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1 Introduction

This note describes the simplified version of the Metropolis-Hastings-Green
algorithm (Metropolis, et al., 1953; Hastings 1970; Green, 1995) that is most
widely understood.

1.1 Dimension Changing

The Metropolis-Hastings-Green algorithm (as opposed to just Metropolis-
Hastings with no Green) is useful for simulating probability distributions that
are a mixture of distributions having supports of different dimension. An
early example (predating Green’s general formulation) was an MCMC algo-
rithm for simulating spatial point processes (Geyer and Møller, 1994). More
widely used examples are Bayesian change point models and Bayesian model
selection (Green, 1995).

Abstractly, we are interested in a Markov chain having a state space that
is a union of Euclidean spaces of different dimension. Let X denote the state
space of the Markov chain. This is assumed to be a disjoint union

X =
⋃
i∈I

Xi (1)

where each Xi is an open subset of Rd for some d. Let λi denote Lebesgue
measure on Xi and let λ be the sum of the λi defined by

λ(B) =
∑
i∈I

λi(B ∩ Xi).

We wish to simulate a Markov chain having stationary distribution with
unnormalized probability density h with respect to λ, where h being an “un-
normalized density” means

h(x) ≥ 0, x ∈ X

and ∫
h(x)λ(dx) < ∞.
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Note that the support of h, that is,

{x ∈ X : h(x) > 0 }

need not be all of X . If we don’t want the support of h to be all of X we just
define h(x) = 0 for x not in the desired support.

1.2 Elementary Updates, First Version

In this section we describe an elementary update that moves the Markov
chain one step. Iterating the update over and over makes a Markov chain,
although more commonly the elementary update is combined in various ways
with other elementary updates. The actual Markov chain of interest iterates
the combined update.

The elementary update requires the following items.

• [Augmentation] Each subspace Xi is “augmented” by a subspace Yi,
also an open subset of Rd for some d, such that Zi = Xi×Yi has the same
dimension for all i. Write

Z =
⋃
i∈I

Zi

(the “augmented” state space).

• [Proposal] For each i ∈ I and each x ∈ X there is a (proper) probability
density q(x, · ) on Yi such that

– random variates having density q(x, · ) can be simulated for each
x ∈ Xi,

– and q(x, y) can be evaluated for each (x, y) ∈ Z.

• [Transformation] There is a function g : Z → Z such that

– g is its own inverse,

– and the jacobian of g is everywhere nonsingular.

Here is the description of the update, supposing the current state is denoted by
x.

1. (The “proposal”). Generate a random variate y having density q(x, · ),
and define (x∗, y∗) = g(x, y).

2. (The “Green ratio”). Define

r(x, y) =
h(x∗)q(x∗, y∗)

h(x)q(x, y)
· |∇g(x, y)| (2)
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3. (“Metropolis rejection”) “accept” the proposal, that is, the updated state
is x∗, with probability

a(x, y) = min
(
1, r(x, y)

)
(3)

and “reject” the proposal, that is, the updated state remains as it was, at
x, with probability 1− a(x, y).

Let us say a state x is feasible if h(x) > 0. Note that if the current state x
is feasible,

• then with probability one q(x, y) > 0 and the denominator in (2) is
nonzero, and

• if the proposal is accepted, then with probability one we have h(x∗) > 0
so the updated state is also feasible.

Thus if started in a feasible state, the Metropolis-Hastings-Green algorithm
forever remains in the set of feasible states (with probability one). If started
in a non-feasible state (2) is undefined because of division by zero and the
algorithm is meaningless. Note that proposal of non-feasible states is allowed.
They are accepted with probability zero, but that creates no problem as long as
some proposal in some iteration of the algorithm is eventually accepted. What
is not allowed is a starting position that is not feasible.

1.3 State-Dependent Mixing

Another innovation of Green’s paper is what I call “state-dependent mix-
ing”. In practice one uses many elementary updates like those described in the
preceding section as well as other Gibbs and Metropolis-Hastings updates.

Let the elementary updates under consideration be described by kernels Pj ,
j ∈ J .

The fundamental property of any MCMC update Pj is that it preserve the
desired stationary distribution π, meaning πPj = π or, in words, π is invariant
for Pj .

If we make a random choice of which update to do, chosing Pj with probabil-
ity cj , which does not depend on the state x, then trivially if each Pj preserves
π, the kernel for the combined update, which is

P =
∑
j∈J

cjPj

trivially also preserves π because

πP =
∑
j∈J

cjπPj =
∑
j∈J

cjπ = π

But this proof does not work if the probabilities are allowed to depend on
the state x! We need another idea. Green’s idea is the following. Define

Kj(x,A) = cj(x)Pj(x,A)
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now Kj is not a Markov transition kernel, but it is still a general kernel. It
makes no sense to talk about a non-Markov kernel “preserving a distribution”.
But it does make sense to talk about reversibility with respect to a distribution
for an arbitrary kernel. We say that a kernel K is reversible with respect to a
positive finite measure η (a possibly unnormalized probability distribution) if
the value of ∫∫

f1(x)f2(x∗)η(dx)K(x, dx∗)

is unchanged by interchanging f1 and f2. Now it is obvious from linearity
of integration that if each Kj is reversible with respect to η, then so is K =∑

j∈J Kj .
Thus we use reversibility with respect to η rather than preserving η and we

do get what we want: if K is Markov and reversible with respect to η, then K
preserves η.

Actually it is enough that K be sub-Markov, meaning

K(x,X ) ≤ 1, x ∈ X

Because then it is easily verified that

P (x,A) = I(x,A)
[
1−K(x,X )

]
+ K(x,A) (4)

is Markov and reversible with respect to η, where I is the identity kernel defined
by

I(x,A) =

{
1, x ∈ A

0, x /∈ A

What this sub-Markov property allows is the following algorithm (as usual, x is
the current state).

• With probability cj(x) update generate the next value of the state from
the distribution Pj(x, · ).

• With probability 1 −
∑

j cj(x) do nothing (the next value of the state is
the same as the current value x).

If the cj(x) sum to one for all x, the second option is never applicable. If
they don’t then that is what gives rise to the first term on the right hand side
of (4).

When state-dependent mixing is used, the Green ratio (2) must be modified!
It is replaced by

rj(x, y) =
cj(x∗)h(x∗)qj(x∗, y∗)

cj(x)h(x)qj(x, y)
· |∇gj(x, y)| (5)

where we have put a subscript j on everything that depends on the update.
Other than the insertion of cj(x) and cj(x∗) in the Green ratio, everything
remains the same.
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1.4 A Comment about Augmentation

This version of the Metropolis-Hastings-Green algorithm is remarkable in its
use of “throw away” augmentation. It does not just augment the state of the
Markov chain, as many people had done before Green.

Each update has its own augmentation. Say the j-th update moves between
Xi and Xi′ (what was j in the “Elementary Updates” is now i′). Then the
augmentations are Yij and Yi′j such that Xi×Yij and Xi′ ×Yi′j have the same
dimension. For x ∈ Xk, k ∈ {i, i′} the proposal is in Ykj and has density
qj(x, · ), and so forth.

It is entirely possible that different updates have the same Xi and Xi′ but dif-
ferent Yij or Yi′j . So what is “augmented” is not the state of the Markov chain,
but the imaginary state of an imaginary Markov chain that only involves the
j-th elementary update. Different imaginary Markov chains (different updates)
may have different augmentation.

2 Theory

The proof that the algorithm described in the preceding section preserves
the distribution with unnormalized density h has two parts. First we show that
if each Ki is reversible with respect to η and K =

∑
j∈J Kj is sub-Markov,

then (4) is Markov and preserves η. Second, we show that when the Green ratio
is defined by (5), the Kj are reversible with respect to the measure η having
unnormalized density h.

2.1 Part I

First if K is sub-Markov, then so is each Kj because the Kj are nonnegative
so Kj ≤ K. As we remarked above, if each Kj is reversible with respect to η,
then so is K, just by linearity of integration. So the only thing that needs to be
shown in part one of the proof is that if K is sub-Markov and reversible with
respect to η, then P given by (4) is Markov and reversible with respect to η and
that this implies that P preserves η.

Let f1 and f2 be bounded measurable functions. Then∫∫
f1(x)f2(x∗)η(dx)P (x, dx∗) =

∫∫
f1(x)f2(x∗)η(dx)I(x, dx∗)

[
1−K(x,X )

]
+

∫∫
f1(x)f2(x∗)η(dx)K(x, dx∗)

=
∫

f1(x)f2(x)
[
1−K(x,X )

]
η(dx)

+
∫∫

f1(x)f2(x∗)η(dx)K(x, dx∗)

The first term in the last expression is trivially unchanged by interchanging
f1 and f2 (because multiplication is commutative) and the second term is un-
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changed by interchanging f1 and f2 because K is reversible with respect to η.
Hence P is reversible with respect to η.

Also

P (x,X ) = I(x,X )
[
1−K(x,X )

]
+ K(x,X )

= 1−K(x,X ) + K(x,X )
= 1

so P is Markov.
The proof that P preserves η is then trivial. Reversibility with respect to η

is ∫∫
f1(x)f2(x∗)η(dx)P (x, dx∗) =

∫∫
f2(x)f1(x∗)η(dx)P (x, dx∗) (6)

Take f1 = IA and f2 = 1. Then (6) becomes∫∫
IA(x)η(dx)P (x, dx∗) =

∫∫
IA(x∗)η(dx)P (x, dx∗)

or ∫
A

η(dx)P (x,X ) =
∫

η(dx)P (x,A)

Because P is Markov P (x,X ) = 1 so the left hand side is
∫

A
η(dx) = η(A).

Hence
η(A) =

∫
η(dx)P (x,A), for all A

which is η = ηP written out in full.

2.2 Part II

Now it remains to be shown that each Kj is reversible with respect to the
distribution having unnormalized density h with respect to λ. We can drop the
subscript j because the argument involves only one update at a time.

We start by proving something rather different. Define z = (x, y) and w(z) =
h(x)q(x, y). Then we can also consider this update as updating z and being
reversible with respect to the distribution with unnormalized density w with
respect to ν = λ× µ, where µ is the sum of the µi.

We can rewrite (5) and (3) as

r(z) =
c(z∗)w(z∗)
c(z)w(z)

· |∇g(z)| (7)

and
a(z) = min

(
1, r(z)

)
(8)

We are to show that the kernel

K(z,A) = c(z)P (z,A) (9)
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where
P (z,A) = I(z,A)

[
1− a(z)

]
+ I(z, g(A))a(z) (10)

is reversible with respect to the desired stationary distribution. This happens
if the value of ∫∫

f1(z)f2(z∗)w(z)ν(dz)K(z, dz∗) (11)

is unchanged by interchanging f1 and f2, where f1 and f2 are any bounded
measurable functions.

Now (11) is equal to∫
f1(z)f2(z)w(z)

[
1− a(z)

]
c(z)w(z)ν(dz) +

∫
f1(z)f2

(
g(z)

)
c(z)w(z)a(z)ν(dz)

and the value of the first term is obviously unchanged by interchanging f1 and
f2 (because multiplication is commutative). Thus we only need to check the
second term, that is we need to show that the value of∫

f1(z)f2

(
g(z)

)
c(z)w(z)a(z)ν(dz) (12)

is unchanged by interchanging f1 and f2.
Now∫

f2(z)f1

(
g(z)

)
c(z)w(z)a(z)ν(dz)

=
∫

f2

(
g(z∗)

)
f1(z∗)c

(
g(z∗)

)
w

(
g(z∗)

)
a
(
g(z∗)

)
|∇g(z∗)|ν(dz∗)

=
∫

f2

(
g(z)

)
f1(z)c

(
g(z)

)
w

(
g(z)

)
a
(
g(z)

)
|∇g(z)|ν(dz)

the first equality being the change of variable theorem for integration and the
second equality being simply that the notation used for a dummy variable of
integration (z∗ or z) doesn’t matter.

Comparing the last form with (12) we see they have the same value if

c(z)w(z)a(z) = c
(
g(z)

)
w

(
g(z)

)
a
(
g(z)

)
|∇g(z)| (13)

almost everywhere with respect to ν (so that is all that remains to be shown).
It simplifies things if we use the notation z∗ = g(z) so (13) becomes

c(z)w(z)a(z) = c(z∗)w(z∗)a(z∗)|∇g(z)| (14)

Now note that from the inverse mapping theorem and the fact that g is its own
inverse we have

|∇g(z∗)| · |∇g(z)| = 1

from which it follows that
r(z∗) =

1
r(z)

(15)

at points where neither r(z) or r(z∗) is zero.
With this in hand, we prove (14) by looking at several cases.
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Case I. c(z)w(z) = 0 from which we conclude a(z∗) = 0. This makes both
sides of (14) zero. So (14) checks in this case.

Case II. c(z∗)w(z∗) = 0 from which we conclude a(z) = 0. Again this makes
both sides of (14) zero. So (14) checks again.

Case III. c(z)w(z) > 0 and c(z∗)w(z∗) > 0 and r(z) > 1 from which we
conclude r(z∗) < 1. Hence a(z) = 1 and a(z∗) = r(z∗). So the left hand side of
(14) is c(z)w(z) and the right hand side is

c(z∗)w(z∗)r(z∗)|∇g(z)| = c(z∗)w(z∗)
c(z)w(z)

c(z∗)w(z∗)
|∇g(z∗)| · |∇g(z)| = c(z)w(z)

so (14) checks in this case.

Case IV. c(z)w(z) > 0 and c(z∗)w(z∗) > 0 and r(z) ≤ 1 from which we
conclude r(z∗) ≥ 1. Hence a(z) = r(z) and a(z∗) = 1. So the right hand side of
(14) is c(z∗)w(z∗)|∇g(z)| and the right hand side is

c(z)w(z)r(z) = c(z)w(z)
c(z∗)w(z∗)
c(z)w(z)

|∇g(z)| = c(z∗)w(z∗)|∇g(z)|

and (14) checks in this case too.

The proof is finshed, but we add a comment that cases I and II are a bit
tricky because in case I, for example, r(z) and hence a(z) is undefined, but it
does not matter since a(z) is multiplied by zero. Strictly speaking, perhaps we
should define a(z) to be something (say 1) in this case, so the multiplication is
well defined, but it is clear that the details don’t matter. Any choice, so long
as some definite choice is made, will do.

Actually one might also wonder about another issue. We have shown that
the update is reversible with respect to the stationary distribution with unnor-
malized density w, but that wasn’t the original problem. What about x’s alone
not (x, y) pairs? Trivial. Just consider functions f1 and f2 that are functions
of x only.

Thus the proof also shows that the update considered as a random move
from x to either x or x∗ depending on Metropolis rejection is reversible with
respect to the distribution having unnormalized density h with respect to λ.
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