if

πP = π (4)

In this terminology, the discussion in the preceding section establishes
the following theorem (an immediate consequence of the Perron-Frobenius
theorem).

Theorem 1.1. Every Markov transition matrix has at least one invariant
probability vector.
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We have seen that existence of invariant probability vectors is connected
with the rank of I−P . If P is a Markov transition matrix, then we say that
I − P has maximal rank if it has the maximum possible rank, which is one
less than the dimension of the state space, because its null space must have
dimension at least one. Thus I−P is never full rank, but can have maximal
rank.

Thus I−P having maximal rank is a sufficient condition for uniqueness
of the invariant probability vector. A question we still need to address is: is
this condition also necessary?

1.2 Communication Classes

Define a relation

x −→ y if and only if pn(x, y) > 0 for some n

(x −→ y is read “can get from x to y”). This is a transitive relation, meaning

x −→ y and y −→ z implies x −→ z

because

pm(x, y) > 0 and pn(y, z) > 0 implies pm+n(x, z) > 0.

The reflexive closure of this relation defined by

x � y if and only if x = y or x −→ y.

(Note that x � x is true by definition and does not imply x −→ x.)
For each x ∈ S define

Cx = { y ∈ S : x � y and y � x }.

We call Cx the communication class of x. Observe that if z ∈ Cx then
either x = z or we can get from x to z and vice versa and also from x to
any other element of Cx (if any) and vice versa, hence Cz = Cx. Thus the
communication class are either equal and disjoint and hence form a partition
of the state space.

Now define
Cx � Cy if and only if x � y.

Now as a relation among the communication classes this is a reflexive, anti-
symmetric, and transitive relation, reflexivity and transitivity being inher-
ited from the relation among states and antisymmetry, that is

Cx � Cy and Cy � Cx implies Cx = Cy
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coming from the definition of the communication classes. A reflexive, anti-
symmetric, and transitive relation is also known as a partial order relation.

The irreflexive version of this relation is defined by

Cx � Cy if and only if Cx � Cy and Cx 6= Cy.

Call Cx a minimal element of the family of communication classes if
there does not exist a y such that Cx � Cy. Pick any Cx1 . Then either
Cx1 is minimal or there exists x2 such that Cx1 � Cx2 . Then either Cx2 is
minimal or we can repeat the process, obtaining a sequence

Cx1 � Cx2 � · · · � Cxk

By transitivity, no communication class can appear twice in the sequence.
Since there are only a finite number of communication classes, the sequence
must end somewhere, and the last element must be minimal.

A minimal communication class Cx has the property that the Markov
chain never moves from inside to outside the class. Hence if we restrict P
to this class, it is again a Markov transition matrix. Moreover, multistep
transitions are possible from any point of this class to any other. In general,
we do not know x −→ x but if Cx is a minimal class, we do, because either
Cx contains some other point y and x −→ y −→ x, or Cx = {x} and since
no move outside the class is possible, we then must have p(x, x) = 1.

Since movement outside a minimal communication class is impossible,
P restricted to such a class is still a Markov transition matrix. If A is the
minimal communication class, then∑

y∈A

p(x, y) = 1, x ∈ A

so P is a Markov transition matrix on A×A. The property such a restricted
P has is formalized in the following section.

1.3 Irreducibility

If P is a Markov transition matrix such that we have x −→ y and y −→ x
for all x and y in the state space, then we say P is irreducible. Recall that
this means for every x and y in the state space there exists and n, which
may depend on x and y, such that pn(x, y) > 0.

Theorem 1.2. If a P is an irreducible Markov transition matrix having
invariant probability vector π, then π(x) > 0 for all x.
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We abbreviate the conclusion of the theorem as π > 0.

Proof. Suppose π(y) = 0. Note that πP = π implies πPn = π for all n,
This implies ∑

x∈S

π(x)pn(x, y) = 0, for all n.

Now we have π(x) > 0 for some x. Hence for this x we have

pn(x, y) = 0, for all n.

But this implies x Y−→ y, which contradicts irreducibility. Hence π(y) = 0
is impossible.

Theorem 1.3. If a P is an irreducible Markov transition matrix, then I−P
has maximal rank, and P has exactly one invariant probability vector.

Proof. One invariant probability vector π is guaranteed by the Perron-
Frobenius theorem. If I − P does not have maximal rank, then there is
a nonzero vector ν satisfying νP = ν, which does not satisfy ν = tπ for
some real t. Now ν need not have all components the same sign, but π+ εν
is a probability vector for sufficiently all small positive or negative ε. Define

ε+ = sup{ ε > 0 : π + εν > 0 }
ε− = inf{ ε < 0 : π + εν > 0 }

At least one of these is finite because ν 6= 0. But then either π + ε+ν or
π+ε−ν has some component zero, and that contradicts irreducibility. Hence
there exists no such ν and I − P has maximal rank, which implies π is the
unique invariant probability vector.

1.4 Transient States

Let us now consider a maximal communicating class, a Cx such that
there does not exist a Cy such that Cy � Cx. Again, such a class exists by
finiteness of the state space. Now we have no probability of entering the
class from outside. Calling the maximal class A, we have

p(x, y) = 0, x /∈ A, y ∈ A.

If π is an invariant probability vector, this implies∑
x∈A

π(x)p(x, y) = π(y) (5)
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and summing over y gives∑
x∈A

π(x)
∑
y∈A

p(x, y) =
∑
y∈A

π(y)

and this implies ∑
y∈A

p(x, y) = 1, x,∈ A, y ∈ A (6a)

or ∑
y∈A

π(y) = 0. (6b)

If (6a) holds, then A is not only but minimal and the Markov chain restricted
to A is irreducible. Otherwise, (6b) holds, and we must have π(x) = 0 for
all x ∈ A.

Now we proceed by induction on the strict partial order �. Suppose (the
induction hypothesis) we have

Cx � Cy implies π(z) = 0, z ∈ Cx

Fix y. Write
U =

⋃
{Cx : Cx � Cy }

and A = Cy. Then

p(x, y) = 0, x /∈ U ∪A, y ∈ A.

If π is an invariant probability vector, this implies∑
x∈U∪A

π(x)p(x, y) = π(y).

Now by the induction hypothesis we have π(z) = 0 for z ∈ U so this reduces
to (5). So we get the same conclusion about Cy: either it is minimal or we
also have π(z) = 0 for z ∈ Cy.

We say that any communicating class that is not minimal is transient
and also that all of the states it contains are transient. The calculations
above prove the following theorem.

Theorem 1.4. An invariant probability vector gives probability zero to any
transient state.
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1.5 Recurrent States

We have arrived at an interesting and important dichotomy. A state in
a minimal communication class is said to be recurrent. We have just defined
a state in a non-minimal communication class to be transient. Thus every
state is either transient or recurrent.

Theorem 1.4 says π(x) = 0 for every transient x and every invariant
probability vector π. Theorem 1.2 says π(x) > 0 for every recurrent x and
every invariant probability vector π.

1.6 Closed Sets

A set out of which no transitions are possible is called closed. Clearly
a communication class is closed if and only if it is minimal (“closed set” is
standard Markov chain terminology but “minimal communication class” is
not).

If A is a closed set and x ∈ A then we must have Cy ⊂ A whenever
Cx � Cy. So every closed set is a union of communication classes and
contains at least one minimal communication class.

1.7 Indecomposability

Let us rearrange the states of our Markov chain putting all of the com-
munication classes together and treating them as blocks but lumping all of
the transient states in one block. Then the transition matrix has the form

P =


P11 0 · · · 0 0
0 P22 · · · 0 0

0 0
. . . 0 0

0 0 · · · Pk−1,k−1 0
Pk1 Pk2 · · · Pk,k−1 Pkk


All of the diagonal blocks except the last, being irreducible, have unique
invariant probability vectors; call them π1, . . ., πk−1. It is clear that the full
dimensional vector

(
π1 0 · · · 0 0

)
is an invariant probability vector of

P . So is
(
0 π2 · · · 0 0

)
, and so forth.

Now consider an arbitrary left eigenvector of P associated with eigen-
value one (

ν1 ν2 · · · νk−1 νk

)
. (7)

We have
νjPjj + νkPkj = νj , j = 1, . . . , k − 1 (8a)
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and
νkPkk = νk. (8b)

We already know from Theorem 1.4 that if (7) is required to be a probability
vector, then the only solution of (8b) is νk = 0 because all of the states in
the k-th block are transient. Plugging that back in to (8a) we see that νj

must be proportional to the unique invariant probability vector πj for Pjj .
Thus we see that every invariant probability vector for P has the form(

t1π1 t2π2 · · · tk−1πk−1 0
)
,

where t1, . . ., tk−1 are nonnegative real numbers that sum to one, and if the
k-th block is empty (there are no transient states), then every left eigenvector
associated with eigenvalue one has the form(

t1π1 t2π2 · · · tk−1πk−1

)
,

where t1, . . ., tk−1 are arbitrary real numbers. (A transient block can have
multiple left eigenvectors that are not proportional to probability vectors.
Theorem 1.4 only says it has no left eigenvectors that are proportional to
probability vectors.)

A transition probability matrix with only one minimal communication
class, which is the same thing as saying there do not exist two disjoint closed
sets, is said to be indecomposable.

Theorem 1.5. A Markov transition matrix is indecomposable if and only
if it has a unique invariant probability vector.

2 Markov Transition Kernels

A Markov transition kernel, on a measurable space (S,S) is a function
from P : (S,S) → R such that

• x 7→ P (x,A) is a measurable function for each fixed A ∈ S.

• A 7→ P (x,A) is a probability measure for each fixed x ∈ S.

Here we are using real measure theory with S a sigma-algebra of subsets of
S.

The Markov chain interpretation of P is that p(x,A) is the probability
that the Markov chain is in A at time t + 1 given that it was in state x at
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time t. If X1, X2, . . ., Xν is a Markov chain with transition matrix P , then
this means

P (x,A) = Pr{Xt+1 ∈ A|Xt = x}, t = 1, . . . , ν − 1, x, y ∈ S.

Thus P determines everything about the law of the Markov chain except
the marginal distribution of X1, which is called the initial distribution of
the Markov chain.

2.1 General State Space

General state space Markov chains were until fairly recently (about 1980)
considered so difficult that there was no satisfactory general theory. In fact,
they were so difficult that most books with “Markov chain” in the title
considered state spaces that were at most countable.

By “general” we do not mean completely general (as with many uses of
“general” it only means more general than the previously widely presented
theory). However the only restriction is that the sigma-algebra, the S in
(S,S) be countably generated, meaning there is a countable subset B such
that S is the smallest sigma-algebra containing B.

Recall that any separable metric space has a countable basis of the topol-
ogy. For example, Rd has a basis consisting of all balls whose centers have
rational coordinates and whose radii are also rational (because the rational
numbers are countable and because the cartesian product of countable sets
is countable). This family also generates the Borel sigma-algebra for Rd.

It is fair to say that any probability space for which one might find a
real application will be countably generated. So this “general” despite not
being completely general, is very “general” indeed.

2.2 Eigenvectors Associated with Eigenvalue One

2.2.1 Right Multiplication

If f is a measurable function on (S,S), then we interpret the “right
multiplication” g = Pf to mean

g(x) =
∫
P (x, dy)f(y) (9)

assuming the integral makes sense (for example, it always does when f is
bounded). The Markov chain interpretation of this right multiplication is

g(Xn) = E{f(Xn+1)|Xn}.
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Using the conditional Jensen inequality we have for any p ≥ 1.

E{|g(Xn)|p} ≤ E
[
E{|f(Xn+1)|p|Xn}

]
= E{|f(Xn+1)|p} (10)

Introducing the Lp(π) seminorms

‖f‖p
Lp(π) =

∫
|f(x)|pπ(dx) (11)

we see when the chain is stationary with invariant measure π that (10) has
the interpretation

‖Pf‖Lp(π) ≤ ‖f‖Lp(π), f ∈ Lp(π) (12)

where Lp(π) denotes the set of measurable functions f such that ‖f‖Lp(π) is
finite.

Thus, assuming P has an invariant probability measure π (it need not
have one), we can consider P as the map f 7→ Pf which maps Lp(π) →
Lp(π). This makes P a linear operator on an infinite-dimensional vector
space (in general).

For many applications, this is good enough. If one really needs to use
functional analysis (the fancy name for infinite-dimensional linear algebra),
then one redefines Lp(π), changing the definition only slightly. The prob-
lem is that (11) does not define a norm, because ‖f‖p

Lp(π) = 0 does not
imply f = 0 but only f = 0 almost everywhere [π]. Thus we do the usual
thing of “modding out the equivalence classes” and consider Lp(π) the set
of all equivalence classes of functions f having finite Lp(π) norm, where the
equivalence is that of being equal almost everywhere [π]. This makes Lp(π)
a Banach space, (a complete normed vector space), a concept about which
functional analysis books have a lot to say (see, for example, Rudin, 1987,
pp. 66-67 and 95).

Another Banach space (also covered in Rudin, 1987, pp. 66-67) is L∞(π)
which is the space whose points are equivalence class of functions that are
equal almost everywhere [π] to a bounded function, the least bound being
the L∞(π) norm. One easily checks that (11) then also holds for p = ∞.
Thus P can be considered a “right multiplication” operator Lp(π) → Lp(π)
for any 1 ≤ p ≤ ∞.

2.2.2 Right Eigenvectors

Let e1 denote the constant function S → R whose constant value is one.
Then e1 ∈ Lp(π) for any 1 ≤ p ≤ ∞, or more precisely (a pedantry that
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most writers do not repeat after the first occurrence or two) the equivalence
class of functions that are equal to one almost everywhere [π] is an element
of Lp(π).

Then the requirement that each A 7→ P (x,A) be a probability measure
can be written

Pe1 = e1 (13)

which says that e1 is a right eigenvector of P associated with the eigenvalue
one. There may be more right eigenvectors associated with the eigenvalue
one, but there is always at least one.

Another way to write (13) is

(I − P )e1 = 0 (14)

where I denotes the identity operator on the same space, some Lp(π), that
we are considering P an operator on.

This says that the set of right eigenvectors of P with eigenvalue one is the
null space of the linear operator I−P , considered as a “right multiplication”

f 7→ (I − P )f. (15)

As we noted in the finite state space case, a right eigenvector of P asso-
ciated with the eigenvalue one, that is, an h such that Ph = h is called a
harmonic function. The linear operator (15) represented by the kernel I−P
is called the Laplacian operator.

2.2.3 Signed Measures

A signed measure on (S,S) is a map µ : S → R that is countably
additive. Unlike measures that are studied elsewhere in measure theory,
note that the values +∞ and −∞ are not allowed. This limitation has
strong consequences.

For each A ∈ S define

|µ|(A) = sup
∞∑
i=1

|µ(Ai)|

the supremum being taken over all countable, measurable partitions A1, A2,
. . . of A. It turns out that A 7→ |µ|(A) is countably additive Rudin (1987,
Theorem 6.2) hence a positive measure which is denoted |µ| and that |µ|(S)
is finite. Hence |µ| is also real-valued (cannot be infinite) and is a signed
measure as defined above.
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Let M(S) denote the space of all signed measures on (S,S). This is a
Banach space when total variation measure is used at the norm, that is

‖µ‖TV = |µ|(S).

If µ is a signed measure, we write

µ+(A) =
|µ|(A) + µ(A)

2

µ−(A) =
|µ|(A)− µ(A)

2

also define positive measures that are elements of M(S). They are called
the postive and negative parts of µ and we can write

|µ| = µ+ + µ−

µ = µ+ − µ−

Since both µ+ and µ− are finite, they are renormalizable to probability
measures if nonzero. Call these measures π+ and π−. Then we can write

µ = a+π+ − a−π− (16)

where a+ and a− are nonnegative real numbers. Thus we see that every
signed measure is a linear combination of probability measures. The main
reason for introducing signed measures in probability theory is to deal with
linear combinations of probability measures in a satisfactory way.

2.2.4 Left Multiplication

If µ is a signed measure on (S,S), then we interpret the “left multipli-
cation” ν = µP to mean

ν(A) =
∫
µ(dx)P (x,A). (17)

If µ has the form (16), then (17) becomes

ν(A) = a+

∫
π+(dx)P (x,A)− a+

∫
π−(dx)P (x,A). (18)

(for those uncomfortable with integrating w. r. t. a general signed measure).
The Markov chain interpretation of the right multiplication π2 = π1P

is that if π1 is the (marginal) distribution of X1, then π2 is the (marginal)
distribution of X2.
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2.2.5 Left Eigenvectors

Infinite-dimensional vector spaces are just like finite-dimensional vector
spaces except for they ways they are different (how tautological!) One of
the ways in which infinite-dimensional spaces are different is the following.

A linear operator T on a finite-dimensional vector space V is
invertible if and only if any one of the following conditions holds.

(a) It is injective (its null space is the zero subspace).

(b) It is surjective (its range is V ).

(c) The matrix representing T has full rank, which is the di-
mension of V .

(this is equivalent to the right and left null spaces having the same dimension
used in constructing an invariant probability vector).

In infinite-dimensional spaces, we have only the general condition. Any
function (linear or not) is invertible if and only if it is injective and surjective
(one-to-one and onto). Thus we can say the following.

A linear operator T on an infinite-dimensional vector space V is
invertible if and only if both of the following conditions hold.

(a) It is injective (its null space is the zero subspace).

(b) It is surjective (its range is V ).

In summary, in the finite-dimensional case, it is enough that either (a) or
(b) hold, because each implies the other, but in the infinite-dimensional case,
both (a) and (b) must hold, because neither implies the other. Moreover,
the concept of rank makes no sense (in general) for operators on an infinite-
dimensional space.

We are left with no tools that (in general) guarantee the existence of an
invariant probability measure. Here is a counterexample, that shows there
can be no proof like that in the finite-dimensional case.

Consider a Markov chain with state space the nonnegative integers that
moves deterministically

Xn+1 = Xn + 1

If ν is an invariant measure (never mind probability measure), then we must
have

ν({x}) = ν({x− 1}), x > 0
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and
ν({0}) = 0.

But together these imply ν = 0, the zero measure that attributes measure
zero to all sets, and zero never counts as an eigenvector.

2.3 ϕ-Irreducibility

The notions of indecomposability and irreducibility that we used to ana-
lyze finite state space Markov chains are of little use for general state space
Markov chains.

Indecomposability still makes sense. A subset A of the state space is
closed if

P (x,A) = 1, x ∈ A,
and P is indecomposable if there do not exist two disjoint closed sets.

Irreducibility makes no sense, in general. Consider a Markov chain with
each random variable continuous, for example an AR(1) time series. The
probability of going from any point to any point is zero, because all points
in the state space have probability zero at all times. As we shall see, an
AR(1) time series is about as well behaved as a Markov chain on a general
state space can be. But the irreducibility concept from finite state space
theory is useless for telling us anything about it.

Clearly, we need to consider probabilities of hitting sets rather than
points. Hence the following definition. Let ϕ be a positive measure on
(S,S) that is not the zero measure (ϕ is not necessarily real-valued, the
value +∞ is allowed). The Markov kernel P is ϕ-irreducible if for every x
and every A such that ϕ(A) > 0 there exists an n, which may depend on x
and A, such that Pn(x,A) > 0.

The only thing that matters for the definition is whether ϕ(A) is zero or
nonzero. When ϕ(A) > 0 we have no interest in the actual value of ϕ(A).
Thus ϕ is only being used to specify a class of non-null sets that must be
checked.

When specialized to finite state spaces, ϕ-irreducibility corresponds to
indecomposability not irreducibility. Consider ϕ concentrated at the point
y. Then ϕ-irreducibility implies x −→ y for all x ∈ S, but it does not imply
irreducibility. Consider for example

P =
(

1
2

1
2

0 1

)
This P is ϕ-irreducible, because it can get from any state to state 2. But it
is not irreducible, because it cannot get from state 2 to the other state.
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Theorem 2.1. ϕ-irreducibility implies indecomposability.

Proof. Suppose P is decomposable, so there exist disjoint closed sets A and
B, and let C be a set such that ϕ(C) > 0. Now one of C ∩ A or C \ A has
positive ϕ measure. If ϕ(C ∩A) > 0, then Pn(x,C ∩A) = 0 for x in B and
P is not irreducible. If ϕ(C \A) > 0, then Pn(x,C \A) = 0 for x in A and
P is again not irreducible.

2.3.1 Occupation Times

Let X0, X1, . . ., be a Markov chain with transition kernel P that is
started at x, that is, X0 = x with probability one.

For any set A, the occupation time ηA is the number of visits the Markov
chain makes to A, that is,

ηA =
∞∑
i=1

IA(Xi)

The occupation time is a random variable. Its expectation is a kernel (not
a Markov kernel, but a general kernel)

U(x,A) = E{ηA} =
∞∑
i=1

Pn(x,A)

Observe that P is ϕ-irreducible if and only if for every x ∈ S and every
A ∈ S such that ϕ(A) > 0 we have U(x,A) > 0. (There is no need to check
higher powers Un, because U already contains all powers of P .)

2.3.2 Return Times

For any set A, the first return time τA is the time of the first visits the
Markov chain makes to A after time zero, that is,

τA = min{ i ≥ 1 : IA(Xi) = 1 }

where the min is defined to be infinity if the set is empty. The first return
time is a random variable. The probability it is finite is a kernel (not a
Markov kernel, but a general kernel)

L(x,A) = Pr{τA <∞}

Meyn and Tweedie (1993, p. 72) give a complicated explicit formula for
L(x,A).
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Observe that P is ϕ-irreducible if and only if for every x ∈ S and every
A ∈ S such that ϕ(A) > 0 we have L(x,A) > 0. Since we do not have an
explicit formula for L(x,A), this must be argued abstractly, but it is clear
that we are not ϕ-irreducible, then there exist x and A with ϕ(A) > 0 such
that the chain started at x never enters A with probability one. Hence with
probability one we have τA = ∞ and hence L(x,A) = 0. And vice versa.

2.3.3 Randomly Subsampled Markov Chains

For various reasons, randomly subsampled Markov chains are an impor-
tant technical tool, used extensively by Meyn and Tweedie (1993). Practi-
cally, this is a “combining method” that combines mixing and composition.
The compositions in question are Pn, n ≥ 0, where P 0 = I. One step of the
Markov chain chooses a random n (independent of the current state) and
then executes the mechanism described by Pn, which is the same thing as
running n iterations of the mechanism described by P .

When n has a geometric distribution with success probability ε which is
neither zero or one, the kernel of the randomly subsampled chain is

Kε(x,A) = (1− ε)
∞∑

n=0

εnPn(x,A)

Observe that P is ϕ-irreducible if and only if for every x ∈ S and every
A ∈ S such that ϕ(A) > 0 we have Kε(x,A) > 0. (There is no need to check
higher powers Kn

ε , because Kε already contains all powers of P .)
Meyn and Tweedie (1993) call Kε(x,A) the resolvent, a term from func-

tional analysis. Using the geometric series we have

Kε = (1− ε)(I − εP )−1

when the geometric series converges in an operator sense, which is always
does when 0 < ε < 1 and P is considered an operator on L2(π) where π is
invariant for P . The resolvent in functional analysis is the map

λ 7→ (λI − P )−1

defined on the set of complex numbers λ for which the inverse exists (which
is always a nonempty open set in the complex plane).

2.3.4 Maximal Irreducibility Measures

The following is Proposition 4.2.2 in Meyn and Tweedie (1993). Recall
that if µ and ν are positive measures on the same measurable space we say ν
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dominates µ or µ is absolutely continuous with respect to ν and write µ� ν
if ν(A) = 0 implies µ(A) = 0.

Theorem 2.2. If P is ϕ-irreducible for some ϕ, then there exists a proba-
bility measure ψ such that

(a) P is ψ-irreducible.

(b) If P is ϕ′-irreducible, then ϕ′ � ψ.

(c) If ψ(A) = 0 and B = { y : L(y,A) > 0 }, then ψ(B) = 0.

(d) If P is ϕ′-irreducible and

ψ′(A) =
∫
ϕ′(dx)Kε(x,A),

then ψ′ � ψ and ψ � ψ′.

Any ψ satisfying the conditions of the theorem is called a maximal irre-
ducibility measure for P . (If P is ϕ-irreducible then ϕ is a, not necessarily
maximal, irreducibility measure for P ).

Maximal irreducibility measures are not unique, but consider that the
purpose of irreducibility measures is characterizing a certain class of non-
null sets (or of null sets). From (b) of the theorem it is clear that the class of
non-null sets determined by a maximal irreducibility measure is unique and
is the largest class of non-null sets determined by any irreducibility measure.

In what is very bad notation Meyn and Tweedie (1993) just say ψ-
irreducible to mean ψ is a maximal irreducibility measure for P and say
ϕ-irreducible to mean ψ is a not necessarily maximal irreducibility measure
for P , thus making ϕ and ψ “frozen letters” in this context. We shall try
not to follow their example and always say that ψ is maximal when that is
what we mean.

3 Minorization, Splitting, and Regeneration

This section introduces the notions at the heart of the modern theory
of Markov chains on general state spaces. These notions and constructions
changed everything, making general state space chains no more difficult
than countable state space chains. We do not attempt proofs, which are
very deep.

It is understood throughout the discussion that P is a ϕ-irreducible
Markov kernel, and the state space is, as usual, (S,S).
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3.1 Small Sets and Minorization

A subset C of the state space is said to be small if there exists a nonzero
measure ν and a positive integer m such that

Pm(x,A) ≥ ν(A), x ∈ C,A ∈ S. (19)

The following theorem, originally due to Jain and Jameson is Theo-
rem 5.2.2 in Meyn and Tweedie (1993).

Theorem 3.1. Suppose P is a ψ-irreducible Markov kernel. Then for every
B such that ψ(B) > 0, there exists a C ⊂ B, such that ψ(C) > 0, an m ≥ 1,
and a nonzero sigma-finite measure ν such that (19) holds and, moreover,
ν(C) > 0.

The theorem says at least one small set exists. It is fairly easily shown
that the existence of one implies many more. By (Meyn and Tweedie, 1993,
Theorem 5.2.4) there exists a countable collection of small sets cover the
state space.

The fact that small sets involve powers of P is a nuisance. It would be
much easier if we could assume the following, which is called the minorization
condition. For some δ > 0, and some C such that ψ(C) > 0 and some
probability measure ν on the state space such that ν(C) = 1

P (x,A) ≥ δν(A), x ∈ C,A ∈ S (20)

holds. Clearly C is a small set when (20) holds.
Although it is not true that (20) holds for a general ψ-irreducible P .

The minorization condition does hold for the corresponding resolvent kernels
Kε. (Meyn and Tweedie, 1993, Proposition 5.2.3). This fact accounts for
the intensive use of resolvent kernels in Meyn and Tweedie (1993). The
resolvent kernel satisfies the minorization condition, which can be used to
prove facts about the subsampled chain. Then these facts are transfered to
the original chain with kernel P by some argument or other.
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