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Lande-Arnold Analysis

Lande and Arnold (Evolution, 1983) proved some theorems about
natural and artificial selection and fitness landscapes and
introduced a method of analysis that has become very widely used
(Google Scholar says “Cited by 4298” as I write this).

The Lande-Arnold approach has been criticized (Mitchell-Olds and
Shaw, Evolution, 1987). (Google Scholar says “Cited by 825” for
that.) But the popularity of Lande-Arnold methodology continues.

The reason (IMHO) for the popularity is that simple statistical
methodology — ordinary least squares (OLS) regression — is
coupled with a sophisticated mathematical interpretation. Anyone
can easily do the analysis, and the results are considered (by
conventional wisdom) to be very important.



Lande-Arnold Analysis (cont.)

These slides follow Shaw and Geyer (Evolution, 2010) and its
accompanying technical reports (U of M School of Statistics TR
670, TR 671 revised, TR 674 revised, and TR 675 revised).
(Google Scholar says “Cited by 68” for this paper.)

This shows how to combine the mathematics of Lande and Arnold
with defensible statistical analysis (using aster models).

It avoids most (but not all) of the problematic aspects of
Lande-Arnold methodology.



Phenotype and Genotype

All the biologists know, but statisticians may not, biologists
distinguish between phenotype and genotype.

The phenotype of an organism is the “type” characterized by the
organism’s observable characteristics (morphology, behavior,
whatever). The characteristics themselves are phenotypic traits.

The genotype of an organism is the “type” characterized by the
organism’s genetic material. The characteristics themselves are
genotypic traits or just genes.



Phenotype and Genotype (cont.)

Throughout the twentieth century genotypes became closer and
closer to being “observable” until now it only costs a few hundred
dollars (and the time to send a tissue sample to a sequencing lab)
to “observe” the genotype of an organism.

So phenotype and genotype are no longer divided by a
philosophically clear line. Colloquially “phenotype” means
observable by “ordinary” means. But this distinction is not
philosophically clear either. For example, observe whether an adult
mammal gets an upset stomach after drinking milk. That
“phenotype” directly indicates the existence of a mutation in the
gene that encodes the enzyme lactase, which is part of the
“genotype”.

Nevertheless the distinction is usually clear enough in context and
continues to be very useful.



Lande-Arnold Analysis (cont.)

The fitness landscape for phenotypic traits is the conditional
expectation of (Darwinian) fitness given a vector of phenotypic
traits

g(z) = E (w | z)

where w is observed fitness (number of offspring or the best
surrogate thereof in the data) and z is the vector of phenotypic
traits.

The fitness landscape for genotypic traits is the same except z
is a vector of genotypic traits.

Another term for fitness landscape is adaptive landscape.

Yet another term is individual selection surface.



Lande-Arnold Analysis (cont.)

According Arnold (Integrative and Comparative Biology, 2003) the
original fitness landscape idea is the genotypic one (Wright,
Proceedings of the Sixth International Congress on Genetics,
1932). The phenotypic one came later (Simpson, Tempo and
Mode in Evolution, 1944).

For the statisticians, who may not know, Sewall Wright and George
Gaylord Simpson are two of the seminal figures of the
“neo-Darwinian synthesis that merged Darwin’s theory of evolution
by natural selection with Mendelian genetics. They are more
famous than any statistician except R. A. Fisher (who is most
famous for also being one of the seminal figures of the
neo-Darwinian synthesis — statistics was just a sideline for him).



Lande-Arnold Analysis (cont.)

The idea is that causation flows

genotype −→ phenotype −→ fitness

so the genotypic fitness landscape is more “fundamental” (the scare
quotes are because this is simplistic).

Nevertheless, the phenotypic fitness landscape is more easily
“observed” so that is what is most widely studied.



Lande-Arnold Analysis (cont.)

Both kinds of fitness landscape say important things about
evolution.

Over the course of time natural selection tends to move a
population toward a local maximum of the fitness landscape.

In particular, the change in phenotype expected under one
generation of selection can be read off the phenotypic fitness
landscape (and similarly with genotype replacing phenotype and
genotypic replacing phenotypic).

Lande and Arnold established an important connection allowing
(under certain assumptions) the change in genotype expected
under one generation of selection can be read off the phenotypic
fitness landscape! That is one reason for the importance of their
methodology.



Lande-Arnold Analysis (cont.)

g(z) = E (w | z)

Any conditional expectation, thought of as a function of the
variables “behind the bar” is called a regression function by
statisticians. The fitness landscape for phenotypes is the regression
function of fitness w on a vector z of phenotypic traits.

Everything statisticians know about regression functions can be
applied to the problem. In particular, we are going to apply aster
models. (So in this application, the connection between aster
models and regression theory is very strong.)

But we are going to follow Lande and Arnold (1983) and our TR
670 rather than regression textbooks.



Betas and Gammas

Lande and Arnold introduced β and γ as important concepts. TR
670 and the paper (Shaw and Geyer, 2010) show that actually
these concepts split into four betas and three gammas.



Betas and Gammas: 1st and 2nd Concepts

Define

Q(α, β, γ) = E
{

(w − α− zTβ − 1
2z

Tγz)2
}
, (1)

where α is a scalar, β a vector, and γ a symmetric matrix. Let α1

and β1 be the values that minimize Q(α, β, 0) and let α2, β2, and
γ2 be the values that minimize Q(α, β, γ). Then

g1(z) = α1 + zTβ1 (2a)

g2(z) = α2 + zTβ2 + 1
2z

Tγ2z (2b)

are the best linear approximation (BLA) and the best
quadratic approximation (BQA) to the fitness landscape g(z),
where “best” means minimizing (1).



Betas and Gammas: 1st and 2nd Concepts (cont.)

Q(α, β, γ) = E
{

(w − α− zTβ − 1
2z

Tγz)2
}

(1)

The function (1) is well defined so long as second moments of w
and fourth moments of z exist. Then (1) is convex quadratic in α,
β, and γ, so minimizers always exist.

First considering α1 and β1, if there exist distinct minimizers of
Q(α, β, 0), say with and without stars, then by convexity the whole
line segment between them must have the same value, that is

Q
(
sα∗1 + (1− s)α1, sβ

∗
1 + (1− s)β1, 0)

is a constant function of s.



Betas and Gammas: 1st and 2nd Concepts (cont.)

Q
(
sα∗1 + (1− s)α1, sβ

∗
1 + (1− s)β1, 0)

= E
{

(w − α1 − zTβ1 − s[∆α + zT∆β])2
}

= Q
(
α1, β1, 0)− 2sE

{
(w − α1 − zTβ1)(∆α + zT∆β)

}
+ s2E

{
(∆α + zT∆β)2

}
where ∆α = α∗1 − α1 and ∆β = β∗1 − β1, and this can only be a
constant function of s if its derivative with respect to s

−2E
{

(w − α1 − zTβ1)(∆α + zT∆β)
}

+ 2sE
{

(∆α + zT∆β)2
}

is zero for all s. And this happens if and only if both expectations
in the formula above are zero.



Betas and Gammas: 1st and 2nd Concepts (cont.)

And
E
{

(∆α + zT∆β)2
}

is zero if and only if

∆α + zT∆β = 0, almost surely,

that is, if and only if z is a degenerate random vector. But if that
holds, then

E
{

(w − α1 − zTβ1)(∆α + zT∆β)
}

is zero too. Thus we have proved α1 and β1 are uniquely defined if
and only if z is a nondegenerate random vector (not concentrated
on a hyperplane).



Betas and Gammas: 1st and 2nd Concepts (cont.)

A similar analysis says that α2, β2, and γ2, are uniquely defined if
and only if there do not exist a scalar ∆α, a vector ∆β, and a
symmetric matrix ∆γ, not all zero, such that

∆α + zT∆β + 1
2z

T∆γz = 0, almost surely.

This is a more general issue than what we have been calling
degeneracy. This holds if and only if z is concentrated on a curved
manifold having dimension lower than the dimension of z . We
won’t need that concept except right here. We can call that
“curvilinear degeneracy”. Using that notion, we have proved α2, β2,
and γ2 are uniquely defined if and only if z is not a curvilinear
degenerate random vector.



Betas and Gammas: 3rd Concept

Define

β3 = E{∇g(z)} (3a)

γ3 = E{∇2g(z)} (3b)

where (as always in these slides) ∇g(z) denotes the vector of
partial derivatives ∂g(z)/∂zi and ∇2g(z) denotes the matrix of
second partial derivatives ∂2g(z)/∂zi∂zj .

Note that β3 is not the gradient of the fitness landscape at any
point (not ∇g(z) for any z). Rather it is the average gradient of
the fitness landscape, averaged over all points. Similarly for γ3.



Betas and Gammas: 4th Concept

Define

β4 = Σ−1 cov(w , z) (4a)

γ4 = Σ−1 cov(w , zzT )Σ−1 (4b)

where Σ = var(z).

What are they? They are related to changes in phenotype or
genotype from one generation of selection (more on this later).



Betas and Gammas: All Concepts

One might wonder about the point of the preceding, but for the
following.

Theorem (Lande-Arnold)

If z is a multivariate normal random vector having mean vector
zero and nonsingular variance matrix, and under no assumptions
about w except that enough moments exist, then
β1 = β2 = β3 = β4 and γ2 = γ3 = γ4.

Comment 1. The equalities β1 = β3 = β4 and γ2 = γ3 hold even
if z is not centered at zero (more on this later).

Comment 2. The equality β1 = β4 holds without multivariate
normality of z , only requiring enough moments of w and z .



Betas and Gammas: All Concepts (cont.)

The Lande-Arnold theorem is interesting because it says that
(assuming multivariate normality of z) β and γ capture several
different aspects of the fitness landscape.

Linear and quadratic regression approximations (1st and 2nd
concepts).

Average first and second derivatives (3rd concepts).

What? (4th concepts). Actually something about biology
(more on this later).



Betas and Gammas: All Concepts (cont.)

Univariate normality can be assured: replace data by normal scores
or an approximation thereto, for example, the R function qqnorm

essentially does

plot(qnorm(ppoints(length(x))), sort(x))

so

qnorm(ppoints(length(x))[rank(x)]

transforms any continuous random variable (no ties!) to near
perfect univariate normality.



Betas and Gammas: All Concepts (cont.)

But (a very big but) there is no such trick for multivariate
normality.

Multivariate normality is impossible to transform to and also
impossible to check.

So if z is multivariate, there are essentially 3 betas and 3 gammas,
all different (we usually have β1 = β4, but no other equalities).



Proof: β1 = β4

Q(α, β, γ) = E
{

(w − α− zTβ − 1
2z

Tγz)2
}

(1)

Here we don’t assume anything about the distribution of w and z
except that the moments that appear in formulas exist.

Define η = E (w) and µ = E (z). Then

∂Q(α, β, 0)

∂α
= −2E

{
w − α− zTβ

}
∂Q(α, β, 0)

∂βi
= −2E

{
(w − α− zTβ)zi

}
Set equal to zero

η − α− µTβ = 0 (∗)
E (wz)− αµ− βE (zzT )β = 0 (∗∗)



Proof: β1 = β4 (cont.)

η − α− µTβ = 0 (∗)
E (wz)− αµ− βE (zzT )β = 0 (∗∗)

β4 = Σ−1 cov(w , z) (4a)

Solving (∗) for α gives

α = η − µTβ

and plugging this into (∗∗) gives

E (wz)− ηµ−
[
E (zzT )− µµT

]
β = cov(w , z)− Σβ = 0

and solving for β gives the right-hand side of (4a).



Proof: β2 = β4 and γ2 = γ4

Q(α, β, γ) = E
{

(w − α− zTβ − 1
2z

Tγz)2
}

(1)

Now we do assume z is mean-zero multivariate normal.

∂Q(α, β, γ)

∂α
= −2E

{
w − α− zTβ − 1

2z
Tγz

}
∂Q(α, β, γ)

∂βi
= −2E

{
(w − α− zTβ − 1

2z
Tγz)zi

}
∂Q(α, β, γ)

∂γjk
= −E

{
(w − α− zTβ − 1

2z
Tγz)zjzk

}
Set equal to zero and solve.



Proof: β2 = β4 and γ2 = γ4 (cont.)

E
{
w − α− zTβ − 1

2z
Tγz

}
= 0 (∗)

E
{

(w − α− zTβ − 1
2z

Tγz)zi
}

= 0 (∗∗)
E
{

(w − α− zTβ − 1
2z

Tγz)zjzk
}

= 0 (∗∗∗)

As before, let E (w) = η. Setting (∗) equal to zero gives

η − α− 1
2 tr(γΣ) = 0

(the term involving first moments of z drops out) and solving for α
gives

α = η − 1
2 tr(γΣ)



Proof: β2 = β4 and γ2 = γ4 (cont.)

E
{

(w − α− zTβ − 1
2z

Tγz)zi
}

= 0 (∗∗)
β4 = Σ−1 cov(w , z) (4a)

Setting (∗∗) equal to zero gives

E
{

(w − zTβ)zi
}

= 0

(the terms involving only first and third moments of z drop out).
Rewriting this in vector form gives

cov(w , z) = E (zzT )β = Σβ

and solving for β again gives the right-hand side of (4a).



Proof: β2 = β4 and γ2 = γ4 (cont.)

E
{

(w − α− zTβ − 1
2z

Tγz)zjzk
}

= 0 (∗∗∗)
α = η − 1

2 tr(γΣ) (5)

In (∗∗∗) terms involving only third moments of z drop out giving

E
{

(w − α− 1
2z

Tγz)zjzk
}

= 0

and then plugging in our solution for α gives

E
{

(w − η + 1
2 tr(γΣ)− 1

2z
Tγz)zjzk

}
= 0 (∗∗∗∗)



Proof: β2 = β4 and γ2 = γ4 (cont.)

We need the identity about fourth moments of the multivariate
normal distribution

E (zizjzkzl) = σijσkl + σikσjl + σilσjk (6)

that can be looked up in multivariate analysis books or derived by
differentiating the moment generating function. In it σij are the
components of the variance matrix Σ.



Proof: β2 = β4 and γ2 = γ4 (cont.)

E
{

(w − η + 1
2 tr(γΣ)− 1

2z
Tγz)zjzk

}
= 0 (∗∗∗∗)

E (zizjzkzl) = σijσkl + σikσjl + σilσjk (6)

By (6)

E
{

(zTγz)zjzk
}

=
∑

i

∑
l γilE (zizjzkzl)

=
∑

i

∑
l γil
[
σijσkl + σikσjl + σilσjk

]
= 2(ΣγΣ)jk + tr(γΣ)σjk

where the first term on the last line means the j , k term of the
matrix ΣγΣ.

Plugging this back into (∗∗∗∗) gives

E
{

(w − η)zjzk
}
− (ΣγΣ)jk = 0 (∗∗∗∗∗)



Proof: β2 = β4 and γ2 = γ4 (cont.)

E
{

(w − η)zjzk
}
− (ΣγΣ)jk = 0 (∗∗∗∗∗)

γ4 = Σ−1 cov(w , zzT )Σ−1 (4b)

Rewriting (∗∗∗∗∗) in vector form gives

cov(w , zzT ) = ΣγΣ

and solving for γ gives the right-hand side of (4b).



Proof: β2 = β4 and γ2 = γ4 (cont.)

For this part of the proof, note that we used the multivariate
normality assumption in a very strong way via the identity (6). In
order that γ2 = γ4 we need the relation between the first four
moments of z to be exactly that of the multivariate normal
distribution. This is not something we are likely to achieve in any
real data.

On the other hand the proof of β2 = β4 only required that z have
mean zero and that the moments that appear in the equations
exist.



Proof: β3 = β4 and γ3 = γ4

This part of the proof uses integration by parts. First we give a
quick sketch of the proof, then the details. Statisticians call this
use of integration by parts Stein’s lemma (Stein, Annals of
Statistics, 1981). Lande and Arnold independently invented it.



Proof: β3 = β4 and γ3 = γ4 (cont.)

β3 = E{∇g(z)} (3a)

β4 = Σ−1 cov(w , z) (4a)

Again z is multivariate normal with mean vector zero and
non-singular variance matrix Σ. Let f denote the marginal PDF of
z , and let g denote the fitness landscape. Then

β3 =
∫
∇g(z)f (z) dz

= −
∫
g(z)∇f (z) dz

= Σ−1
∫
zg(z)f (z) dz

= Σ−1 cov{g(z), z}

which agrees with the right-hand side of (4a) by the iterated
expectation theorem.



Proof: β3 = β4 and γ3 = γ4 (cont.)

γ3 = E{∇2g(z)} (3b)

γ4 = Σ−1 cov(w , zzT )Σ−1 (4b)

Similarly,

γ3 =
∫
∇2g(z)f (z) dz

=
∫
g(z)∇2f (z) dz

=
∫ [

Σ−1zzTΣ−1 − Σ−1
]
g(z)f (z) dz

= Σ−1 cov{g(z), zzT}Σ−1

which agrees with the right-hand side of (4b) by the iterated
expectation theorem.



Proof: β3 = β4 and γ3 = γ4 (cont.)

The integration by parts formula is∫
u dv = uv −

∫
v du.

It allows us to flip derivatives from one part of an integrand to
another but there is the uv part to deal with.

The integration by parts is a single-integral technique. Here we
have multiple integrals, so it must be applied to one of the multiple
integrals. Look at one partial derivative.∫ +∞

−∞

∂g(z)

∂zi
f (z) dzi = g(z)f (z)

∣∣∣∣+∞
−∞
−
∫ +∞

−∞
g(z)

∂f (z)

∂zi
dzi

We want the first term on the right-hand side to be zero, which it
certainly will be if this term is integrable, that is, if E{g(z)} exists.



Proof: β3 = β4 and γ3 = γ4 (cont.)

Similarly,∫ +∞

−∞

∂2g(z)

∂zi∂zj
f (z) dzi =

∂g(z)

∂zj
f (z)

∣∣∣∣+∞
−∞
−
∫ +∞

−∞

∂g(z)

∂zj

∂f (z)

∂zi
dzi

and the first term on the right-hand side will be zero of E{∇g(z)}
exists.



Proof: β3 = β4 and γ3 = γ4 (cont.)

And

−
∫ +∞

−∞

∂g(z)

∂zj

∂f (z)

∂zi
dzi

= − g(z)
∂f (z)

∂zi

∣∣∣∣+∞
−∞

+

∫ +∞

−∞
g(z)

∂2f (z)

∂zi∂zj
dzi

= − g(z)
(
Σ−1z

)
i
f (z)

∣∣∣∣+∞
−∞

+

∫ +∞

−∞
g(z)

∂2f (z)

∂zi∂zj
dzi

and the first term on the right-hand side will be zero if E{zg(z)}
exists.



Proof: β3 = β4 and γ3 = γ4 (cont.)

The iterated expectation theorem says

E{E (Y | X )} = E (Y )

for any random vectors X and Y . We already used this in deriving

µj = ξjµp(j)

the relationship between conditional and unconditional mean value
parameters in aster models.



Proof: β3 = β4 and γ3 = γ4 (cont.)

Here we need it to prove

cov(w , z) = cov{g(z), z}
cov(w , zzT ) = cov{g(z), zzT}

where, as always,
g(z) = E (w | z)

The two proofs have the same pattern

cov{g(z), z} = E{g(z)z} − E{g(z)}E (z)

= E{E (w | z)z} − E{E (w | z)}E (z)

= E{E (wz | z)} − E{E (w | z)}E (z)

= E (wz)− E (w)E (z)

= cov(w , z)



Proof: β3 = β4 and γ3 = γ4 (cont.)

The middle step on the preceding slide also used

h(z)E (w | z) = E{h(z)w | z}

for any function h, that is, functions of the variables “behind the
bar” are treated as constants and can be moved in and out of a
conditional expectation.



Betas and Gammas: All Concepts (cont.)

That finishes the proof of the Lande-Arnold theorem.

Now for the criticism.

In getting γ2 = γ4 we used multivariate normality in a very strong
way: the first four moments of z exactly match those of a
multivariate normal distribution.

In getting β3 = β4 and γ3 = γ4 we used multivariate normality in a
very strong way: the first two derivatives of the PDF of z exactly
match on average those of a multivariate normal distribution.

Of course if the first derivatives exactly match at all points, then
the distributions exactly match. But we don’t need an exact match
at all points, only an exact match when integrated against various
functions. But that is not a “natural” condition. Nothing leads us
to expect that except when the derivatives match pointwise.



Betas and Gammas: All Concepts (cont.)

Because exact multivariate normality of z is such a strong
condition, we do not expect it to hold in applications.

Thus the conclusion of the Lande-Arnold theorem (all the betas
are the same and so are all the gammas) won’t hold either.

Thus there are different betas and gammas, and it behooves the
scientist to know the differences.



Betas and Gammas: All Concepts (cont.)

On the other hand, the Lande-Arnold theorem does not assume
anything about the distribution of fitness w (other than that
enough moments exist).

In particular it does not assume w is normal.

Because of the way Lande and Arnold (1983) suggest doing
statistical inference about w (more on this later), some people say
they assume w is normal. But neither the definitions of the betas
and gammas nor the Lande-Arnold theorem assume any such thing.



Selection

So what does all of this have to do with selection?

The difference between the average value of z before selection and
“after selection but before reproduction” (quoting Lynch and
Walsh, Genetics and Analysis of Quantitative Traits, 1998) is

E (wrz)− E (z) = cov(wr , z) (7)

where
wr =

w

E (w)

is fitness reweighted to act like a probability density (integrates to
one). The quantity wr is called relative fitness.



Selection (cont.)

Lynch and Walsh call (7) the Robertson-Price identity, and Lande
and Arnold call it “a multivariate generalization of the results of
Robertson (1966) and Price (1970, 1972).”

It is not clear what the phrase “after selection but before
reproduction” can mean in natural populations or in experiments
where observed fitness includes components of fitness involving
reproduction.

But the mathematical meaning of the left hand side of (7) is clear:
the difference between the weighted average of phenotype values,
weighted according to relative fitness, and the unweighted average.



Selection (cont.)

What Price (1972) calls “type I selection” is more general than (7),
it being “a far broader problem category than one might at first
assume” but “intended mainly for use in deriving general relations
and constructing theories, and to clarify understanding of selection
phenomena, rather than for numerical calculation” (both
quotations from Price, 1972).

The reason for the discrepancy between the narrow applicability of
the theory in Lande and Arnold (1983) and the broad applicability
of Price (1972) is that the theory in Price (1972) is more general:
(7) corresponds to (A 13) in Price (1972) but this is only a limited
special case of his (A 11) which contains an extra term on the
right-hand side.



Selection (cont.)

E (wrz)− E (z) = cov(wr , z) (7)

Nevertheless, (7), even though it doesn’t properly account for
reproduction, is what everybody uses because it it the only thing
simple enough use in calculations.

IMHO, the covariance on the right-hand side is a red herring. In
general, for any random variable wr and and random vector z we
have

cov(wr , z) = E (wrz)− E (wr )E (z)

and we only get (7) because we defined wr so that E (wr ) = 1.



Selection (cont.)

E (wrz)− E (z) = cov(wr , z) (7)

Even if you like woofing about covariance, you have to be careful
to say that the change of phenotypic mean “after selection but
before reproduction” (or some other weasel wording) is the
covariance of phenotype and relative fitness (not fitness itself).



Selection (cont.)

cov(wr , z) = E (wrz)− E (z) (7)

β4 = Σ−1 cov(w , z) (4a)

Notice that this important quantity appears in β4 if we redefine
fitness to be relative fitness.



Selection (cont.)

The fact that β1 = β4 under very weak conditions (mere existence
of moments) connects selection with least squares regression,
because β1 is the “true unknown vector of regression coefficients”
in the linear regression of w on z (by definition).

Lande and Arnold then make the curious mistake of essentially
saying correlation is causation (although they are careful to not
quite say this).



Selection (cont.)

Lande and Arnold do say

[β1 = β4] is a set of partial regression coefficients of rel-
ative fitness on the characters (Kendall and Stuart, 1973,
eq. 27.42). Under quite general conditions, the method of
least squares indicates that the element βi gives the slope
of the straight line that best describes the dependence of
relative fitness on character zi , after removing the residual
effects of other characters on fitness (Kendall and Stuart,
1973, Ch. 27.15). There is no need to assume that the
actual regressions of fitness on the characters are linear,
or that the characters have a multivariate normal distri-
bution. For this reason, the partial regression coefficients
β provide a general solution to the problem of measuring
the forces of directional selection acting directly on the
characters.



Selection (cont.)

For those who don’t know, Kendall and Stuart is a multivolume
tome on statistics that has gone through many editions and
continues being revised by other authors now that the original ones
are dead. It is considered quite authoritative by biologists,
although curiously, I have never heard or read a Ph. D. statistician
mentioning it.

And the 1973 edition of Kendall and Stuart does contain some
language trying to justify the use of linear regression in situations
that we now would consider inappropriate. Current editions no
longer contain this language.



Selection (cont.)

Before the smoothing revolution and the robustness revolution and
the generalized linear models revolution and the regularization
revolution and the bootstrap revolution, ordinary least squares was
the only game in town and was used in many situations we would
now consider very inappropriate (although we still teach it as a
very important tool and still overuse it). And academics do apply
their cleverness to trying to justify what they are doing (even when
it is unjustifiable).

Let that be a lesson. It can happen to any of us. Defending the
indefensible makes anyone — even those with the highest IQ,
especially those with the highest IQ — stupid. All that IQ goes
into making even more clever and convoluted arguments proving
black is white.



Selection (cont.)

To be fair to Lande and Arnold, (1) they didn’t exactly say
correlation is causation, (2) they were quoting statisticians, and (3)
there is an important issue here to deal with.

When several traits are highly correlated, they tend to all change
together. If selection is actually acting only on one of them, all will
change. How can this be disentangled? Actually, it can’t
(correlation is not causation). But β does do the best job that can
be done.

When β1 = β3 = β4 (these equalities require z be multivariate
normal), we get another interpretation of β. It is the average
gradient of the fitness landscape.



Quantitative Genetics

Fisher (1918) invented quantitative genetics. Before this paper
Darwinism and Mendelism were thought to be incompatible. Fisher
showed they in fact work well together and so started “the modern
synthesis” a. k. a. neo-Darwinism.

This paper is also the introduction of random effects models. So
Fisher invented them too.



Quantitative Genetics (cont.)

Quantitative genetics writes

z = µ+ x + e

where µ is an unknown parameter vector, x is the vector of
additive genetic effects, e is everything else (environmental,
non-additive genetic, and gene-environment interaction effects),
and x and e are assumed to be independent with

x ∼ Normal(0,G )

e ∼ Normal(0,E )

where G is the “G matrix” (additive genetic variance matrix) and E
is another variance matrix.



Quantitative Genetics (cont.)

The additive genetic effect vector x cannot, of course be “genes”
because (1) genes do not necessarily act additively — this is only
part of the genetic effects — and (2) genes (or, to be more precise,
mutations or alleles) are discrete but x is continuous. Sometimes x
is referred to as a vector of polygenes, emphasizing that it models
the cumulative effect of many genes.



Quantitative Genetics (cont.)

From the theory of the multivariate normal distribution (found in
textbooks on multivariate analysis)

E (x | z) = GΣ−1(z − µ) (∗)
var(x | z) = G − GΣ−1G (∗∗)

We also need a very strong assumption: x and w are
conditionally independent given z . Equivalently, genotypic
characters x influence fitness only through the values of the
observed phenotypic characters z (not in any other way).



Quantitative Genetics (cont.)

Then the difference of genotypic values before selection and after
selection but before reproduction is

E (wx)− E (x) = E{E (wx | z)}
= E{E (w | z)E (x | z)}
= E{E (w | z)GΣ−1(z − µ)}
= E{E (wGΣ−1(z − µ) | z)}
= E{wGΣ−1(z − µ)}
= GΣ−1 cov(w , z)

= Gβ4

The second equality is the “very strong assumption”. We are taking
w to be wr everywhere.



Quantitative Genetics (cont.)

So β1 = β4 appears here too.

But what about the argument that β disentangles the effects of
selection on the traits (to the extent that is does)? Shouldn’t we
apply that here too?

Yes. We should multiply by the analog of Σ−1 for genotypic
effects, which is G−1. But that is

G−1Gβ4 = β4

so (assuming the “very strong assumption”) β says the same thing
about genotypes (at least additive genetic effects) as it does about
phenotypes!



Quantitative Genetics (cont.)

In fact this “very strong assumption” is very questionable in the real
world (Rausher, Evolution, 1992).

This needs more research.



Quantitative Genetics (cont.)

Now we follow Lande and Arnold in playing the same game with
changes of variance instead of changes of means. Everywhere we
are just going to write w instead of wr . Define

ζ = E (wz)

(mean “after selection but before reproduction”). Then

E{w(z − ζ)(z − ζ)T}

is variance “after selection but before reproduction”. Also define

s = cov(w , z)

(Greek letters are parameters and so are s, G , and E ).



Quantitative Genetics (cont.)

γ4 = Σ−1 cov(w , zzT )Σ−1 (4b)

E{w(z − ζ)(z − ζ)T} = E{w(z − µ− s)(z − µ− s)T}
= E{w(z − µ)(z − µ)T}
− 2E{w(z − µ)}sT + ssT

= E{w(z − µ)(z − µ)T} − ssT

and the change in variance is

E{w(z − ζ)(z − ζ)T} − var(z) = E{w(z − µ)(z − µ)T} − ssT − Σ

= cov{w , (z − µ)(z − µ)T} − ssT



Quantitative Genetics (cont.)

To repeat, change in variance (due to selection)

cov{w , (z − µ)(z − µ)T} − ssT

and
γ4 = Σ−1 cov(w , zzT )Σ−1

share the term cov(w , zzT ) when we assume µ = 0 (or have
arranged that by centering the phenotypic characters z).

But they aren’t the same, so it is unclear what the relevance of this
calculation is.



Quantitative Genetics (cont.)

Lande and Arnold also play the same game with change in variance
of additive genetic effects under selection and obtain

GΣ−1
[
cov{w , (z − µ)(z − µ)T} − ssT

]
Σ−1G

and this equals

Gγ4G − (GΣ−1s)(GΣ−1s)T

when we assume (or arrange that) µ = 0.

School of Statistics Technical Report 670 Commentary on
Lande-Arnold Analysis (on the aster models web site) gives details.

But, again, it is unclear what the relevance of this calculation is.

It also depends on the “very strong assumption” that is very
questionable.



On Not Centering Phenotypic Variables

Q(α, β, γ) = E
{

(w − α− zTβ − 1
2z

Tγz)2
}
, (1)

What if we don’t assume (or arrange that) µ = 0?

Keep E (z) = 0 but also define y = z + µ.

Now define the analog of Q(α, β, 0) for y

Q∗1 (α∗, β∗) = E
{

(w − α∗ − (z + µ)Tβ∗
}

= Q(α∗ + µTβ∗, β∗, 0)

The minimizers satisfy

α1 = α∗1 + µTβ∗1

β1 = β∗1



On Not Centering Phenotypic Variables (cont.)

In summary: not centering predictors does not affect β1. (It does
affect α1 but this parameter has no biological importance.)

A similar argument (for once we spare you the details, which are in
TR 670) says that not centering predictors does not affect γ2 but
does affect the lower-order parameters α2 and β2. In particular,

β∗2 = β2 − γ2µ



On Not Centering Phenotypic Variables (cont.)

The notions of average gradient and average hessian are invariant.
The fitness landscape for y is

g∗(y) = g(y − µ)

and the chain rule gives

∇g∗(y) = ∇g(y − µ)

and
E{∇g∗(y)} = E{∇g(y − µ)} = E{∇g(z)}

so nothing changes. And similarly for γ3.



On Not Centering Phenotypic Variables (cont.)

Still assuming E (z) = 0 and y = z + µ, define

β∗4 = Σ−1 cov(w , y)

γ∗4 = Σ−1 cov(w , yyT )Σ−1

Then β4 = β∗4 because centering does not affect covariance.

But

cov(w , yyT ) = cov{w , (z + µ)(z + µ)T}
= cov(w , zzT ) + 2 cov{w , zµT}
= cov(w , zzT ) + 2 cov(w , z)µT

so
γ∗4 = γ4 + 2β4µ

TΣ−1



On Not Centering Phenotypic Variables (cont.)

Summary: not centering phenotypic variables affects β2 and γ4
(only).

TR 670 notes this fact about β2 but not about γ4. It should have
noted this about γ4.

If one uses γ4 (which hardly anyone does), then one should center
the predictors. If one uses β2, then one should center the
predictors. For the other betas and gammas, it doesn’t matter.

Similarly, if one wants the interpretation of β as change of mean
under selection and of γ as some part of change of variance under
selection (but not all of it, so why would one want that?), one
must use relative fitness wr in place of actual fitness w .



Best Quadratic Approximation versus Fitness Landscape

The following calculations come from TR 670. There they are
done for the multivariate case, but to keep things simple, we will
only do the univariate case.

Assume z is exactly mean zero normal with nonzero variance σ2.

For mathematical convenience, assume that the relative fitness
landscape looks exactly like a normal distribution

g(z) = ce−(z−η)
2/2λ

where c is a constant that makes g(z) have expectation one.



BQA versus Fitness Landscape (cont.)

Let f be the PDF of z so

f (z)g(z) =
1√
2πσ

e−z
2/2σ2

ce−(z−η)
2/2λ

= c∗e−(z−ζ)
2/2τ2

where c∗ is another constant chosen to make this integrate to one
(that is, c∗ = 1/

√
2πτ = c/

√
2πσ) and

1

τ2
=

1

σ2
+

1

λ
ζ

τ2
=
η

λ

In order for this to make sense we do not need λ > 0, only τ2 > 0.



BQA versus Fitness Landscape (cont.)

1

τ2
=

1

σ2
+

1

λ
ζ

τ2
=
η

λ

So

τ2 =
λσ2

λ+ σ2

and

ζ =
ητ2

λ
=

ησ2

λ+ σ2



BQA versus Fitness Landscape (cont.)

Now we calculate β3 and γ3 (and all of the betas and gammas are
the same by the Lande-Arnold theorem)

∇g(z) = −g(z)(z − η)/λ

∇2g(z) = g(z)(z − η)2/λ2 − g(z)/λ

Hence

β = −(ζ − η)/λ

γ = τ2/λ2 + (ζ − η)2/λ2 − 1/λ

=
τ2 − λ
λ2

+ β2

Complicated!



BQA versus Fitness Landscape (cont.)

ζ =
ησ2

λ+ σ2

β = −ζ − η
λ

=
η − ησ2

λ+σ2

λ

=
η(λ+ σ2)− ησ2

λ(λ+ σ2)

=
η

λ+ σ2



BQA versus Fitness Landscape (cont.)

τ2 =
λσ2

λ+ σ2

γ =
τ2 − λ
λ2

+ β2

=
λσ2

λ+σ2 − λ
λ2

+ β2

=
λσ2 − λ2 − λσ2

λ2(λ+ σ2)
+ β2

= − 1

λ+ σ2
+ β2



BQA versus Fitness Landscape (cont.)

There is a large literature, reviewed in Kingsolver, et al. (American
Naturalist, 2001), that interprets the signs of components of β as
indicating the direction of selection and interprets the signs of
diagonal components of γ as indicating stabilizing selection
(negative curvature, so a peak, and selection moves toward the
peak) or disruptive selection (positive curvature, so a trough, and
selection moves away from the trough).

Mitchell-Olds and Shaw (Evolution, 1987) pointed out that
extrapolating beyond the range of the data is a bad idea so when
the peak or the trough of the best quadratic approximation occur
outside the range of the observed data an interpretation of
stabilizing or disruptive selection is unwarranted (or at best very
very weakly supported).



BQA versus Fitness Landscape (cont.)

β =
η

λ+ σ2

γ = − 1

λ+ σ2
+ β2

In the toy model we are looking at here η is the peak of the fitness
landscape if λ > 0 or the trough if λ < 0.

We see that β does have the same sign as η (because of the
requirement that λ+ σ2 > 0 regardless of the sign of λ).

But, depending on the relative sizes of η and λ, the sign of γ need
not be the same as the sign of λ.



BQA versus Fitness Landscape (cont.)

β =
η

λ+ σ2

γ = − 1

λ+ σ2
+ β2

Hence the sign of γ does not always reflect whether the fitness
landscape has a peak or a trough even if the peak or trough of the
BQA is in the range of the data.

Clearly γ = 0 when

1

λ+ σ2
= β2 =

η2

(λ+ σ2)2

or
λ+ σ2 = η2



BQA versus Fitness Landscape (cont.)

Here are a few example plots taken from TR 670.

> v1 <- 1 # sigma squared

> mu2 <- 0 # eta

> v2 <- 2 # lambda

> beta <- mu2 / (v1 + v2)

> gamma <- beta^2 - 1 / (v1 + v2)

> alpha <- 1 - gamma * v1 / 2

> v3 <- 1 / (1 / v1 + 1 / v2)

> c2 <- sqrt(v1 / v3) *

+ exp(mu2^2 * (v2 - v3) / (2 * v2^2))



BQA versus Fitness Landscape (cont.)

Then the following code makes the figure on the next slide

> zlim <- 3

> foo <- function(z) alpha + beta * z + gamma * z^2 / 2

> bar <- function(z) c2 * exp(- (z - mu2)^2 / (2 * v2))

> zz <- seq(-zlim, zlim, 0.01)

> ylim <- c(min(foo(zz), bar(zz)), max(foo(zz), bar(zz)))

> par(mar = c(5, 4, 0, 0) + 0.1)

> curve(foo, col = "magenta", ylab = "relative fitness",

+ xlab = "z", from = -3, to = 3, ylim = ylim, lwd = 2)

> curve(bar, col = "green3", add = TRUE, lwd = 2)



BQA versus Fitness Landscape (cont.)
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Figure: Fitness landscape (green) and its best quadratic approximation
(magenta). σ2 = 1, λ = 2, η = 0



BQA versus Fitness Landscape (cont.)
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Figure: Fitness landscape (green) and its best quadratic approximation
(magenta). σ2 = 1, λ = 2, η = 1



BQA versus Fitness Landscape (cont.)
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Figure: Fitness landscape (green) and its best quadratic approximation
(magenta). σ2 = 1, λ = 2, η =

√
λ+ σ2 = 1.732.



BQA versus Fitness Landscape (cont.)
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Figure: Fitness landscape (green) and its best quadratic approximation
(magenta). σ2 = 1, λ = 2, η = 2



Summary of Lande-Arnold Theory

β, especially β1 = β4 has a strong biological interpretation. We
call that “Lande-Arnold beta”.

The connection of γ (any of the gammas) to biology is much
weaker.

The connection of the sign of components of γ to whether the
fitness landscape has a peak or not is also weak.

The sign of components of γ can be misleading not only when the
stationary point is outside the range of the data but when it is
quite a bit inside the range of the data — within 1.75 standard
deviations from the mean in our example, but this depends on the
exact shape of the fitness landscape and could be even worse for
other examples.



OLS Estimation

So far we have no complaints about the applied probability in
Lande and Arnold (1983). All of their theorems about betas and
gammas are correct. (They would not use the plural because they
work under the assumption that z is mean zero multivariate normal
so all of the betas are the same as are all of the gammas.)

Note that there has been no statistical inference so far in this deck.
It is all applied probability.

Now we turn to the examples in Lande and Arnold (1983), which
do do statistical inference (incorrectly).

They propose to estimate β1 and the BLA by ordinary least squares
(OLS) linear regression of relative fitness w on the phenotypic trait
vector z .

They propose to estimate γ2 and the BQA by OLS quadratic
regression of relative fitness w on the phenotypic trait vector z .



OLS Estimation (cont.)

Up to a certain point, there is nothing wrong with OLS estimation.

By the Gauss-Markov theorem OLS estimators are best linear
unbiased estimators (BLUE) of their expectations (conditional on
the predictors). That is, BLUE requires that we treat z and fixed
and w as random.

Thus α̂1 and β̂1 are BLUE of α1 and β1 and, moreover, if

g1(z) = α1 + β1z

ĝ1(z) = α̂1 + β̂1z

so g1 is the BLA of the fitness landscape, then ĝ1(z) is the BLUE
of g1(z) for each z , and all of this holds simultaneously.



OLS Estimation (cont.)

Similarly, α̂2 and β̂2 and γ̂2 are BLUE of α2 and β2 and γ2 and the
OLS quadratic regression estimator of the fitness landscape is the
BLUE of the BQA.

Since division is not a linear operation, OLS estimates are BLUE
only applies to α1, β1, α2, β2, γ2, the BLA, and the BQA if we use
actual fitness rather than relative fitness (it is the operation of
dividing actual fitness by mean fitness to get relative finitness that
isn’t linear so we can’t have the L in BLUE and the Gauss-Markov
theorem does not apply).



OLS Estimation (cont.)

But that is as far as it goes.

The t and F statistics printed out by OLS regression software
require that the conditional distribution of the response given the
predictors be homoscedastic mean zero normal.

Fitness is far from normal, much less homoscedastic normal.

never negative

large atom at zero

multimodal if multiple breeding seasons

standard deviation varies with conditional expectation of
response (rather than constant)



OLS Estimation (cont.)

Thus using the t and F statistics for statistical inference is bogus.
But that is what Lande and Arnold (1983) did, and that is what
most of the literature following has done.

Mitchell-Olds and Shaw (1987) pointed out the bogosity, but the
practice continued.



Aster Models

We, of course, recommend using aster models for life history
analysis in general and estimation of fitness in particular.

But, before we can do that, there is one more issue that remains.

Aster models work on the canonical parameter scale. If we use a
quadratic function of z on the canonical parameter scale, what
happens on the mean value parameter scale? Does that make
sense?

Yes. Because of the multivariate monotonicity property.

For this argument we follow the appendix of Shaw and Geyer
(2010).



Multivariate Monotonicity

Suppose we have two kinds of predictors: the vector z of
phenotypic traits and another vector x . And suppose we model the
unconditional canonical parameter as follows

ϕj(x , z) =

{
aj(x) + q(z), j ∈ F

aj(x), j /∈ F

where q is a linear function of z or a quadratic function of z and F
is the set of nodes whose sum is deemed observed fitness.

Now consider the difference between two individuals that differ in z
values but not x values.

ϕj(x , z)− ϕj(x , z
′) =

{
q(z)− q(z ′), j ∈ F

0, j /∈ F



Multivariate Monotonicity (cont.)

Now the multivariate monotonicity property says∑
j∈J

[
ϕj(x , z)− ϕj(x , z

′)
][
µj(x , z)− µj(x , z ′)

]
> 0

where, as usual, the mus are unconditional mean value parameters.
But using what was derived on the preceding slide, this simplifies to[

q(z)− q(z ′)
]∑
j∈F

[
µj(x , z)− µj(x , z ′)

]
> 0

hence we have∑
j∈F

µj(x , z) <
∑
j∈F

µj(x , z
′) if and only if q(z) < q(z ′)

(fitness on the canonical parameter scale is a monotone function of
fitness on the mean value parameter scale and vice versa).



Multivariate Monotonicity (cont.)

Because individuals are independent, this result applies whether F
is the set of fitness nodes for just one individual or for all
individuals, so long as only predictor values for an individual enter
the regression function for that individual.

This means a contour plot for the fitness landscape would have the
same contours on either the canonical or the mean value parameter
scale (the numbers attached to the contours would differ, but the
same lines would be contours of both).

Since gradients are perpendicular to contours, the gradient vectors
of both functions evaluated at the same z point in the same
direction (the lengths differ but not the directions).



Data

We use simulated data from Shaw and Geyer (2010). The reason
for the simulated data was to illustrate many points that could not
be illustrated with real data that existed at the time.



Data (cont.)

1
Ber−−−−→ y1

Ber−−−−→ y2
Ber−−−−→ y3

Ber−−−−→ y4 survivalyBer

yBer

yBer

yBer

y5 y6 y7 y8 any flowersy0-Poi

y0-Poi

y0-Poi

y0-Poi

y9 y10 y11 y12 number flowersyPoi

yPoi

yPoi

yPoi

y13 y14 y15 y16 number seedsyBer

yBer

yBer

yBer

y17 y18 y19 y20 number germinate



Data (cont.)

Stanton-Geddes, et al. (PLoS One, 2012) have data that is near to
this design. In particular, their graph goes to germinated seeds.

But the graph doesn’t cover multiple years because the organism is
an annual plant (Chamaecrista fasciculata).

This graph has interesting features not present in other examples.

Not all predecessors are Bernoulli.

Not all data measured on one individual (germinated seeds are
from the individual but not that individual).



Data (cont.)

The data are in the data set sim in the aster package.

> library(aster)

> data(sim)

> ls()

[1] "beta.true" "fam" "ladata" "mu.true"

[5] "phi.true" "pred" "redata" "theta.true"

[9] "vars"

> vars

[1] "isurv1" "isurv2" "isurv3" "isurv4" "iflow1"

[6] "iflow2" "iflow3" "iflow4" "nflow1" "nflow2"

[11] "nflow3" "nflow4" "nseed1" "nseed2" "nseed3"

[16] "nseed4" "ngerm1" "ngerm2" "ngerm3" "ngerm4"

> names(redata)

[1] "z1" "z2" "varb" "resp" "id" "root"



Model Fitting

Before we fit models we need to explain why we do not need a
predictor named fit.

> fit <- grepl("ngerm", as.character(redata$varb))

> identical(fit, redata$z1 != 0)

[1] TRUE

> identical(fit, redata$z2 != 0)

[1] TRUE

The z1 in redata is already fit : z1. Similarly for z2.



Model Fitting (cont.)

> out2 <- aster(resp ~ varb + 0 + z1 + z2 + I(z1^2)

+ + I(z1*z2) + I(z2^2),

+ pred, fam, varb, id, root, data = redata)

> summary(out2)

Call:

aster.formula(formula = resp ~ varb + 0 + z1 + z2 + I(z1^2) +

I(z1 * z2) + I(z2^2), pred = pred, fam = fam, varvar = varb,

idvar = id, root = root, data = redata)

Estimate Std. Error z value Pr(>|z|)

varbiflow1 -3.444251 0.180123 -19.122 < 2e-16 ***

varbiflow2 -3.064152 0.203311 -15.071 < 2e-16 ***

varbiflow3 -3.207467 0.218952 -14.649 < 2e-16 ***

varbiflow4 -3.284180 0.236597 -13.881 < 2e-16 ***

varbisurv1 -0.065167 0.160348 -0.406 0.68444

varbisurv2 -0.700847 0.225747 -3.105 0.00191 **

varbisurv3 -0.094013 0.275111 -0.342 0.73256

varbisurv4 1.217672 0.234288 5.197 2.02e-07 ***

varbnflow1 -7.264353 0.090581 -80.198 < 2e-16 ***

varbnflow2 -7.452760 0.102617 -72.627 < 2e-16 ***

varbnflow3 -7.227782 0.105711 -68.373 < 2e-16 ***

varbnflow4 -7.044131 0.107792 -65.349 < 2e-16 ***

varbngerm1 -2.264595 0.030308 -74.720 < 2e-16 ***

varbngerm2 -2.270312 0.033766 -67.237 < 2e-16 ***

varbngerm3 -2.325980 0.036102 -64.429 < 2e-16 ***

varbngerm4 -2.304824 0.036977 -62.332 < 2e-16 ***

varbnseed1 2.881224 0.009182 313.789 < 2e-16 ***

varbnseed2 2.895118 0.010258 282.241 < 2e-16 ***

varbnseed3 2.880964 0.010737 268.332 < 2e-16 ***

varbnseed4 2.864026 0.011117 257.619 < 2e-16 ***

z1 0.146950 0.013695 10.730 < 2e-16 ***

z2 -0.020598 0.009842 -2.093 0.03637 *

I(z1^2) -0.027807 0.009508 -2.925 0.00345 **

I(z1 * z2) 0.023713 0.012352 1.920 0.05489 .

I(z2^2) -0.017986 0.006536 -2.752 0.00593 **

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Model Fitting (cont.)

> out1 <- aster(resp ~ varb + 0 + z1 + z2,

+ pred, fam, varb, id, root, data = redata)

> out0 <- aster(resp ~ varb + 0,

+ pred, fam, varb, id, root, data = redata)

> anova(out0, out1, out2)

Analysis of Deviance Table

Model 1: resp ~ varb + 0

Model 2: resp ~ varb + 0 + z1 + z2

Model 3: resp ~ varb + 0 + z1 + z2 + I(z1^2) + I(z1 * z2) + I(z2^2)

Model Df Model Dev Df Deviance P(>|Chi|)

1 20 84703

2 22 84959 2 255.900 < 2.2e-16 ***

3 25 84975 3 16.359 0.000957 ***

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Model Fitting (cont.)

> sout2 <- summary(out2)

> coef2 <- sout2$coefficients

> outies <- grepl("varb", rownames(coef2))

> printCoefmat(coef2[! outies, ])

Estimate Std. Error z value Pr(>|z|)

z1 0.1469497 0.0136949 10.7302 < 2.2e-16 ***

z2 -0.0205982 0.0098424 -2.0928 0.036366 *

I(z1^2) -0.0278071 0.0095082 -2.9245 0.003450 **

I(z1 * z2) 0.0237128 0.0123521 1.9197 0.054891 .

I(z2^2) -0.0179859 0.0065363 -2.7517 0.005929 **

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Model Fitting (cont.)

Normally, one doesn’t need the stuff on the previous page. That
was only because summary(sout2) ran off the slide.

IMHO, it doesn’t make sense to look at P-values (or stars) for
individual components. β is a vector and γ is a matrix. The anova

command we did tests whether γ is statistically significantly
different from zero (collectively) and similarly for β.

If we did want to do some “stargazing” we should Bonferroni
correct for five tests (multiply all the P-values by 5). Then we see
that the second component of β is not statistically significantly
different from zero and so is the off-diagonal component of γ. But
they are both marginally statistically significant when not
Bonferroni corrected. So why did we want to open that can of
worms in the first place?



Model Fitting (cont.)

There is a paper (Blows and Brooks, American Naturalist, 2003)
whose main point (?) is that one should not leave out “interaction
terms” like I(z1 * z2). Apparently many researchers had made
this mistake.

That “mistake” never even occurred to us because we don’t think
of such terms as “interactions” but as the off-diagonal terms of γ.
We are trying to fit a general quadratic function, and a general
quadratic function has such terms. If we left them out, we
wouldn’t be doing (the aster competitor of) Lande-Arnold analysis.

The cure for this kind of “mistake” is to wash your mouth out with
soap every time you say the word “interaction” (in a statistical
context).



Model Fitting (cont.)

So what is this general quadratic function?

> coef2 <- out2$coefficients

> b <- coef2[c("z1", "z2")]

> C <- matrix(NA, 2, 2)

> C[1, 1] <- coef2["I(z1^2)"]

> C[1, 2] <- C[2, 1] <- coef2["I(z1 * z2)"] / 2

> C[2, 2] <- coef2["I(z2^2)"]



Model Fitting (cont.)

The divide by 2 is because in

xTAx =
n∑

i=1

n∑
j=1

aijxixj

=
n∑

i=1

aiix
2
i + 2

n−1∑
i=1

n∑
j=i+1

aijxixj

each off-diagonal term appears in the sum multiplied by 2 when we
don’t include each term twice (aijxixj and ajixixj).



Model Fitting (cont.)

So where does the maximum of

f (x) = bT x + xTCx

occur? Where the first derivative

∇f (x) = b + 2Cx

is zero.

> m <- solve(- 2 * C, b)

> m

[1] 3.335738 1.626314



Model Fitting (cont.)

Now we want to make a plot of the fitness landscape. We start
with a scatterplot of z1 and z2 so we can see what range of values
we want.



Model Fitting (cont.)

The following code makes the figure on the next slide

> z1 <- redata$z1[as.character(redata$varb) == "ngerm1"]

> z2 <- redata$z2[as.character(redata$varb) == "ngerm1"]

> xlim <- range(z1, m[1])

> plot(z1, z2, xlim = xlim)

> points(m[1], m[2], col = "red", pch = 19)

> ufoo <- par("usr")



Model Fitting (cont.)
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Figure: Scatterplot of observed phenotypic trait values. Solid red dot is
maximum of fitness landscape.



Model Fitting (cont.)

Now we start following Section 4.1 of TR 669.

First make a grid of points (the contour function needs values on
a grid). We go from one edge of the plot to the other, the
coordinates of the edges being in ufoo which came from
par("usr")

> nx <- 101

> ny <- 101

> xfoo <- seq(ufoo[1], ufoo[2], length = nx)

> yfoo <- seq(ufoo[3], ufoo[4], length = ny)



Model Fitting (cont.)

Then we make a data frame like redata with these predictor values

> xx <- outer(xfoo, yfoo^0)

> yy <- outer(xfoo^0, yfoo)

> xx <- as.vector(xx)

> yy <- as.vector(yy)

> nn <- length(xx)

> foo <- rep(1, nn)

> bar <- list(z1 = xx, z2 = yy, root = foo)

> for (lab in levels(redata$varb)) {

+ bar[[lab]] <- foo

+ ##### response doesn't matter for prediction #####

+ }



Model Fitting (cont.)

> bar <- as.data.frame(bar)

> rebar <- reshape(bar, varying = list(vars),

+ direction = "long", timevar = "varb",

+ times = as.factor(vars), v.names = "resp")

We also have to zero out some non-bottom-layer elements of z1
and z2, just like with the “real” (simulated) data

> barlayer <- substr(as.character(rebar$varb), 1, 5)

> rebar$z1[barlayer != "ngerm"] <- 0

> rebar$z2[barlayer != "ngerm"] <- 0



Model Fitting (cont.)

Then we predict at the new points.

> pbar <- predict(out2, newdata = rebar, varvar = varb,

+ idvar = id, root = root)

> pbar <- matrix(pbar, nrow = nrow(bar))

> pbar <- pbar[ , grep("germ", vars)]

> zz <- apply(pbar, 1, sum)

> zz <- matrix(zz, nx, ny)



Model Fitting (cont.)

Then the following code makes the figure on the next slide

> plot(z1, z2, pch = 20, xlim = xlim)

> contour(xfoo, yfoo, zz, add = TRUE, col = "blue",

+ labcex = 1, lwd = 2)

> points(m[1], m[2], col = "red", pch = 19)



Model Fitting (cont.)
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Figure: Scatterplot of z1 versus z2 with contours of the fitness landscape
as estimated by the aster model (blue). Solid red dot is location of
maximum.



Model Fitting (cont.)

Following Mitchell-Olds and Shaw (1987) we should realize that
the maximum of the (estimated, not true) fitness landscape is
outside the range of the data and say that selection is mostly
directional and that the evidence for stabilizing selection is weak
(despite statistically significant regression coefficients for predictor
components quadratic in z).

Still, the evidence, such as it is, weakly favors stabilizing selection.

There is no evidence for disruptive selection (more on this later).



Model Fitting (cont.)

Also recall that the the sign of the second component of β̂ was
negative, but it looks like selection should push the population up
(not down) and to the right in the figure.

This is because we did not center the phenotypic variables so
β1 6= β2. If we want to interpret the signs of the components of β
we have to do something different (more on this later).



Model Fitting (cont.)

There is, of course, no reason to stop at functions quadratic on the
canonical parameter scale when fitting fitness landscapes.

Because quadratic on the fitness landscape maps into possible
mean values, it is less objectionable than quadratic OLS, but it is
still true that the fitness landscape can be more complicated than
that.

If we add cubic terms, that would be 6 more parameters. We could
also try regression splines (with fixed knot positions) or smoothing
splines (with many more knot positions and regularization).
Neither spline method is built into the aster package. So either
would be a lot of hand work. But they could be done.

Here, because we know the simulation truth was quadratic on the
canonical parameter scale, we don’t bother.



Model Fitting (cont.)

There is a lot about model selection in Shaw and Geyer (2010).
They use branch and bound to fit all subsets and AIC, AICc, or
BIC to select models.

But this does not scale to more than about 10 phenotypic predictor
variables.

The “bandwagon of the aughts” in statistics (machine learning,
small n large p, model selection, “big data”, yadda, yadda, yadda)
is all about doing this in ways that scale.

So is “dimension reduction” (a misnomer because it isn’t all of
dimension reduction) intensely studied by Dennis Cook and his
students and co-authors.

Either of these could be applied to aster models, but haven’t so far.



Lande-Arnold Analysis: BQA

The dataset sim in the aster package also contains data for
Lande-Arnold analysis, the data frame ladata.

This is the same data as redata but ladata has only one
component of the response vector which is the same as observed
fitness in redata.

We start with estimating the BQA (best quadratic approximation).



Lande-Arnold Analysis: BQA (cont.)

> lout2 <- lm(y ~ z1 + z2 + I(z1^2) + I(z1*z2) + I(z2^2),

+ data = ladata)

> summary(lout2)

Call:

lm(formula = y ~ z1 + z2 + I(z1^2) + I(z1 * z2) + I(z2^2), data = ladata)

Residuals:

Min 1Q Median 3Q Max

-17.6321 -4.5203 -0.9696 3.7392 25.8501

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.6740 0.4449 17.250 < 2e-16 ***

z1 5.6369 0.3589 15.704 < 2e-16 ***

z2 -0.7077 0.3472 -2.038 0.04207 *

I(z1^2) 0.8166 0.3046 2.681 0.00758 **

I(z1 * z2) 0.3549 0.4389 0.809 0.41909

I(z2^2) -0.7045 0.2739 -2.572 0.01040 *

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.912 on 494 degrees of freedom

Multiple R-squared: 0.3855, Adjusted R-squared: 0.3793

F-statistic: 61.98 on 5 and 494 DF, p-value: < 2.2e-16



Lande-Arnold Analysis: BQA (cont.)

> summary(lout2)

Call:

lm(formula = y ~ z1 + z2 + I(z1^2) + I(z1 * z2) + I(z2^2), data = ladata)

Residuals:

Min 1Q Median 3Q Max

-17.6321 -4.5203 -0.9696 3.7392 25.8501

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.6740 0.4449 17.250 < 2e-16 ***

z1 5.6369 0.3589 15.704 < 2e-16 ***

z2 -0.7077 0.3472 -2.038 0.04207 *

I(z1^2) 0.8166 0.3046 2.681 0.00758 **

I(z1 * z2) 0.3549 0.4389 0.809 0.41909

I(z2^2) -0.7045 0.2739 -2.572 0.01040 *

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.912 on 494 degrees of freedom

Multiple R-squared: 0.3855, Adjusted R-squared: 0.3793

F-statistic: 61.98 on 5 and 494 DF, p-value: < 2.2e-16



Lande-Arnold Analysis: BQA (cont.)

Find the point where the BQA achieves its maximum.

> coef2 <- lout2$coefficients

> b <- coef2[c("z1", "z2")]

> C <- matrix(NA, 2, 2)

> C[1, 1] <- coef2["I(z1^2)"]

> C[1, 2] <- C[2, 1] <- coef2["I(z1 * z2)"] / 2

> C[2, 2] <- coef2["I(z2^2)"]

> m <- solve(- 2 * C, b)

> m

[1] -3.16901 -1.30045



Lande-Arnold Analysis: BQA (cont.)

The following code makes the figure on the next slide

> xlim <- range(z1, m[1])

> plot(z1, z2, xlim = xlim)

> points(m[1], m[2], col = "red", pch = 19)

> ufoo <- par("usr")



Lande-Arnold Analysis: BQA (cont.)
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Figure: Scatterplot of observed phenotypic trait values. Solid red dot is
stationary point of BQA (best quadratic approximation of fitness
landscape).



Lande-Arnold Analysis: BQA (cont.)

Oops! It looks like the “maximum” of the BQA isn’t a maximum.

A point where the first derivative of a function is zero is called a
stationary point. It may be a maximum, a minimum, or neither.

In two dimensions it is called a saddle point if the curvature is
positive in one direction and negative in the other. That appears to
be what we have here (from looking at the coefficients in the fit).



Lande-Arnold Analysis: BQA (cont.)

Continuing as before (except we don’t need to reshape the data)

> xfoo <- seq(ufoo[1], ufoo[2], length = nx)

> yfoo <- seq(ufoo[3], ufoo[4], length = ny)

> xx <- outer(xfoo, yfoo^0)

> yy <- outer(xfoo^0, yfoo)

> xx <- as.vector(xx)

> yy <- as.vector(yy)

> nn <- length(xx)

> foo <- rep(1, nn)

> bar <- data.frame(z1 = xx, z2 = yy)

> zz <- predict(lout2, newdata = bar)

> zz <- matrix(zz, nx, ny)



Lande-Arnold Analysis: BQA (cont.)

Then the following code makes the figure on the next slide

> plot(z1, z2, pch = 20, xlim = xlim)

> contour(xfoo, yfoo, zz, add = TRUE, col = "blue",

+ labcex = 1, lwd = 2)

> points(m[1], m[2], col = "red", pch = 19)



Lande-Arnold Analysis: BQA (cont.)
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Figure: Scatterplot of z1 versus z2 with contours of the BQA (best
quadratic approximation of the fitness landscape) as estimated by OLS
(blue). Solid red dot is location of stationary point.



Lande-Arnold Analysis: BQA (cont.)

The BQA does a terrible job.

It goes negative (negative fitness is impossible).

It has a saddle point rather than a maximum (disagreeing
with the simulation truth).

This is a bit unfair in one sense because we deliberately picked an
example where the BQA would be bad. As our one-dimensional
analysis shows the BQA will always be bad when the maximum of
the fitness landscape is at the edge of the data. The BQA will be
better when the maximum is near the middle of the data.

Also if we follow Mitchell-Olds and Shaw (1987) and say this is
primarily directional selection, then both figures get this much
right. It is only the quadratic part of the BQA that is wrong.



Lande-Arnold Analysis: Beta

Now we tackle Lande-Arnold beta.

First we define relative fitness, then do linear OLS.

> w <- ladata$y / mean(ladata$y)

> bout <- lm(w ~ z1 + z2)

We do not need to center the predictors because that would only
change the (Intercept) coefficient. Not the coefficients for z1
and z2.



Lande-Arnold Analysis: Beta (cont.)

> summary(bout)

Call:

lm(formula = w ~ z1 + z2)

Residuals:

Min 1Q Median 3Q Max

-1.8315 -0.5906 -0.1215 0.5026 3.4714

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.96693 0.03850 25.116 <2e-16 ***

z1 0.69969 0.04449 15.729 <2e-16 ***

z2 -0.10355 0.04250 -2.436 0.0152 *

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8596 on 497 degrees of freedom

Multiple R-squared: 0.3623, Adjusted R-squared: 0.3598

F-statistic: 141.2 on 2 and 497 DF, p-value: < 2.2e-16



Lande-Arnold Analysis: Beta (cont.)

Great! We have got a good (almost BLUE,“almost”because of the
division by mean fitness) point estimate of beta.

But the standard errors and P-values are completely bogus.

How can we do a valid analysis using aster models?

We cannot do anything with the canonical parameter estimates we
already have. They are on the wrong scale!



Lande-Arnold Analysis: Beta (cont.)

Recall that beta was originally defined as the slope of the BLA
defined for expected values.

So here is the idea: we apply OLS regression to the mean value
parameters (µ) from the aster model. Because of the observed =
expected property of exponential families and because both OLS
and aster are exponential families. OLS and aster will give exactly
the same estimates!

But since the aster model is a defensible statistical model, we get
defensible standard errors using the delta method.



Lande-Arnold Analysis: Beta (cont.)

In order to have the observed = expected property it is not
necessary that the aster model have exactly the same predictors as
the OLS model.

It is enough that the aster model have the same predictors
((Intercept), z1, and z2) as the OLS model plus some more
(varb, I(z1^2), I(z2^2), and I(z1 * z2)).

The components of the submodel canonical statistic for the shared
predictors will match and have the same mean value parameter
estimates (observed = expected). The rest don’t matter.



Lande-Arnold Analysis: Beta (cont.)

First, let us convince ourselves, that we do indeed get exactly the
same beta using the aster model.

> pout2 <- predict(out2)

> pout2 <- matrix(pout2, nrow = nrow(out2$x),

+ ncol = ncol(out2$x))

> colnames(pout2) <- colnames(out2$x)

> mufit <- pout2[ , grep("germ", colnames(pout2))]

> mufit <- rowSums(mufit)

> wmu <- mufit / mean(mufit)

> wmout <- lm(wmu ~ z1 + z2)

> all.equal(bout$coefficients, wmout$coefficients)

[1] TRUE



Lande-Arnold Analysis: Beta (cont.)

In order to apply the delta method we need an explicit formula for
β as a function of µ.

It is simpler if we use the identity β1 = β4 and

β4 = Σ−1 cov(w , z)



Lande-Arnold Analysis: Beta (cont.)

> z1 <- z1 - mean(z1)

> z2 <- z2 - mean(z2)

> z <- cbind(z1, z2, deparse.level = 0)

> zvarinv <- solve(t(z) %*% z / nrow(z))

> zwcov <- t(z) %*% cbind(mufit) / nrow(z)

> mybeta <- as.numeric(zvarinv %*% zwcov) / mean(mufit)

> mybeta.too <- as.numeric(bout$coefficients[-1])

> all.equal(mybeta, mybeta.too)

[1] TRUE



Lande-Arnold Analysis: Beta (cont.)

Now we want to do the same predictions almost entirely with
predict.aster in order to get standard errors.

> mu <- predict(out2)

> amat <- matrix(0, nrow = length(mufit), ncol = length(mu))

> blank <- matrix(0, nrow = nrow(pout2), ncol = ncol(pout2))

> blank.idx <- grep("germ", colnames(pout2))

> for (i in 1:nrow(amat)) {

+ boom <- blank

+ boom[i, blank.idx] <- 1

+ amat[i, ] <- as.vector(boom)

+ }

> all.equal(mufit, as.vector(amat %*% mu))

[1] TRUE



Lande-Arnold Analysis: Beta (cont.)

> bmat <- zvarinv %*% t(z) %*% amat / nrow(z)

> all.equal(mybeta, as.numeric(bmat %*% mu) /

+ mean(as.numeric(amat %*% mu)))

[1] TRUE

> cmat <- apply(amat, 2, sum) / nrow(z)

> cmat <- rbind(cmat)

> all.equal(mybeta, as.numeric(bmat %*% mu) /

+ as.numeric(cmat %*% mu))

[1] TRUE



Lande-Arnold Analysis: Beta (cont.)

> dmat <- rbind(bmat, cmat, deparse.level = 0)

> all.equal(mybeta, as.numeric(dmat %*% mu)[1:2] /

+ as.numeric(dmat %*% mu)[3])

[1] TRUE

So now we have slowly — building bits up piece by piece — gotten
so that we produce directly all of the pieces for making beta with
one matrix multiplication by dmat.



Lande-Arnold Analysis: Beta (cont.)

Now because of bad design of R package aster we have to make
dmat a 3-way array before supplying it to predict.aster.

> d3way <- array(as.vector(t(dmat)),

+ dim = c(dim(out2$modmat)[1:2], nrow(dmat)))

> dout <- predict(out2, amat = d3way, se.fit = TRUE)

> all.equal(mybeta, dout$fit[1:2] / dout$fit[3])

[1] TRUE



Lande-Arnold Analysis: Beta (cont.)

We are still not completely out of the woods.

If we denote the R object dout$fit as the vector ζ in
mathematical notation, then

βi = ζi/ζ3, i = 1, 2.

This is a non-linear transformation ζ → β that has Jacobian matrix(
1/ζ3 0 −ζ1/ζ23

0 1/ζ3 −ζ2/ζ23

)



Lande-Arnold Analysis: Beta (cont.)

(
1/ζ3 0 −ζ1/ζ23

0 1/ζ3 −ζ2/ζ23

)
This matrix is constructed in R as

> zeta1 <- dout$fit[1]

> zeta2 <- dout$fit[2]

> zeta3 <- dout$fit[3]

> jacobian <- rbind(c( 1 / zeta3, 0, - zeta1 / zeta3^2 ),

+ c( 0, 1 / zeta3, - zeta2 / zeta3^2 ))



Lande-Arnold Analysis: Beta (cont.)

Because of this nonlinearity, which arises from the fact that we
measure actual fitness not relative fitness, hence must estimate
relative fitness by dividing actual fitness by mean fitness, OLS
would not calculate correct standard errors even if actual fitness
were homoscedastic normal.

Also because of this nonlinearity, OLS estimates of Lande-Arnold
beta (which agree exactly with aster estimates) are not actually
BLUE.

Our next step takes this issue into account correctly.



Lande-Arnold Analysis: Beta (cont.)

The function predict.aster does not give the full variance
matrix for its “predictions”. It does, however, give a component
gradient which is (in this case) ∂ζ/∂β and can be used to
calculate the asymptotic variance matrix for ζ

> dvar <- dout$gradient %*% solve(out2$fisher) %*%

+ t(dout$gradient)

> all.equal(dout$se.fit, sqrt(diag(dvar)))

[1] TRUE

> print(dvar)

[,1] [,2] [,3]

[1,] 0.11074988 -0.049378460 0.051190895

[2,] -0.04937846 0.099797054 -0.008332417

[3,] 0.05119090 -0.008332417 0.092359357



Lande-Arnold Analysis: Beta (cont.)

Then the delta method is applied to get the asymptotic
variance-covariance matrix for β

> bvar <- jacobian %*% dvar %*% t(jacobian)

> print(bvar)

[,1] [,2]

[1,] 0.0012646355 -0.0006739173

[2,] -0.0006739173 0.0014855497

The diagonal elements give standard errors for beta

> foo <- cbind(mybeta, sqrt(diag(bvar)))

> colnames(foo) <- c("beta", "se(beta)")

> print(foo)

beta se(beta)

[1,] 0.6996907 0.03556171

[2,] -0.1035472 0.03854283



Lande-Arnold Analysis: Beta (cont.)

> sbout <- summary(bout)

> printCoefmat(sbout$coefficients, signif.stars = FALSE)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.966933 0.038499 25.1156 < 2e-16

z1 0.699691 0.044485 15.7286 < 2e-16

z2 -0.103547 0.042501 -2.4363 0.01519

> print(foo)

beta se(beta)

[1,] 0.6996907 0.03556171

[2,] -0.1035472 0.03854283



Lande-Arnold Analysis: Beta (cont.)

Correct standard errors (derived from the aster model) are smaller
than the putative (and erroneous) standard errors derived from
OLS.

But one example does not mean that OLS produces “conservative”
standard errors. Don’t say that without a proof (which does not
exist).

Anyway, why would one want bogusly overwide confidence
intervals?



Lande-Arnold Analysis: Beta (cont.)

We can also make an elliptical confidence region that accounts for
the correlation of the components of β.

Let B denote the matrix that is bvar in R.

Then we know

(β̂ − β)TB−1(β̂ − β) ≈ ChiSq(2)

so our 100(1− α)% confidence region should be the set of β that
satisfy

(β̂ − β)TB−1(β̂ − β) < cα

where cα is the upper α critical value of the relevant chi-square
distribution.



Lande-Arnold Analysis: Beta (cont.)

(β̂ − β)TB−1(β̂ − β) < cα

So how do we draw this ellipse? An ellipse is a linear
transformation of a circle.

The linear transformation we want is represented by the matrix
B1/2, the symmetric square root of B.

We have
‖B−1/2(β̂ − β)‖2 = cα

when
β = β̂ +

√
cαB

1/2u

and u runs around the unit circle.



Lande-Arnold Analysis: Beta (cont.)

> fred <- eigen(bvar, symmetric = TRUE)

> sally <- fred$vectors %*% diag(sqrt(fred$values)) %*%

+ t(fred$vectors)

> u1 <- cos(seq(0, 2 * pi, length = 101))

> u2 <- sin(seq(0, 2 * pi, length = 101))

> u <- rbind(u1, u2)

> jane <- sqrt(qchisq(0.95, 2)) * sally %*% u

> jill <- sqrt(qchisq(0.50, 2)) * sally %*% u

Now jane is a matrix with two columns giving the two coordinates
running around the ellipse. Similarly for jill.



Lande-Arnold Analysis: Beta (cont.)

Then the following code makes the figure on the next slide

> plot(mybeta[1] + jane[1, ], mybeta[2] + jane[2, ],

+ type = "l", xlab = expression(beta[1]),

+ ylab = expression(beta[2]))

> points(mybeta[1], mybeta[2], pch = 20)

> lines(mybeta[1] + jill[1, ], mybeta[2] + jill[2, ],

+ lty = "dashed")



Lande-Arnold Analysis: Beta (cont.)
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Figure: Confidence ellipse for beta. Solid curve is boundary of 95%
confidence region, dashed curve is boundary of 50% confidence region,
solid dot is location of MLE for beta.



Lande-Arnold Analysis: Beta (cont.)

In the figure the 95% confidence ellipse does not cross either
coordinate axis. This says β1 is statistically significantly greater
than zero and β2 is statistically significantly less than zero (at the
0.05 significance level), even accounting for doing two tests.



Aster versus Lande-Arnold

This last section of the deck is an overview of how Lande-Arnold
analysis and it aster model competition differ and how they agree.

The agreement starts with aster analysis accepting all of the
definitions in Lande and Arnold (1983) and the theorem.

The agreement continues with both using exponential family
models and with the saturated model canonical statistic y for the
Lande Arnold (observed fitness) being a linear function of the
saturated model canonical statistic y for the aster model (usually,
observed fitness is a sum of some components of the graphical
model, also called components of fitness).



Aster versus Lande-Arnold (cont.)

The agreement continues with both using linear (in z) or quadratic
(in z) submodels.

The agreement continues with the submodel canonical statistic
MT

LAyLA for Lande-Arnold analysis (either linear or quadratic) being
a subvector of the submodel canonical statistic MT

astyast for aster
analysis (either linear or quadratic).

The agreement continues with the observed = expected property
of maximum likelihood in exponential families matching these
submodel mean value parameters to their observed values
(submodel canonical statistics).



Aster versus Lande-Arnold (cont.)

The agreement continues with both producing the exact same
point estimate of Lande-Arnold beta (actually β1 = β4 even if
multivariate normality of z is not assumed).

The agreement would continue with both producing the exact
same point estimate of Lande-Arnold gamma (actually γ2) if we
thought there was any point to estimating γ, which we do not.

And both methods agree that these estimates are BLUE if actual
fitness is used and “almost” BLUE if relative fitness is used.



Aster versus Lande-Arnold (cont.)

That is the end of the agreement.

The disagreement starts with aster analysis using a defensible
statistical model for fitness, whereas Lande-Arnold analysis
“assumes” the conditional distribution of fitness given phenotypic
traits is homoscedastic normal. (“Assumes” is in scare quotes,
because they don’t actually state such nonsense, although all their
P-values or confidence intervals depend on it.)

P-values and confidence intervals produced by Lande-Arnold
analysis are indefensible.

P-values and confidence intervals produced by aster analysis are
defensible (the “usual” asymptotics of maximum likelihood plus the
delta method). They can be improved by the parametric bootstrap
if necessary (more on this in slide deck 7).



Aster versus Lande-Arnold (cont.)

The disagreement continues with aster models being quadratic on
the unconditional canonical parameter scale (ϕ is quadratic in z),
whereas Lande and Arnold must model on the unconditional mean
value parameter scale (saying µ is quadratic in z). The latter is
because ϕ = µ for linear models.

Thus we say Lande-Arnold analysis can only estimate the BQA,
whereas aster analysis can model the actual fitness landscape.

Of course, the true unknown fitness landscape can be more
complicated than quadratic in z on the unconditional canonical
parameter scale. But one can add more terms to the aster model
formula without losing any of the agreements with Lande-Arnold
analysis.



Aster versus Lande-Arnold (cont.)

It should be clear from the example that Lande-Arnold analysis
only estimates the BQA when (1) its estimate goes negative, which
the true fitness landscape cannot and (2) it has a saddle point,
when the true fitness landscape (which we know because this is a
simulation — the simulation truth parameter values, not
mentioned in this slide deck, are in the sim dataset) has a peak.



Aster versus Lande-Arnold (cont.)

The disagreement continues with Lande-Arnold analysis using signs
of diagonal components of γ or better yet signs of eigenvalues of γ
to indicate stabilizing (selection moves toward a peak) or disruptive
(selection moves aways from a trough), whereas aster analysis does
not use γ at all but instead uses the quadratic form on the
unconditional canonical parameter scale (whose components are
aster model regression coefficients).


