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Conditional Aster Models

A conditional aster model is a submodel parameterized

θ = a + Mβ

An unconditional aster model is a submodel parameterized

ϕ = a + Mβ

There is a subtle but profound difference.



Conditional Aster Models (cont.)

Both are exponential families, but

An unconditional aster model is a regular full exponential
family.

A conditional aster model is a curved exponential family.

Curved exponential families have some nice properties (asymptotics
always work for sufficiently large sample sizes), but none of the
nice properties we talked about for unconditional aster models.



Conditional Aster Models (cont.)

Review. Unconditional aster models have

concave log likelihood,

MLE unique if they exist,

MLE characterized by “observed = expected”,

observed and expected Fisher information the same,

submodel canonical statistic is sufficient,

maximum entropy property,

multivariate monotone relationship between canonical and
mean value parameters.

Curved exponential families don’t, in general, have any of these
properties.



Conditional Aster Models (cont.)

The log likelihood is (from deck 2)

l(θ) =
∑
j∈J

[
yjθj − yp(j)cj(θj)

]
= 〈y , θ〉 −

∑
j∈J

yp(j)cj(θj)

and the conditional canonical affine submodel is

l(β) = 〈MT y , β〉 −
∑
j∈J

yp(j)cj(θj)

On the right-hand side θ is a function of β through θ = a + Mβ
even though the notation does not explicitly indicate this.



Conditional Aster Models (cont.)

l(β) = 〈MT y , β〉 −
∑
j∈J

yp(j)cj(θj)

We see we get almost no sufficient dimension reduction.

The likelihood is a function of MT y and the set of all predecessors.
That typically is not a dimension reduction at all (when the
dimension of MT y is more than the number of terminal nodes).

Because conditional aster models do not have the sufficient
dimension reduction property, there is no submodel canonical
sufficient statistic.



A Plethora of Parameterizations (cont.)

A conditional aster model only has five parameterizations.
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β 7→ a + Mβ

Like with unconditional aster models, all of the parameters and
arrows in the square on the right are the same as for saturated
aster models.

Also like with unconditional aster models, if we know that θ has
the form θ = a + Mβ for some β, then we know or can find that β
and that defines the red horizontal arrow.



A Plethora of Parameterizations (cont.)

Unlike the case with unconditional aster models where the MLE for
each of the six parameterizations (β̂, τ̂ , ϕ̂, µ̂, θ̂, ξ̂) is a vector
sufficient statistic, with conditional aster models — because they
do not have the sufficient dimension reduction property — the
MLE for no parameterization is a vector sufficient statistic.



Conditional Aster Models (cont.)

Conditional aster models do have two of the aforementioned
properties of regular full exponential families

concave log likelihood and

MLE unique if they exist.

(They do not have any of the other properties.)



Conditional Aster Models (cont.)

l(θ) =
∑
j∈J

[
yjθj − yp(j)cj(θj)

]

Each term in square brackets is concave and strictly concave if
there are no multinomial dependence groups.

The sum of (strictly) concave functions is (strictly) concave.

The composition of a (strictly) concave function and an affine
function is (strictly) concave.

Hence the log likelihood for a conditional canonical affine
submodel is concave and strictly concave if there are no
multinomial dependence groups. Hence the MLE is unique if it
exists in case of no multinomial dependence groups.



Conditional Aster Models (cont.)

l(θ) =
∑
j∈J

[
yjθj − yp(j)cj(θj)

]

The observed Fisher information matrix for θ for a saturated aster
model is

Jsat(θ) = −∇2l(θ)

is a diagonal matrix whose j , j component is

yp(j)c
′′
j (θj)

where the double prime indicates ordinary second derivative.



Conditional Aster Models (cont.)

The expected Fisher information matrix for θ, denoted Isat(θ), is
the expectation of the observed Fisher information matrix.

So it too is diagonal, and its i , i component is

µp(j)c
′′
j (θj)



Conditional Aster Models (cont.)

Then conditional canonical affine submodel observed and expected
Fisher information matrices are

J(β) = MTJsat(a + Mβ)M

I (β) = MT Isat(a + Mβ)M



Conditional Aster Models (cont.)

The maximum entropy argument only works for full exponential
families, not for curved exponential families.



Conditional Aster Models (cont.)

We do have the saturated model multivariate monotone
relationships µ←→ ϕ and ξ ←→ θ.

But that doesn’t tell us anything about canonical affine submodels.



Conditional Aster Models (cont.)

Unconditional canonical affine submodels have the property that
changing ϕj changes θk for all k � j .

Conditional canonical affine submodels do not have this property.
Changing θj only changes θj .

Thus conditional canonical affine submodels tend to need many
more parameters to fit adequately.



Conditional Aster Models (cont.)

So if conditional canonical affine submodels don’t have any nice
properties, why do they even exist?

One reason is just because they do exist as abstract mathematical
objects, and they weren’t that much extra code to implement, and
— who knows? — maybe they will find an important use someday.

Just because they exist does not mean we actually recommend
them for anything. The preceding sentence was in the 2013 version
of the course slides, and we have preserved it to show that things
change.

We have since found a situation where unconditional aster models
do not work and conditional aster models do.



Conditional Aster Models (cont.)

A paper by Shaw, Wagenius, and Geyer (Journal of Ecology, 2015)
uses unconditional aster models for some analyses but also uses
conditional aster models for a situation where unconditional aster
models do not work.



Conditional Aster Models (cont.)

Unconditional aster models do not work — they cannot be
scientifically interpreted — when there are time-dependent
covariates.

The reason is that the aster transform means that increasing ϕj

holding other components of ϕ fixed changes not only θj but also
θp(j), θp(p(j)), θp(p(p(j))), and so forth. (This was discussed in
deck 3, slides 75 ff.)

And this means that — in an unconditional aster model — it is
impossible for a time-dependent covariate to act at a given time. If
it acts at node j , then it also acts at node p(j), node p(p(j)), node
p(p(p(j))), and so forth.

Thus if one has time-dependent covariates one must use a
conditional aster model.



Conditional Aster Models (cont.)

The issue Shaw, et al. (2015) were interested in was whether aphid
load (aphids are herbivores of echinacea plants) in a specific year
was related to components of fitness expressed in the following
year (and of course this is for each year aphid load was measured).

The issue was complicated by aphid choice. A quote from the
abstract of that paper

Further, flowering individuals generally harboured more
aphids than non-flowering plants. In analyses of overall
plant fitness, within each genotypic class, fitness was great-
est for plants with the greatest aphid-loads, consistent with
the preference of aphids for flowering individuals.

So the fact that aphid load was not a “treatment” controlled by the
experimenters means we have a correlation is not causation
problem.



Conditional Aster Models (cont.)

Nevertheless, the conditional aster analysis was suggestive.
Another quote

To distinguish the role of aphid choice from the effect
of aphid herbivory in the relationship between plant fitness
and aphid-load, we evaluated how components of fitness
varied with prior aphid-load. Notably, [inbred] plants with
high aphid-loads the previous year produced far fewer ach-
enes per flower head than those that carried fewer aphids.



Conditional Aster Models (cont.)

Another issue that would be a good reason to use conditional aster
models is if one wanted some form of stationarity in an aster
model.

If one wanted for some reason that components of ξ and hence of
θ do not change over time for a certain kind of node, then
conditional aster models can be made to have this property but
unconditional aster models cannot.

For example, you might require that the conditional expectation of
survival given survival to the previous year be the same for all
years. That would require a conditional aster model.


