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1 Introduction

1.1 Logit-Normal GLMM

In a Logit-Normal generalized linear mixed model (GLMM), the observed
data is a vector y whose components are conditionally independent Bernoulli
random variables given the missing data vector b, which is unconditionally
jointly mean-zero multivariate normal. The model specification is completed
by the specification of the linear predictor

η = Xβ + Zb (1)

and the link function. In (1) X and Z are known matrices (the model
matrices for fixed and random effects, respectively), β is a vector of unknown
parameters (fixed effects), b is the vector of missing data (random effects),
and the conditional expectation of y given η is logit−1(η).

The unknown parameters to be estimated are β and any unknown pa-
rameters determining the variance matrix of b. Usually this variance matrix
has simple structure and involves only a few unknown parameters. Follow-
ing Sung and Geyer (submitted), we simplify the structure of the model still
further. The class of models they use is more easily described in R than in
mathematical notation. The linear predictor has the form

eta = X %*% beta + Z %*% (sigma[i] * b) (2)

where X and Z are the matrices X and Z in (1) and X %*% beta is the matrix
multiplication Xβ so the only way in which (1) differs from (2) other than
notationally is that b in (1) is replaced by (sigma[i] * b) in (2), which,
for readers not familiar with R, has the following interpretation: sigma
is a vector of unknown parameters, i is a vector of the same length as b
and having values that are possible indices for sigma, so sigma[i] is the
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vector (σi1 , . . . , σim) in ordinary mathematical notation and * in (2) denotes
coordinatewise multiplication, so if zjk are the components of the matrix Z
the second term on the right hand side of (2) has j-th component

m∑
k=1

zjkσikbk

written in conventional mathematical notation.
We also change assumptions; in (1) b is general multivariate normal, but

in (2) b is standard multivariate normal (mean vector zero, variance matrix
the identity). Thus the only unknown parameters in our model are the
vectors beta and sigma.

We also allow for independent and identically distributed (IID) data,
in which case the data y is a matrix with IID columns, each column of y
modeled as described above.

Summary First consider a single individual. The data on this individ-
ual consist of observed data y and missing data (random effects) b, both
random vectors. Marginally, the random effects vector b has independent
standard normal components. The conditional distribution of y given b has
independent Bernoulli components. The success probabilities are given by

E(yi|b) = logit−1(ηi) =
1

1 + exp(−ηi)

where ηi are the components of the vector given by (2).
When we have multiple individuals, the are considered independent and

identically distributed.

1.2 The Influenza Data

Coull and Agresti (2000) propose fitting Logit-Normal GLMM to data
on influenza (flu).

1.2.1 Data

First we load the data, copied from Table 1 in Coull and Agresti (2000).

> data <- read.table("flu.txt", header = TRUE)

> names(data)

[1] "y1" "y2" "y3" "y4" "nobs"
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> nobs <- data$nobs

> data$nobs <- NULL

> ypat <- as.matrix(data)

> ypat <- ypat[nobs > 0, ]

> nobs <- nobs[nobs > 0]

> foo <- cbind(ypat, nobs)

> dimnames(foo)[[1]] <- rep("", nrow(foo))

> foo

y1 y2 y3 y4 nobs
0 0 0 0 140
0 0 0 1 31
0 0 1 0 16
0 0 1 1 3
0 1 0 0 17
0 1 0 1 2
0 1 1 0 5
0 1 1 1 1
1 0 0 0 20
1 0 0 1 2
1 0 1 0 9
1 1 0 0 12
1 1 0 1 1
1 1 1 0 4

there are

> sum(nobs)

[1] 263

independent and identically distributed (IID) individuals, each with four
Bernoulli observations (Y1, . . ., Y4). The meaning is that the observations
are IID random vectors y = (y1, y2, y3, y4) and the i-th pattern of y values
(the i-th row of ypat) is observed nobs[i] times.

3



1.2.2 Model

We fit the model the random effects having variance matrix

Σ = σ2


1 ρ1 ρ1 ρ2

ρ1 1 ρ1 ρ2

ρ1 ρ1 1 ρ2

ρ2 ρ2 ρ2 1

 (3)

which is given by equation (7) in Coull and Agresti (2000). In order to use
our restricted model random vector having variance matrix (3) in the form
Z∆b where Z is a fixed known matrix that does not contain parameters, ∆
is a diagonal positive semi-definite matrix, the diagonal being sigma[i] in
the notation of the preceding section, and b is a standard normal random
vector (having IID standard normal components). We try

Z =


1 1 1 0 0 0
1 1 0 1 0 0
1 1 0 0 1 0
1 −1 0 0 0 1

 (4)

Then

var(Z∆b) = Z∆2ZT

=


δ2
1 + δ2

2 + δ2
3 δ2

1 + δ2
2 δ2

1 + δ2
2 δ2

1 − δ2
2

δ2
1 + δ2

2 δ2
1 + δ2

2 + δ2
4 δ2

1 + δ2
2 δ2

1 − δ2
2

δ2
1 + δ2

2 δ2
1 + δ2

2 δ2
1 + δ2

2 + δ2
5 δ2

1 − δ2
2

δ2
1 − δ2

2 δ2
1 − δ2

2 δ2
1 − δ2

2 δ2
1 + δ2

2 + δ2
6


(5)

and we see that (3) and (5) do indeed have the same form if we impose the
constraints

δ3 = δ4 = δ5 = δ6 (6)

with one caveat. The representation (3) is positive semi-definite if

−1
2
≤ ρ1 ≤ 1 (7a)

ρ2
2 ≤

1 + 2ρ1

3
(7b)
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whereas the representation (5) is necessarily positive semi-definite, but as
the δi range over all non-negative numbers the correlations

ρ1 =
δ2
1 + δ2

2

δ2
1 + δ2

2 + δ2
3

ρ2 =
δ2
1 − δ2

2

δ2
1 + δ2

2 + δ2
3

only fill out the set

0 ≤ ρ1 ≤ 1 (8a)
−ρ1 ≤ ρ2 ≤ ρ1 (8b)

Hence our Z∆b model is a restriction of the full model specified by (3).
Nevertheless, if the MLE is in the interior of the parameter space for our

Z∆b model, then it is the same as the MLE for the full model.
To finish the model specification we must specify the design matrices

> x <- diag(4)

> z <- rbind(c(1, 1, 1, 0, 0, 0), c(1, 1, 0, 1, 0, 0), c(1, 1,

+ 0, 0, 1, 0), c(1, -1, 0, 0, 0, 1))

> idx <- c(1, 2, 3, 3, 3, 3)

the last vector being used to impose the constraint (6). Now sigma[idx]
is the diagonal of ∆. (We switched from i to idx because it is too hard to
remember not to use the variable name i for anything else).

1.2.3 Putative MLE

Coull and Agresti (2000) give the following MLE for this model.

> beta.putative <- c(-4, -4.4, -4.7, -4.5)

> sigmasq.putative <- 4.05^2

> rho1.putative <- 0.43

> rho2.putative <- (-0.25)

> delta3.putative <- sqrt(sigmasq.putative * (1 - rho1.putative))

> delta2.putative <- sqrt(sigmasq.putative * (rho1.putative - rho2.putative)/2)

> delta1.putative <- sqrt(sigmasq.putative * (rho1.putative + rho2.putative)/2)

> delta.putative <- c(delta1.putative, delta2.putative, delta3.putative)

> beta.putative

[1] -4.0 -4.4 -4.7 -4.5

> delta.putative

[1] 1.215000 2.361536 3.057683
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2 The Assigned Homework

Check the MLE found by Coull and Agresti (2000) (given in Section 1.2.3
above) using the metrop function in the MCMC package to calculate the
score. More precisely if fθ(b, y) is the complete data joint density (you have
to work this out for yourself, although it is described implicitly in the first
section), do the following.

1. Simulate using the metrop function the conditional distribution of b
given y under the parameter value θ (which denotes a vector of seven
parameters, four betas and three deltas).

2. If b1, b2, . . . are the resulting Markov chain, calculate

1
N

N∑
i=1

∇ log fθ(bi, y) (9)

where ∇ denotes differentiation w. r. t. θ (and hence is a seven-
dimensional vector of partial derivatives).

3. Calculate MCSE (using the method of batch means or any other valid
method) for each component of (9).

4. You should get zero (to within MCSE) for (9), assuming Coull and
Agresti (2000) are correct, which all the calculations I have done seem
to support. As statisticians we know that you can never “accept” a
null hypothesis, you can only “fail to reject” it (in the words of one
intro textbook I have used). So we can’t be sure from the MCMC that
this is the true MLE, but we can check it to arbitrary accuracy. Get
your MCSE for the components of (9) to less than 0.25 (note: this is
increased from the paper handed out in class).

Hints

For each individual, the observed data is a Bernoulli vector of length four
(a row of ypat) and the missing data is continuous random vector of length
four (marginally normal, but not conditionally given the observed data).
Although there are sum(nobs) = 263 individuals, all individuals with the
same observed data pattern (belonging to the same row of ypat) make the
same contribution to the log likelihood. Therefore we need only simulate as
many missing data patterns as there are observed data patterns, which is
nrow(ypat) = 14.
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In order to make this clear, write nj for nobs[j], and write yj for the
data pattern ypat[j, ] (note that yj is a four-vector), and write bij for the
missing data for an individual with data pattern yj simulated in the Markov
chain. Here i indicates an iteration of the Markov chain, j a data pattern,
and bij is a six-vector (so that Zbij makes sense).

Then we can rewrite (9) as

1
N

N∑
i=1

J∑
j=1

nj∇ log fθ(bij , yj) (10)

where now fθ denotes the complete data density for one individual with
observed data yj and missing data bij .

Thus we see that we can have the dimension of the state of the Markov
chain be nrow(ypat) × ncol(z) = 84.

An alternative method would be to run nrow(ypat) = 14 independent
Markov chains, each with state of dimension ncol(z) = 6. We still denote
the realizations bij but now for each fixed j b1j , b2j , . . . is a Markov chain
(all by itself).

Then we can calculate the contribution to the log likelihood

1
N

N∑
i=1

∇ log fθ(bij , yj) (11)

from this Markov chain and calculate standard errors for that too. Of course,
(11) is not supposed to be zero. Only when the terms of (11) are multiplied
by nj and added to give (10) do we get zero (theoretically).
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