
Question (Geyer) Consider simulated data for logistic regression found in
the URL

http://www.stat.umn.edu/geyer/PhD/F03/logit.txt

which can be read into R by the following commands

foo <- read.table(
url("http://www.stat.umn.edu/geyer/PhD/F03/logit.txt"),
header = TRUE)

assuming the computer is connected to the internet. Since the file is plain text
with variables in white-space-separated columns headed by variable names, it
can be read into any other computer package with minimal effort. There are
one response variable y and four predictor variables named x1 through x4.

We assume the data follow the usual logistic regression model, the response
variables yi, i = 1, . . ., n are independent Bernoulli(pi) random variables with
the success probabilities being defined by

ηi = logit(pi) = log
(

pi

1− pi

)
(logit link function) and the linear predictor vector η = (η1, . . . , ηn) is defined
by

η = Xβ

where X (the “design matrix” or “model matrix”) is n× 5 with one column of
1’s (the constant predictor) and the other four columns being the vectors x1
through x4 of the data set.

In short, we assume the model whose frequentist analysis is done by the
following R commands (assuming the data have been read into the data frame
foo as shown above)

out <- glm(y ~ x1 + x2 + x3 + x4, data = foo,
family = binomial())

summary(out)

But this problem isn’t about that frequentist analysis, we want a Bayesian
analyis. For our Bayesian analysis we assume the same data model as the
frequentist, and we assume the prior distribution of the five parameters (the
regression coefficients) makes them independent and identically normally dis-
tributed with mean 0 and standard deviation 2.

(a) Construct a Markov chain Monte Carlo sampler for the posterior distri-
bution of these parameters. Describe your sampler in sufficient detail so
that an expert could duplicate your results.

If you wish, you may use the metropolis function written for the 8701
course. The current version is installed on the system. The R command

library(mcmc)
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makes it available. Caution: The main change to the function from
previous versions is that the supplied R function now must calculate log
unnormalized density, where the previous versions wanted plain (no log)
unnormalized density.

(b) Provide Monte Carlo estimates for

(i) the posterior mean of each of the five regression coefficients, and

(ii) the posterior variance of each of the five regression coefficients.

(c) Provide Monte Carlo standard errors (MCSE) for the ten posterior expec-
tations reported in part (b), where MCSE are estimated standard errors
due to Monte Carlo sampling in these quantities. Describe your method
of calculating MCSE in sufficient detail so that an expert could duplicate
your results.

Use a long enough run of your Markov chain sampler so that the MCSE
are less than 0.01.

(d) Provide a plain text file of R commands that when batched reproduces
your results, that is, supposing your file is named foo.R the command

R CMD BATCH foo.R

produces a file foo.Rout that contains all the results you report in your
write-up. In order to get the same results every time, include the command

set.seed(42)

at the top of your foo.R file (you may choose another number if you don’t
like 42).

You may use any other widely available computer package so long as you
can batch process a plain text file in a manner similar to that described
here.

To preserve anonymity, submit your plain text computer file by e-mail to
dana@stat.umn.edu.

(e) Also submit a brief write-up describing what you did in plain English (no
computer code) and summarizing the results.

Solution (Geyer) This problem is not “Gibbs friendly” because the one-
dimensional conditionals are not “brand name” distributions. Hence I used
a Metropolis “random walk” sampler with a multivariate normal proposal cen-
tered at the current position having variance a constant times the identity. After
some experimentation trying 0.1, 0.2, 0.3, and 0.4 for the constant, I settled on
the latter, which gave acceptance rates of 0.239, 0.2365, 0.2346333, and 0.23484
in various runs.
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The results were for E(β | data) in a run of length 2× 105 were

intercept x1 x2 x3 x4

mean 0.6584 0.8008 1.1706 0.5016 0.7269
MCSE 0.0026 0.0034 0.0033 0.0031 0.0038

and the results were for var(β | data) in the same run were

intercept x1 x2 x3 x4

mean 0.0926 0.1362 0.1304 0.1249 0.1616
MCSE 0.0010 0.0016 0.0015 0.0013 0.0019

The MCSE were determined by the method of overlapping batch means using
batches of length 50. Autocorrelation plots (not shown) indicated no significant
autocorrelation past lag 35, so batch length 50 should be safe.

My batch file and the results of running it are at

http://www.stat.umn.edu/geyer/PhD/F03/foo.R
http://www.stat.umn.edu/geyer/PhD/F03/foo.Rout

Details about MCSE of Posterior Variance A variance is just an expec-
tation, var(X) = E{(X − µ)2}. If

mi =
1
n

n∑
j=1

βi,j

is your estimate of the posterior mean of βi (where βij is the value of βi in the
j-th iteration of the Markov chain) then

vi =
1
n

n∑
j=1

(βi,j −mi)2

is your estimate of the posterior variance of βi. And this is “just” an average
(variance is a special case of expectation, sample variance is a special case of
sample average).

So you calculate MCSE for vi exactly the same way as you calculate it for
mi. To calculate it for mi you hand the sequence

j 7→ βi,j

to your favorite method of Markov chain variance estimation, say OLBM, and
to calculate it for vi you hand the sequence

j 7→ (βi,j −mi)2

to your favorite method of Markov chain variance estimation, say OLBM.
You don’t need to invent something new because variance is a special case

of expectation.
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Additional Stuff Not asked, but of some interest, is the posterior standard
deviation (that is, the square root of the reported posterior variance). The
reason it was not asked is that its MCSE would involve the delta method.
Anyway it was

intercept x1 x2 x3 x4

mean 0.3044 0.3690 0.3611 0.3535 0.4020
MCSE 0.0016 0.0021 0.0020 0.0019 0.0024
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