
Stat 8931, Fall 2005
Homework 2
Due Oct 5, 2005

Q1 Do a Gibbs sampler for the problem described in Section 10.6 (or what-
ever the “Examples” subsection of “The Gibbs Update” section has turned
into) of the lecture notes.

The likelihood is a function of the sufficient statistics

µ̂n =
1
n

n∑
i=1

xi

σ̂2
n =

1
n

n∑
i=1

(xi − µ̂n)2

Suppose we have observed

n = 20
µ̂n = 14.731

σ̂2
n = 4.814

Suppose that we have independent priors for µ and λ = 1/σ2 (the “preci-
sion”) which are

µ ∼ Normal(10, 22)
λ ∼ Gamma(3, 1)

Although this is the kind of problem that WinBUGS is designed for,
write your own Gibbs sampler in R.

Run the Gibbs sampler and get posterior expectation and MCSE for the
functions of the state

� µ (the first component)

� σ = λ−1/2 where λ is the second component.

As in the first assignment, run the Markov chain long enough to obtain
MCSE smaller than 0.001 for each.
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S1 The first task is to derive the unnormalized posterior (almost given in
the notes) and the “full conditionals” of each variable given the other. The
unnormalized joint posterior density is

− λ

2

n∑
i=1

(xi−µ̂n)2− nλ

2
(µ̂n−µ)2+

n

2
log(λ)− l

2
(µ−m)2+(a−1) log(λ)−bλ

= −nλ

2
σ̂2

n − nλ

2
(µ̂n − µ)2 +

n

2
log(λ) − l

2
(µ − m)2 + (a − 1) log(λ) − bλ

The posterior precision of µ given λ is the coefficient of −µ2/2 in the
above, which is l + nλ. The posterior mean of µ given λ is the coefficient of
µ divided by the posterior precision, which is (lm + nλµ̂n)/(l + nλ). Thus
we have discovered one “full conditional”

µ | λ ∼ Normal
(

lm + nλµ̂n

l + nλ
,

1
l + nλ

)
The shape parameter of λ given µ is one plus the coefficient of log(λ) in

the above, which is n/2 + a. The inverse scale parameter of λ given µ is the
coefficient of −λ in the above, which is b + nσ̂2

n/2 + n(µ̂n − µ)2/2. Thus we
have discovered the other “full conditional”

λ | µ ∼ Gamma
(

a +
n

2
, b +

nσ̂2
n + n(µ̂n − µ)2

2

)
First we assign the data.

> n <- 20

> mu.hat <- 14.731

> sig2.hat <- 4.814

> m <- 10

> l <- 1/(2^2)

> a <- 3

> b <- 1

Then devise the Gibbs updates.

> mu.up <- function(lambda) {

+ muprec <- l + n * lambda

+ mumu <- (l * m + n * lambda * mu.hat)/muprec

+ rnorm(1, mean = mumu, sd = sqrt(1/muprec))

+ }
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> lambda.up <- function(mu) {

+ lambdarate <- b + n * (sig2.hat + (mu.hat - mu)^2)/2

+ rgamma(1, shape = a + n/2, rate = lambdarate)

+ }

Now we are ready to run a simple Gibbs sampler. We start at the MLE.

> niter <- 1000

> mu <- mu.hat

> lambda <- 1/sig2.hat

> mupath <- double(niter)

> lambdapath <- double(niter)

> for (i in 1:niter) {

+ mu <- mu.up(lambda)

+ lambda <- lambda.up(mu)

+ mupath[i] <- mu

+ lambdapath[i] <- lambda

+ }

Figure 1 is produced by the following code

> acf(mupath)

and appears on p. 4.
Figure 2 is produced by the following code

> acf(lambdapath)

and appears on p. 5.
Almost unbelievable, there is no detectable autocorrelation. This MCMC

is almost IIDMC. Thus there is no need for batch means in calculating
MCSE.

> mu.pe <- mean(mupath)

> mu.mcse <- sd(mupath)/sqrt(length(mupath))

> lambda.pe <- mean(lambdapath)

> lambda.mcse <- sd(lambdapath)/sqrt(length(lambdapath))

> sigma.pe <- 1/sqrt(lambda.pe)

> sigma.mcse <- (1/2) * lambda.pe^(-3/2) * lambda.mcse

> mu.pe
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Figure 1: Autocorrelation Plot for µ (Monte Carlo sample size 1000).
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Figure 2: Autocorrelation Plot for λ (Monte Carlo sample size 1000).
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[1] 14.47044

> mu.mcse

[1] 0.01434573

> sigma.pe

[1] 1.998533

> sigma.mcse

[1] 0.008994898

Looks like to satisfy the required accuracy for µ we need at least 142 =
196 times the Monte Carlo sample size. So we redo.

> niter <- 200 * niter

> mu <- mu.hat

> lambda <- 1/sig2.hat

> mupath <- double(niter)

> lambdapath <- double(niter)

> for (i in 1:niter) {

+ mu <- mu.up(lambda)

+ lambda <- lambda.up(mu)

+ mupath[i] <- mu

+ lambdapath[i] <- lambda

+ }

> mu.pe <- mean(mupath)

> mu.mcse <- sd(mupath)/sqrt(length(mupath))

> lambda.pe <- mean(lambdapath)

> lambda.mcse <- sd(lambdapath)/sqrt(length(lambdapath))

> sigma.pe <- 1/sqrt(lambda.pe)

> sigma.mcse <- (1/2) * lambda.pe^(-3/2) * lambda.mcse

> mu.pe

[1] 14.49209

> mu.mcse

[1] 0.001026836
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> sigma.pe

[1] 1.991998

> sigma.mcse

[1] 0.0006365476

Time for a sanity check. The posterior mean for µ, which is 14.4921, is
between the prior mean 10 and the observed data mean 14.731. How about
λ and σ? The posterior mean for λ, which is 0.252, is between the prior
mean 3 and the observed data point estimate (not a mean) 1/σ̂2

n = 0.2077.
The prior mean for σ is an exercise in master’s level theory.

E(σ) = E(λ−1/2

=
∫ ∞

0
λ−1/2f(λ) dλ

=
∫ ∞

0
λ−1/2 · ba

Γ(a)
λa−1e−bλ dλ

=
ba

Γ(a)
· Γ(a − 1/2)

ba−1/2

> sigma.prior.mean <- sqrt(b) * gamma(a - 1/2)/gamma(a)

> sigma.prior.mean

[1] 0.6646702

So now we see that the posterior mean for σ, which is 1.992, is between
the prior mean 0.6647 and the observed data point estimate (not a mean)
σ̂n = 2.1941.

In all cases the posterior mean is a lot closer to the data point estimate
than to the prior mean, as is to be expected with the fairly diffuse priors we
used.

On a different issue, note that the lack of autocorrelation in this Gibbs
sampler does not arise from lack of correlation between µ and λ

> cor(mupath, lambdapath)

[1] 0.1434924
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Figure 3: Autocorrelation Plot for µ (Monte Carlo sample size 2e+05).
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Apparently, the correlation just isn’t enough to give rise to much autocor-
relation in the Gibbs sampler.

Figure 3 is produced by the same code as Figure 1 but with our new
larger sample as the“path”and appears on p. 8. In it we now see statistically
significant lag-one autocorrelation, though is is of no practical significance.
And this means we should have used the method of batch means with batch
length at least two, and that our MCSE are a little bit low. We know from
the formula for asymptotic variance being a sum of autocovariance terms
that something like 1+2ρ1 = 1.0509 (where ρ1 is the lag-one autocovariance)
is the correct variance inflation factor, hence the square root of this, which is
1.0251, is the correct inflation factor for MCSE. But we won’t worry about
that 3% difference.
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