
Stat 8931 Spin Glass Homework

Charles J. Geyer

October 12, 2005

1 Introduction

1.1 Model

The Edwards-Anderson spin glass model is a spatial lattice process on a
square lattice with nearest neighbors. It is like the Ising model explained in
the notes but with haphazard coupling constants. Its unnormalized density
is

h(x) = exp

 1
2τ

∑
(i,j)∈E

βijxixj

 (1)

where, as in the Ising model, the random variables xi take values in {−1,+1}
and the edges (i, j) ∈ E are nearest neighbors in the lattice. In the Edwards-
Anderson model the βij are themselves random variables, taken to be IID
standard normal. However, we are uninterested in the joint distribution of
the βij and the xi. We are only interested in the conditional distribution of
the xi given the βij . Thus we will always consider the βij as fixed known
numbers. (The only point of the Gaussian distribution here is to give the
βij haphazard values. Gaussianity itself is uninteresting here.) To finish the
model specification we must specify boundary conditions, which we take to
be periodic. The parameter τ plays the role of temperature.

1.2 Coupling Coefficients

We need two matrices of coupling coefficients (coupling to neighbor to
the right and coupling to the down neighbor). We generate these as follows.

> n <- 6

> set.seed(42)

> br <- matrix(rnorm(n^2), n, n)

> bd <- matrix(rnorm(n^2), n, n)

1



To not rely on the R random numbers changing, we write these out to a file
and read them back in.

> foo <- try(scan("betas.txt"))

> if (inherits(foo, "try-error")) {

+ write(c(br, bd), file = "betas.txt")

+ foo <- scan("betas.txt")

+ }

> n <- sqrt(length(foo)/2)

> n

[1] 6

> br <- matrix(foo[1:n^2], n, n)

> bd <- matrix(foo[n^2 + 1:n^2], n, n)

> br

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1.3709580 1.51152200 -1.3888610 -2.4404670 1.8951930 0.4554501
[2,] -0.5646982 -0.09465904 -0.2787888 1.3201130 -0.4304691 0.7048373
[3,] 0.3631284 2.01842400 -0.1333213 -0.3066386 -0.2572694 1.0351040
[4,] 0.6328626 -0.06271410 0.6359504 -1.7813080 -1.7631630 -0.6089264
[5,] 0.4042683 1.30487000 -0.2842529 -0.1719174 0.4600974 0.5049551
[6,] -0.1061245 2.28664500 -2.6564550 1.2146750 -0.6399949 -1.7170090

> bd

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] -0.78445900 0.7581632 -0.4314462 0.08976065 -0.3672346 0.33584810
[2,] -0.85090760 -0.7267048 0.6556479 0.27655070 0.1852306 1.03850600
[3,] -2.41420800 -1.3682810 0.3219253 0.67928880 0.5818237 0.92072860
[4,] 0.03612261 0.4328180 -0.7838390 0.08983289 1.3997370 0.72087820
[5,] 0.20599860 -0.8113932 1.5757280 -2.99309000 -0.7272920 -1.04311900
[6,] -0.36105730 1.4441010 0.6428993 0.28488300 1.3025430 -0.09018639

The tricky code using the R try function is how one does something that
may cause an error and respond to the error. Here we write the file only if
it does not already exist (more precisely, if it does not already exist or can
not be read without error). If the first scan command works, then we just
use its result.

We will consider these betas fixed throughout the exercise. The temper-
ature parameter τ will be variable. We start with

> tau <- 1

2



1.3 Coding Sets

Because we have negative coupling coefficients, the Swendsen-Wang algo-
rithm does not apply, and the only algorithms we know for updating x while
preserving this equilibrium distribution are variable-at-a-time Metropolis or
Gibbs. It is a well-known trick in lattice processes to update using coding
sets (introduced by Julian Besag). If we think of our square lattice as col-
ored like a chess board, we see that all neighbors of white nodes are black
and vice versa. As mentioned in the notes, the conditional distribution of
one variable given the rest depend only on the values of its neighbors. Thus
white nodes are conditionally independent given black nodes and vice versa.
Hence a block Gibbs (or block Metropolis) sampler that updates using cod-
ing sets as blocks can use the coding sets to make the block updates very
efficient.

With periodic boundary conditions, we must have n and hence n2 even
in order for coding sets to work properly.

1.4 Data

We take make up data on an n×n lattice. This means we have n2 nodes
and 2n2 edges in the graph. In order to do block updates efficiently in R we
precalculate lots of things.

> i <- matrix(seq(1, n^2), n, n)

> i

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 7 13 19 25 31
[2,] 2 8 14 20 26 32
[3,] 3 9 15 21 27 33
[4,] 4 10 16 22 28 34
[5,] 5 11 17 23 29 35
[6,] 6 12 18 24 30 36

> ir <- cbind(i[, -1], i[, 1])

> ir

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 7 13 19 25 31 1
[2,] 8 14 20 26 32 2
[3,] 9 15 21 27 33 3

3



[4,] 10 16 22 28 34 4
[5,] 11 17 23 29 35 5
[6,] 12 18 24 30 36 6

> il <- cbind(i[, n], i[, -n])

> il

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 31 1 7 13 19 25
[2,] 32 2 8 14 20 26
[3,] 33 3 9 15 21 27
[4,] 34 4 10 16 22 28
[5,] 35 5 11 17 23 29
[6,] 36 6 12 18 24 30

> id <- rbind(i[-1, ], i[1, ])

> id

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 2 8 14 20 26 32
[2,] 3 9 15 21 27 33
[3,] 4 10 16 22 28 34
[4,] 5 11 17 23 29 35
[5,] 6 12 18 24 30 36
[6,] 1 7 13 19 25 31

> iu <- rbind(i[n, ], i[-n, ])

> iu

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 6 12 18 24 30 36
[2,] 1 7 13 19 25 31
[3,] 2 8 14 20 26 32
[4,] 3 9 15 21 27 33
[5,] 4 10 16 22 28 34
[6,] 5 11 17 23 29 35

> x <- matrix(1, n, n)

If i is used as an index into the vector x of spin variables, so x[i] is just
the vector arranged in an array, x[i] is the same as x, then

4



� x[ir] is the vector of neighbors to the right,

� x[il] is the vector of neighbors to the left,

� x[iu] is the vector of neighbors upwards, and

� x[id] is the vector of neighbors downwards

so the unnormalized log density is

sum((x * x[ir] * br + x * x[id] * bd) / tau)

and the unnormalized log conditional density of x given the rest is

function(x) x * (x[ir] * br + x[id] * bd +
x[il] * br[il] + x[iu] * br[iu]) / tau

or, more precisely, this is the vector of such conditional probabilities, but
such a vector can be combined only over a coding set, which is given by

> co <- (i + (1 - n%%2) * col(i))%%2

> co

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 1 0 1 0 1
[2,] 1 0 1 0 1 0
[3,] 0 1 0 1 0 1
[4,] 1 0 1 0 1 0
[5,] 0 1 0 1 0 1
[6,] 1 0 1 0 1 0

> ico0 <- i[co == 0]

> ico1 <- i[co == 1]

2 Sampler

2.1 Elementary Block Update

Thus we can do two block Gibbs updates, one for each coding set, as
follows

> block.gibbs <- function(x, tau) {

+ foo <- x[ir] * br + x[id] * bd + x[il] * br[il] + x[iu] *

+ br[iu]

5



+ foo <- foo/tau

+ p <- 1/(1 + exp(-2 * foo))

+ x[ico0] <- as.numeric(runif(n^2/2) < p[ico0]) * 2 - 1

+ foo <- x[ir] * br + x[id] * bd + x[il] * br[il] + x[iu] *

+ br[iu]

+ foo <- foo/tau

+ p <- 1/(1 + exp(-2 * foo))

+ x[ico1] <- as.numeric(runif(n^2/2) < p[ico1]) * 2 - 1

+ return(x)

+ }

> print(x)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 1 1 1 1 1
[2,] 1 1 1 1 1 1
[3,] 1 1 1 1 1 1
[4,] 1 1 1 1 1 1
[5,] 1 1 1 1 1 1
[6,] 1 1 1 1 1 1

2.2 Doing a Run

By symmetry every Xi has mean zero, which also variance one, because
the variance is then E(X2

i ) and X2
i = 1 always.

Since our process is non-homogeneous in the coupling constants every
neighbor pair (Xi, Xj) is different. Of the five first and second order mo-
ments of the pair, we know four (the means and variances), but each pair
has a (possibly) different correlation.

Let us take as the functional of the state of interest the whole state
vector (all the Xi) and the products XiXj for neighbor pairs. We know the
Xi should have mean zero, but this provides a useful convergence check. (All
useful convergence checks “cheat” in this way. They use a known property
of the equilibrium distribution.)

> nbatch <- 100

> blen <- 100

> batch <- matrix(NA, nbatch, 3 * n^2)

> for (ibatch in 1:nbatch) {

+ xbatch <- rep(0, 3 * n^2)

6



+ for (iiter in 1:blen) {

+ x <- block.gibbs(x, tau)

+ xbatch <- xbatch + as.numeric(c(x, x * x[ir], x * x[id]))

+ }

+ batch[ibatch, ] <- xbatch/blen

+ }

> mu <- apply(batch, 2, mean)

> mcse <- apply(batch, 2, sd)/sqrt(nbatch)

> xmu <- matrix(mu[1:n^2], n, n)

> xmcse <- matrix(mcse[1:n^2], n, n)

> xxrmu <- matrix(mu[n^2 + 1:n^2], n, n)

> xxrmcse <- matrix(mcse[n^2 + 1:n^2], n, n)

> xxdmu <- matrix(mu[2 * n^2 + 1:n^2], n, n)

> xxdmcse <- matrix(mcse[2 * n^2 + 1:n^2], n, n)

> round(xmu, 3)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.015 0.006 0.015 -0.020 0.023 0.035
[2,] 0.005 0.008 -0.008 0.021 0.023 0.021
[3,] 0.006 0.012 0.009 0.030 -0.031 0.020
[4,] -0.010 0.012 0.018 0.028 -0.027 0.027
[5,] 0.018 -0.004 -0.007 -0.012 0.029 0.039
[6,] 0.050 -0.009 -0.010 0.011 0.039 -0.050

> round(xmcse, 3)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.035 0.044 0.028 0.045 0.044 0.038
[2,] 0.021 0.032 0.026 0.045 0.044 0.025
[3,] 0.017 0.016 0.016 0.035 0.027 0.032
[4,] 0.014 0.015 0.021 0.035 0.037 0.038
[5,] 0.017 0.016 0.029 0.044 0.031 0.025
[6,] 0.034 0.049 0.050 0.050 0.031 0.035

> round(xxrmu, 3)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.786 0.184 -0.480 -0.964 0.768 0.376
[2,] 0.147 -0.213 -0.502 0.938 0.108 0.289
[3,] 0.190 0.553 -0.041 -0.462 -0.428 0.561

7



[4,] 0.388 -0.056 0.357 -0.871 -0.873 -0.292
[5,] 0.334 0.543 0.398 -0.229 0.139 0.460
[6,] -0.203 0.954 -0.943 0.306 -0.635 -0.915

> round(xxrmcse, 3)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.006 0.019 0.015 0.002 0.010 0.015
[2,] 0.010 0.015 0.012 0.003 0.018 0.009
[3,] 0.010 0.007 0.015 0.013 0.012 0.007
[4,] 0.010 0.011 0.011 0.005 0.005 0.008
[5,] 0.010 0.008 0.012 0.020 0.019 0.009
[6,] 0.025 0.004 0.003 0.022 0.009 0.004

> round(xxdmu, 3)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.551 0.682 -0.812 -0.914 0.960 0.250
[2,] -0.321 -0.231 0.173 0.742 -0.326 0.509
[3,] 0.028 0.437 -0.040 0.204 0.415 0.743
[4,] 0.023 -0.005 -0.500 -0.256 -0.661 0.063
[5,] 0.337 0.073 0.496 -0.870 0.323 -0.699
[6,] -0.058 0.777 -0.063 0.365 0.348 -0.518

> round(xxdmcse, 3)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.010 0.008 0.006 0.004 0.003 0.016
[2,] 0.011 0.013 0.013 0.010 0.017 0.011
[3,] 0.010 0.008 0.011 0.020 0.012 0.007
[4,] 0.010 0.012 0.011 0.024 0.008 0.020
[5,] 0.011 0.016 0.012 0.007 0.017 0.008
[6,] 0.018 0.012 0.021 0.027 0.022 0.019

An examination of all 108 autocorrelation plots (one for each coordinate of
the vector of batch means) shows that perhaps doubling the batch size is
necessary for the mean coordinates (those contributing to xmu). We would
also like the standard errors to be smaller. Let’s redo.

> nbatch <- 200

> blen <- 1000

8



> batch <- matrix(NA, nbatch, 3 * n^2)

> for (ibatch in 1:nbatch) {

+ xbatch <- rep(0, 3 * n^2)

+ for (iiter in 1:blen) {

+ x <- block.gibbs(x, tau)

+ xbatch <- xbatch + as.numeric(c(x, x * x[ir], x * x[id]))

+ }

+ batch[ibatch, ] <- xbatch/blen

+ }

> mu <- apply(batch, 2, mean)

> mcse <- apply(batch, 2, sd)/sqrt(nbatch)

> xmu <- matrix(mu[1:n^2], n, n)

> xmcse <- matrix(mcse[1:n^2], n, n)

> xxrmu <- matrix(mu[n^2 + 1:n^2], n, n)

> xxrmcse <- matrix(mcse[n^2 + 1:n^2], n, n)

> xxdmu <- matrix(mu[2 * n^2 + 1:n^2], n, n)

> xxdmcse <- matrix(mcse[2 * n^2 + 1:n^2], n, n)

> round(xmu, 3)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.003 0.007 -0.008 0.007 -0.007 -0.006
[2,] -0.001 0.007 0.006 -0.007 -0.007 0.001
[3,] 0.004 -0.006 -0.006 -0.004 0.000 0.005
[4,] -0.006 -0.005 0.002 0.009 -0.009 0.009
[5,] -0.004 -0.001 0.006 0.009 0.007 -0.002
[6,] -0.001 0.011 0.012 -0.012 -0.003 0.001

> round(xmcse, 3)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.009 0.011 0.006 0.011 0.011 0.010
[2,] 0.005 0.009 0.006 0.011 0.011 0.005
[3,] 0.004 0.004 0.004 0.009 0.006 0.007
[4,] 0.003 0.004 0.005 0.008 0.008 0.008
[5,] 0.004 0.004 0.007 0.011 0.007 0.005
[6,] 0.007 0.012 0.012 0.012 0.007 0.007

> round(xxrmu, 3)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.791 0.193 -0.494 -0.967 0.779 0.385

9



[2,] 0.160 -0.201 -0.498 0.936 0.127 0.290
[3,] 0.194 0.544 -0.039 -0.494 -0.448 0.559
[4,] 0.391 -0.051 0.350 -0.870 -0.873 -0.288
[5,] 0.321 0.552 0.412 -0.224 0.111 0.438
[6,] -0.191 0.954 -0.940 0.288 -0.615 -0.915

> round(xxrmcse, 3)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.001 0.004 0.004 0.001 0.002 0.005
[2,] 0.002 0.004 0.003 0.001 0.004 0.002
[3,] 0.002 0.002 0.003 0.003 0.003 0.002
[4,] 0.002 0.003 0.002 0.001 0.001 0.002
[5,] 0.002 0.002 0.002 0.005 0.004 0.002
[6,] 0.006 0.001 0.001 0.006 0.003 0.001

> round(xxdmu, 3)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.557 0.687 -0.819 -0.917 0.964 0.246
[2,] -0.315 -0.228 0.160 0.750 -0.360 0.528
[3,] 0.032 0.423 -0.028 0.218 0.419 0.744
[4,] 0.011 -0.013 -0.505 -0.260 -0.656 0.041
[5,] 0.325 0.103 0.516 -0.868 0.314 -0.696
[6,] -0.060 0.775 -0.056 0.355 0.371 -0.517

> round(xxdmcse, 3)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.002 0.002 0.001 0.001 0.001 0.004
[2,] 0.003 0.003 0.003 0.002 0.004 0.002
[3,] 0.003 0.002 0.003 0.005 0.003 0.002
[4,] 0.002 0.002 0.002 0.005 0.002 0.004
[5,] 0.002 0.003 0.002 0.002 0.004 0.002
[6,] 0.004 0.003 0.006 0.008 0.005 0.004

3 Lower Temperature

So far, so good. But how about if we lower the temperature?

> tau <- 0.2

10



> nbatch <- 200

> blen <- 1000

> batch <- matrix(NA, nbatch, 3 * n^2)

> for (ibatch in 1:nbatch) {

+ xbatch <- rep(0, 3 * n^2)

+ for (iiter in 1:blen) {

+ x <- block.gibbs(x, tau)

+ xbatch <- xbatch + as.numeric(c(x, x * x[ir], x * x[id]))

+ }

+ batch[ibatch, ] <- xbatch/blen

+ }

> mu <- apply(batch, 2, mean)

> mcse <- apply(batch, 2, sd)/sqrt(nbatch)

> xmu <- matrix(mu[1:n^2], n, n)

> xmcse <- matrix(mcse[1:n^2], n, n)

> xxrmu <- matrix(mu[n^2 + 1:n^2], n, n)

> xxrmcse <- matrix(mcse[n^2 + 1:n^2], n, n)

> xxdmu <- matrix(mu[2 * n^2 + 1:n^2], n, n)

> xxdmcse <- matrix(mcse[2 * n^2 + 1:n^2], n, n)

> round(xmu, 3)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1.000 1.000 0.986 -1.000 1.000 1.000
[2,] 0.970 0.978 -0.986 1.000 1.000 0.940
[3,] 0.710 -0.494 -0.494 0.999 -0.954 0.938
[4,] -0.710 -0.494 -0.095 0.937 -0.937 0.937
[5,] 0.982 0.993 0.998 0.999 0.937 1.000
[6,] 1.000 1.000 1.000 -1.000 0.996 -1.000

> round(xmcse, 3)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.000 0.000 0.001 0.000 0.000 0.000
[2,] 0.010 0.001 0.001 0.000 0.000 0.023
[3,] 0.011 0.010 0.010 0.000 0.018 0.024
[4,] 0.011 0.010 0.013 0.024 0.024 0.024
[5,] 0.001 0.000 0.000 0.000 0.024 0.000
[6,] 0.000 0.000 0.000 0.000 0.001 0.000

> round(xxrmu, 3)

11



[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1.000 0.986 -0.986 -1.000 1.000 1.000
[2,] 0.948 -0.965 -0.986 1.000 0.940 0.965
[3,] -0.660 0.938 -0.494 -0.955 -0.983 0.717
[4,] 0.725 -0.379 -0.032 -1.000 -1.000 -0.715
[5,] 0.985 0.996 0.997 0.936 0.937 0.982
[6,] 1.000 1.000 -1.000 -0.996 -0.996 -1.000

> round(xxrmcse, 3)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.000 0.001 0.001 0.000 0.000 0.000
[2,] 0.010 0.001 0.001 0.000 0.023 0.012
[3,] 0.009 0.001 0.010 0.017 0.007 0.008
[4,] 0.009 0.015 0.014 0.000 0.000 0.009
[5,] 0.000 0.000 0.000 0.024 0.024 0.001
[6,] 0.000 0.000 0.000 0.001 0.001 0.000

> round(xxdmu, 3)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.970 0.978 -1.000 -1.000 1.000 0.940
[2,] 0.679 -0.515 0.487 0.999 -0.954 0.998
[3,] -0.457 0.938 -0.379 0.938 0.983 0.999
[4,] -0.698 -0.492 -0.097 0.936 -1.000 0.937
[5,] 0.982 0.993 0.998 -0.999 0.940 -1.000
[6,] 1.000 1.000 0.986 1.000 0.996 -1.000

> round(xxdmcse, 3)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.010 0.001 0.000 0.000 0.000 0.023
[2,] 0.021 0.009 0.009 0.000 0.018 0.001
[3,] 0.018 0.001 0.015 0.024 0.006 0.001
[4,] 0.011 0.010 0.013 0.024 0.000 0.024
[5,] 0.001 0.000 0.000 0.000 0.023 0.000
[6,] 0.000 0.000 0.001 0.000 0.001 0.000

Now our “convergence diagnostic” (available only because of a known sym-
metry in the problem) diagnoses complete failure. The xmu results are com-
pletely wrong. The standard errors for them are also completely wrong (we
know the right answer, exactly zero, thus the correct MCSE are one in this
case).

12



4 The Assigned Homework

Finally we get to the homework assignment.

1. Figure out what sort of nbatch and blen this sampler with tau == 0.2
needs to get (a) working with all of the reported MC estimates and
MCSE apparently correct and (b) all of the MCSE less than 0.001.
Note that you do not actually need to get the MCSE below 0.001.
You need to run long enough so that you are getting apparently correct
results and can thus infer using the “square root law” how long you
would need to run to get all MCSE below 0.001.

2. Implement a parallel tempering sampler with one “helper” chain the
same model except for a different tau. Make the helper tau such that
(a) the helper chain mixes better (is that higher temperature or lower?)
and (b) the acceptance rate of Metropolis rejection for the swap steps
is in the range 20–30%. Then proceed as in part 1 figuring out what
sort of nbatch and blen this sampler needs to get all of the MCSE for
the distribution of interest (with tau == 0.2) less than 0.001.

13


