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Statistical Models

A statistical model is a family of probability distributions.

In many courses this concept is hidden behind sloppy terminology.

We often say “the binomial distribution” when we really mean the
family of binomial distributions (each different parameter value
gives a different binomial distribution).

We often say “the normal distribution” when we really mean the
family of normal distributions (each different pair of parameter
values gives a different normal distribution).

And similarly for other distributions.



Statistical Models (cont.)

When you have a statistical model for your data, all the techniques
of mathematical statistics are available. Any question that can be
phrased in terms of probabilities and expectations with respect to
distributions in the model can be answered.

When you do not have a statistical model for your data, many of
the techniques of mathematical statistics are not available. For
example, you can use the method of moments, but you cannot use
the method of maximum likelihood or the method of Bayesian
inference. For another example, you can use the method of least
squares, but when no model is assumed it comes with no
hypothesis tests or confidence intervals.

Aster models are statistical models.



Statistical Models (cont.)

In “classical” or “master’s level” theoretical statistics (5101–5102 or
8101–8102 in our department) specifying a statistical model is
simple. There are two kinds of models for two kinds of data:
discrete and continuous.

If the data are discrete, then the model is specified by a
probability mass function (PMF) and probabilities and
expectations are calculated by sums.

If the data are continuous, then the model is specified by a
probability density function (PDF) and probabilities and
expectations are calculated by integrals.



Statistical Models (cont.)

In “master’s level” theoretical statistics, it may have been
mentioned that there are probability models that are neither
discrete or continuous, and in aster models we get them, but only
in a rather trivial way.

Although our first example had all components of the response
vector discrete, this is not necessary.

The predecessor-is-sample-size property requires all predecessor
nodes to have nonnegative-integer-valued random variables. But
terminal nodes can have continuous random variables.

The aster package has fam.normal.location, which specifies
normal with unknown mean and known variance as a family that
components of the response vector can have.

The aster2 package has fam.normal.location.scale, which
specifies normal with unknown mean and unknown variance as a
family that components of the response vector can have.



Statistical Models (cont.)

So if we have some continuous and some discrete components of
the response vector, then we do not have either a PMF or a PDF.

If the data have some components discrete and some continuous,
then the model is specified by a probability mass-density
function (PMDF) and probabilities and expectations are
calculated by sums over the discrete components and integrals over
the continuous components.

We do not need to calculate expectations this way for aster
models. Instead we use moment generating functions (more on this
later). So this is purely a theoretical quibble.



Statistical Models (cont.)

In aster models, even “continuous” families are partly discrete.

1
Poi−−−−→ y1

Nor−−−−→ y2

The sum of n IID Normal(µ, σ2) random variables is
Normal(nµ, nσ2).

The conditional distribution of y2 given y1 is

degenerate, concentrated at zero if y1 = 0

Normal(y1µ, y1σ
2), if y1 > 0

So the conditional distribution of y2 given y1 is discrete when
y1 = 0 and continuous when y1 > 0.



Exponential Families of Distributions

An exponential family of distributions is a statistical model
having a log likelihood of the form

〈y , θ〉 − c(θ),

where y is a vector statistic, θ is a vector parameter of the same
dimension (say d) and

〈y , θ〉 =
d∑

i=1

yiθi .

A statistic y and a parameter θ that give a log likelihood of this
form are called the canonical statistic and canonical parameter.

They are also called natural parameter and natural statistic, but, as
elsewhere, we avoid terms of biological origin in aster model theory.



Exponential Families of Distributions (cont.)

The function c in
〈y , θ〉 − c(θ),

is called the cumulant function of the family. It has many
important and amazing properties.



Exponential Families of Distributions (cont.)

We are using modern terminology about these models.

An older terminology would call the exponential family, the
collection of all of what we are calling exponential families.

Old terminology: this statistical model is in the exponential family.

New terminology: this statistical model is an exponential family.

The old terminology has nothing to recommend it. It makes the
primary term — “exponential family” — refer to a heterogeneous
collection of statistical models of no interest in any application.

The new terminology describes a property that, if a statistical
model has it, implies many other properties. It is a key concept of
theoretical statistics.



Notational Variation

Those who insist that all vectors are really matrices (so-called
column vectors and row vectors) would write the exponential
family log likelihood as either

yT θ − c(θ)

or
θT y − c(θ)

The 〈 · , · 〉 notation used here is more mathematical, treating
vectors as vectors. It may come as a surprise to those who have
not taken that many math courses, but most advanced math uses
this notion rather than “vectors are really matrices”.



Vectors

In aster model theory we use vectors whose indices take values in
abstract sets. We do not insist the indices take values 1, . . . , d for
some d .

In set theory, the set of all functions A→ B is denoted BA.

Using this notation, we say our vectors are elements of RJ for
some abstract set J rather than elements of Rd for some positive
integer d .

With this definition comes the notion that there is no difference
between vectors and functions except in notation.

A vector y in RJ is a function J → R but we denote function
evaluation yj as is usual for components of vector rather than y(j).



Exponential Families of Distributions (cont.)

When we are considering canonical statistic vectors and canonical
parameter vectors as elements of RJ for some abstract set J, then

〈y , θ〉 =
∑
j∈J

yjθj

This angle brackets notation does not denote an inner product on
RJ but rather a duality pairing placing the vector space where the
canonical statistic vector lives and the vector space where the
canonical parameter vector lives in duality.

The notation 〈 · , · 〉 must always have a canonical statistic vector
as one argument and a canonical parameter vector as the other
argument.



Aster Graph

In aster model theory and practice the word “graph” refers to two
different things.

In practice, users think of the graph as the graph for a single
“individual” (in scare quotes).

This the graph we specify with the arguments pred and fam to R
function aster.

In theory, we think of the graph as the graph for all individuals,
which we call the full aster graph for emphasis.



Aster Graph (cont.)

Usually, every “individual” has the “same” graph (more scare
quotes). Pedantically “same” should be replaced by isomorphic
since they have different variables at the nodes. They have the
same shape but are not the same.

In this case, the full aster graph is just many copies of the graph
for a single “individual” with the indices of the variables changed so
they are all different.

But there is no requirement that “individuals” have isomorphic
graphs.

R package aster2 makes it easy to have this. R package aster

makes it hard. To have this with R package aster, lie. Say there
is only one “individual” which has a very large graph (the full aster
graph).



Aster Graph (cont.)

There are two reasons why “individual” is in scare quotes.

Ideally the aster graph for a single “individual” goes one or more
times around the life cycle ending at the same point where it
started.

But it doesn’t have to start at any particular point. Thus the
graph for a single “individual” may involve data on a single
biological individual and its offspring and perhaps offspring of
offspring (if the graph goes twice around the life cycle).

The constants at initial nodes do not have to be 1. They can be
any positive integers.

When the constant at an initial node is n, then the data at the
other nodes are sums of the data for n biological individuals.



Aster Graph (cont.)

For the following graph

n
Ber−−−−→ y1

Ber−−−−→ y2
Ber−−−−→ y3yPoi

yPoi

yPoi

y4 y5 y6

where the first row (y1, y2, y3) are survival indicators and the
second row (y4, y5, y6) are offspring counts, all of these variables
are for n biological individuals.

y1 is the number of those n that survived year 1

y2 is the number of those y1 that survived year 2

y3 is the number of those y2 that survived year 3

y4 is the number of offspring those y1 had in year 1

y5 is the number of offspring those y2 had in year 2

y6 is the number of offspring those y3 had in year 3



Dependence Groups

Aster models have a feature called dependence groups that is not
implemented in R package aster. It is implemented in R package
aster2, but that package is incomplete not having many of the
features of R package aster.

Moreover, dependence groups have been used AFAIK in only one
paper (Eck, Shaw, Geyer, and Kingsolver, Evolution, 2015).

Since aster models with dependence groups are harder to
understand than those without, we start our discussion by omitting
them.



Aster Model PMDF

In an aster model, we have a bunch of variables yj , where j ∈ N,
the index set N being the set of nodes of the (full!) graph. Since
each node has at most one predecessor, we can specify the graph
by a function, the predecessor function, that gives the
predecessor for each node that has a predecessor.

Let J denote the set of non-initial nodes of the graph. Then the
predecessor function is a function p : J → N such that p(j) is the
predecessor of j .



Aster Model PMDF (cont.)

In an aster model, the graph specifies the joint PMDF in factorized
form, each arrow in the graph corresponds to a conditional
distribution in the factorization

fθ(y) =
∏
j∈J

fj ,θ(yj |yp(j))

Note that only variables yj for j ∈ J appear “in front of the bar” in
a conditional. So only those variables are treated as random.
Variables yj for j ∈ N \ J are conditioned on, which is the same as
being treated as constant.

In short, variables at non-initial nodes are random, those at initial
nodes are constant.

I claim this is a valid factorization, with what purports to be
conditional distributions actually being conditional distributions.



Factorization

In “classical” or “master’s level” probability theory, we factor joint
distributions into products of marginal and conditional distributions

fθ(x , y) = fθ(y | x)fθ(x)

This also works when x and y are vectors.

When x is a vector, we can apply factorization again

fθ(y1, y2, y3) = fθ(y1 | y2, y3)fθ(y2 | y3)fθ(y3)

and again

fθ(y1, y2, y3, y4) = fθ(y1 | y2, y3, y4)fθ(y2 | y3, y4)fθ(y3 | y4)fθ(y4)

and so forth. And all of the variables here can also be vectors.



Factorization (cont.)

In a factorization like

fθ(y1, y2, y3, y4) = fθ(y1 | y2, y3, y4)fθ(y2 | y3, y4)fθ(y3 | y4)fθ(y4)

it may be that some variables (or vectors) “behind the bar” can be
omitted because the conditional distribution does not happen to
actually depend on those variables. In aster models we only ever
have one variable (the predecessor) “behind the bar”.

Theorem (Valid Factorization)

A factorization of a joint distribution as a product of marginals and
conditionals is valid if and only if there exists a total ordering of
the variables such that

every variable occurs at most once “in front of the bar” in a
conditional, and

every variable “behind the bar” in a conditional comes after (in
this total ordering) every variable “in front of the bar” in that
conditional.



Aster Model PMDF (cont.)

So an aster factorization

fθ(y) =
∏
j∈J

fj ,θ(yj |yp(j))

is valid if and only if there is a total ordering such that
predecessors come after successors.

In theory, the valid factorization theorem is satisfied if and only if
the aster graph is acyclic.

There is an algorithm called topological sort (implemented in R
package pooh) that either finds a total ordering compatible with
the graph (predecessors before successors) or discovers that no
such ordering exists (in which case the graph is not acyclic).



Aster Model PMDF (cont.)

In practice, R function aster does not use this algorithm but
rather forces the user to find such a total order.

R function aster requires that its argument pred always has
predecessors before successors. So the inverse total order always
has predecessors after successors.



Exponential Families and IID

Suppose we have an exponential family with log likelihood

〈z , θ〉 − c(θ)

and we observe z1, . . ., zn independent and identically distributed
(IID) from this family.

Then, because of independence, the joint is the product of the
marginals, and because log of product is sum of logs, the log
likelihood is

n∑
i=1

[
〈zi , θ〉 − c(θ)

]
=

〈
n∑

i=1

zi , θ

〉
− nc(θ)

and we just get another exponential family with canonical statistic∑n
i=1 zi , canonical parameter θ, and cumulant function θ 7→ nc(θ).



Exponential Families and IID (cont.)

Many “addition rules” from math stats are a consequence.

Sum of n IID Bernoulli(p) random variables is binomial(n, p).

Sum of n IID Geometric(p) random variables is
negative-binomial(n, p).

Sum of n IID Poisson(µ) random variables is Poisson(nµ).

Sum of n IID Normal(µ, σ2) random variables is Normal(nµ, nσ2).



Predecessor is Sample Size (cont.)

Recall from deck 1 the predecessor is sample size property

For any arrow
yp(j) −−−−→ yj

yj is the sum of yi independent and identically distributed (IID)
random variables having the distribution named by the arrow label
(by convention, a sum with zero terms is zero).

Now we make another assumption, the exponential family
assumption, that yj = z1 + · · ·+ zyp(j) , where the zi are IID
realizations of the canonical statistic of the one-dimensional
exponential family with cumulant function cj and canonical
parameter θj . (The random variable yj is a random sum of random
variables with yp(j) terms in the sum.)



Summary of Assumptions

Graphical Axioms

Directed Edges of the graph are directed (arrows).

Acyclic The graph is acyclic: a path that follows arrows never
returns to a node.

At Most One Predecessor Each node of the graph has at most one
predecessor. Initial nodes have none. Non-initial
nodes have one. If j is non-initial, p(j) is its
predecessor.



Summary of Assumptions (cont.)

Statistical Axioms

Factorization
fθ(y) =

∏
j∈J

fj ,θ(yj |yp(j))

Predecessor is Sample Size If j is non-initial, then
yj = z1 + · · ·+ zyp(j) (a random sum of random
variables). By convention, a sum with zero terms is
zero, so yp(j) = 0 implies yj = 0.

Exponential Family In yj = z1 + · · ·+ zp(j) the distribution of the
zk is one-parameter exponential family with canonical
statistic zk , canonical parameter θj , and cumulant
function cj .



Aster Log Likelihood

This means — using the rule that the sum of IID random variables
from an exponential family is another exponential family and the
cumulant function for the latter is n times the cumulant function
for the former, where n is the sample size — the conditional
distribution of yj given yp(j) is one-parameter exponential family
with canonical statistic yj , canonical parameter θj , and cumulant
function θj 7→ yp(j)cj(θj).

In yp(j)cj(θj) the sample size is yp(j) (predecessor is sample size)
and cj(θj) is the cumulant function for “the former”, that is, for
each of the yp(j) IID random variables whose sum is yj .



Aster Log Likelihood (cont.)

Hence the aster model log likelihood is

l(θ) = log

∏
j∈J

fj ,θ(yj |yp(j))

− constant

=
∑
j∈J

log fj ,θ(yj |yp(j))− constant

=
∑
j∈J

[
yjθj − yp(j)cj(θj)

]
where the “minus a constant” (that does not depend on the
parameters) accounts for the fact that such constants can be
dropped in going from log PMDF to log likelihood.



Aster Log Likelihood (cont.)

Do we need to do anything special to handle cases where the
predecessor is zero (which implies the successor is also zero)?

l(θ) =
∑
j∈J

[
yjθj − yp(j)cj(θj)

]
No. Such terms do contribute zero to the log likelihood. But that
is exactly what they should do. The conditional distribution of yj
given yp(j) = 0 is degenerate and concentrated at zero. That is

Pr(yj = 0|yp(j) = 0) = 1

and log(1) = 0, so this arrow should contribute zero to the log
likelihood.

Probability theory “just works”. We don’t have to do contortions to
make it work.



Aster Log Likelihood (cont.)

Although each term in

l(θ) =
∑
j∈J

[
yjθj − yp(j)cj(θj)

]
has exponential family form, the whole log likelihood does not
because both the yj and yp(j) in each term may be random.

However, because this is linear in the y ’s, this must be a joint
exponential family with canonical statistic vector y . We just don’t
(yet) know the canonical parameter vector and cumulant function.



Aster Log Likelihood (cont.)

Let ϕ in RJ be the canonical parameter vector. Then the log
likelihood for this parameterization has the form

l(ϕ) =

∑
j∈J

yjϕj

− c(ϕ)

where c is the cumulant function for the joint exponential family.



Aster Log Likelihood (cont.)

To identify the joint canonical parameters, we must rewrite the log
likelihood collecting terms that multiply the same component of
the canonical statistic

l(θ) =
∑
j∈J

[
yjθj − yp(j)cj(θj)

]

=
∑
j∈J

yj

θj − ∑
k∈J

p(k)=j

ck(θk)

− ∑
k∈J

p(k)/∈J

yp(k)ck(θk)



Aster Log Likelihood (cont.)

Thus an aster model is (jointly) an exponential family with
canonical statistic vector y , canonical parameter vector ϕ having
components

ϕj = θj −
∑
k∈J

p(k)=j

ck(θk), j ∈ J,

and cumulant function

c(ϕ) =
∑
k∈J

p(k)/∈J

yp(k)ck(θk)

(note that all of the p(k) in the later formula are initial nodes so
all of the yp(k) in this formula are constants, so this does define a
deterministic function rather than a random function).



The Aster Transform

I claim the change of parameter

ϕj = θj −
∑
k∈J

p(k)=j

ck(θk)

is invertible. To invert it, just isolate θj obtaining

θj = ϕj +
∑
k∈J

p(k)=j

ck(θk) (∗)

How is that an inversion? It still has thetas on the right-hand side!

Use (∗) in an order that calculates θj for successors before θj for
predecessors. Then it works because when we use it to calculate θj
we have already calculated all of the θk such that p(k) = j .



The Aster Transform (cont.)

Is there such an order? Yes there is by the acyclicity property
(found by the topological sort algorithm).

Note that at terminal nodes we have θj = ϕj . But we do not have
this at non-terminal nodes.

We call this invertible change of parameter θ ←→ ϕ the aster
transform (pedantically, θ −→ ϕ is the aster transform and
ϕ −→ θ is the inverse aster transform).



The Aster Transform (cont.)

Are you lost? If so, no surprise.

The aster transform makes mathematical-statistical-theoretical
sense, but it doesn’t make common sense. It is not intuitive at all.

To understand it we must apply Zen and not try to understand it.

If that doesn’t make sense, wait a while. We hope you will
eventually achieve enlightenment.

The technical report A Philosophical Look at Aster Models goes
through one very simple example, but it only shows the algebraic
formulas are a big mess that no one can understand intuitively.
(The whole point of the example is to show you that you do not
want to try to understand the aster transform by staring at the
formulas.)



The Aster Transform (cont.)

A quote from my master’s level theory notes

Parameters are meaningless quantities. Only probabilities
and expectations are meaningful.

Of course, some parameters are probabilities and expectations, but
most exponential family canonical parameters are not.

A quote from Alice in Wonderland

‘If there’s no meaning in it,’ said the King, ‘that saves a
world of trouble, you know, as we needn’t try to find any.’

Realizing that canonical parameters are meaningless quantities
“saves a world of trouble”. We “needn’t try to find any”.



The Aster Transform (cont.)

How are we to distinguish θ and ϕ? They are both canonical
parameters of a sort.

We call θ the conditional canonical parameter vector and ϕ the
unconditional canonical parameter vector, despite this
suggesting more parallelism than is really there.

Pedantically, θ is the vector having components θj that are the
canonical parameters for the conditional distributions associated
with the arrows p(j) −→ j in the graph.

Pedantically, ϕ is the canonical parameter vector of the joint
distribution of the aster model (which is an exponential family).



The Aster Transform (cont.)

Each θj is the canonical parameter of a one-parameter exponential
family model (for one arrow). The vector θ is not a canonical
parameter vector of a multivariate exponential family.

The vector ϕ is the canonical parameter vector of a multivariate
exponential family. Each ϕj is not a canonical parameter of a
one-parameter exponential family.

θ is componentwise canonical but not vectorwise canonical.

ϕ is vectorwise canonical but not componentwise canonical.



Dependence Groups (cont.)

We now want to redo everything we have done since the last
mention of dependence groups, changing things to allow for
dependence groups.

First we explain why dependence groups.

In an aster model without dependence groups, nodes are
conditionally independent given their predecessors; this is inherent
in the factorization. There are at least two good reasons to relax
this assumption: multinomial families and two-parameter normal
families.



Dependence Groups (cont.)

At terminal nodes we are allowed to have continuous random
variables (at non-terminal nodes we must have
nonnegative-integer-valued random variables).

But the rule that the conditional distribution be one-parameter
exponential family means we can only have a one-parameter
normal family. That is why R package aster only provides normal
location families (the mean is an unknown parameter, the variance
is known).

But in real life the variance is never known. So this is a problem.

We cannot fit two-parameter normal families into aster models
without dependence groups.

One might think that introducing scale parameters the way GLM
do is the right way to deal with two-parameter normal families, but
that would us outside of exponential families and the aster
transform would no longer work.



Dependence Groups (cont.)

The two-parameter normal distribution with its usual data and
parameterization has log likelihood

−(x − µ)2

2σ2
− 1

2
log(σ2) = − x2

2σ2
+

xµ

σ2
− µ2

2σ2
− 1

2
log(σ2)

and we see this has exponential family form with canonical statistic
vector

y = (x , x2)

and canonical parameter vector

θ =

(
µ

σ2
,− 1

2σ2

)
Of course, the dimension of the canonical statistic vector and
canonical parameter vector must be the same.



Dependence Groups (cont.)

Every univariate marginal of a multinomial random vector is a
binomial random variable. But even a two-dimensional multinomial
distribution is two-dimensional, so the binomial distribution is not a
special case of the multinomial distribution.

A multinomial distribution is degenerate. It is the distribution of
the random vector of category counts for IID individuals classified
into categories with the categories being mutually exclusive and
exhaustive, so every individual goes in exactly one category, and
the category counts sum to the sample size.

If the sample size is n = 1 and there are k categories, then a
multinomial random vector serves as a k-way switch. Exactly one
component is equal to one, and the rest are equal to zero. It
indicates the category into which the individual is classified.

This k-way switch can be useful in life history with, for example,
animals with life history stages, such as insect larva, pupa, and
adult.



Dependence Groups (cont.)

In short, multinomial dependence groups allow aster models to
incorporate capture-recapture as well as survival.



Dependence Groups (cont.)

In most of statistics we do not want degenerate random vectors.
So we drop one of the components of a multinomial random vector
to get a non-degenerate random vector.

With aster models we cannot do that. Random variables
correspond to nodes of the graph. Dropping random variables
changes the graph.

If we were to drop one category, a k-way switch would become
(k − 1)-way. Not what was needed.

Hence we have to deal with exponential families that have
degenerate distributions of their canonical statistics and hence
nonidentifiable canonical parameterizations. (More on this later.)



Vectors and Subvectors

Recall that we take vectors to be elements of RJ for some abstract
set J (in aster models the set of non-initial nodes of the full aster
graph).

We now need a way to refer not just to components of such vectors
but to groups of components corresponding to dependence groups.

If y ∈ RJ and G ⊂ J, then yG denotes the subvector having
components yj for j ∈ G .

Recall that y ∈ RJ means y is a function J → R that maps j 7→ yj .

Similarly, yG is a function G → R that maps j 7→ yj . Hence
yG ∈ RG .

We have nothing to distinguish components yj from subvectors yG
except for the convention that upper case letters denote sets and
lower case letters denote elements of sets.



Aster Model PMDF (cont.)

Now our dependence groups can be subvectors.

In order for predecessor is sample size to hold for a dependence
group the whole group must have the same predecessor.

Denote the predecessor of dependence group G by q(G ).

Dependence groups must be disjoint, hence they must form a
partition G of the set J of non-initial nodes.

This predecessor function is a function q : G → N that maps
G 7→ q(G ).



Aster Model PMDF (cont.)

The reason why we picked a new letter q for this predecessor
function is that we also have the old predecessor function p. The
relation between the two is

j ∈ G ∈ G implies p(j) = q(G )

q determines p because every j ∈ J is in a unique G ∈ G because
G is a partition of J.

But p obviously does not determine q because p doesn’t know
anything about dependence groups.

When we need words to distinguish our two predecessor functions
we call

p the node-to-node predecessor function and

q the set-to-node predecessor function.



Aster Model PMDF (cont.)

Now we rewrite the aster model factorization as

fθ(y) =
∏
G∈G

fG ,θ(yG |yq(G))

Everything works almost the same as before. The only conceptual
difficulty is that our indices range over a family of sets (which, of
course, is also a set). Once we get used to that, everything else is
more or less the same as without dependence groups.

Note that the previous theory without dependence groups is the
special case of our new theory where every element of G is a
singleton set.



Aster Model PMDF (cont.)

So an aster factorization

fθ(y) =
∏
G∈G

fG ,θ(yG |yq(G))

is valid (by the same valid factorization theorem as before) if there
is a total ordering on G such that predecessors come after
successors, that is if q(G ) ∈ G ′ then G ′ comes after G in this total
ordering.

In theory, the topological sort algorithm can find such a total order
or prove that none exists.

In practice, R package aster2 forces the user to order the nodes
of the graph so that q(G ) comes before any j ∈ G .



Aster Log Likelihood (cont.)

Now the aster model log likelihood is

l(θ) = log

(∏
G∈G

fG ,θ(yG |yq(G))

)
− constant

=
∑
G∈G

log fG ,θ(yG |yq(G))− constant

=
∑
G∈G

[
〈yG , θG 〉 − yq(G)cG (θG )

]
=

∑
j∈J

yjθj

−(∑
G∈G

yq(G)cG (θG )

)

the last equality using G is a partition of J.



Aster Log Likelihood (cont.)

Again we observe that the joint distribution is an exponential
family with canonical statistic y .

So to identify the joint canonical parameters, we must rewrite the
log likelihood collecting terms that multiply the same component
of the canonical statistic

l(θ) =

∑
j∈J

yjθj

−(∑
G∈G

yq(G)cG (θG )

)

=
∑
j∈J

yj

θj − ∑
G∈G

q(G)=j

cG (θG )

− ∑
G∈G

q(G)/∈J

yq(G)cG (θG )



Aster Log Likelihood (cont.)

Thus an aster model with dependence groups is (jointly) an
exponential family with canonical statistic vector y , canonical
parameter vector ϕ having components

ϕj = θj −
∑
G∈G

q(G)=j

cG (θG ), j ∈ J,

and cumulant function

c(ϕ) =
∑
G∈G

q(G)/∈J

yq(G)cG (θG )

(note that all of the q(G ) in the later formula are initial nodes so
all of the yq(G) in this formula are constants, so this does define a
deterministic function rather than a random function).



The Aster Transform (cont.)

The aster transform is now given by

ϕj = θj −
∑
G∈G

q(G)=j

cG (θG )

and again is invertible. To invert it, just isolate θj obtaining

θj = ϕj +
∑
G∈G

q(G)=j

cG (θG ) (∗∗)

Use (∗∗) in an order that calculates θj for successors before θj for
predecessors. Then it works because when we use it to calculate θj
we have already calculated all components of θG such that
q(G ) = j .



Aster Graph (cont.)

Now we want a set of axioms as before, but we have lost track of
what the graph should be.

Fortunately, we don’t have to invent a new theory of graphical
models because we can find one already done for us in textbooks
on graphical models like Lauritzen (1996) Graphical Models,
Oxford University Press.

Section 2.1 of that book says that general graphs have two kinds
of edges

directed edges, also called arrows, and

undirected edges, also called lines.



Aster Graph (cont.)

Section 3.2.3 of Lauritzen (1996) covers the most general
factorization of a joint distribution into a product of marginals and
conditionals, which he calls chain graph models. He calls chain
components what we call dependence groups. His equation
(3.23) is our

fθ(y) =
∏
G∈G

fG ,θ(yG |yq(G))

So we only need to match up our theory with his. The result is
that a general aster graph has

an arrow p(j) −→ j for every j ∈ J (as before), and

a line j −− k for every pair of distinct nodes j and k in the
same dependence group.



Exception

Except when we draw aster graphs with dependence groups we
don’t draw all the lines — only enough lines so each dependence
group is connected.

This makes our graphs less cluttered and provides the same
information.

In theory, the dependence groups can be found using Rem’s
algorithm for the recording of equivalence classes which done by R
function weak in R package pooh.

In practice, R function asterdata in R package aster2 makes the
user specify the dependence groups so it does not need to use this
algorithm.



A Graph With Dependence Groups

y1 y4 y7 y10

1 y2 y5 y8 y11

y3 y6 y9 y12

y13 y14 y15 y16

y17 y18 y19 y20

M

M

M

M

M

M

M

M

M

M

M

M

Ber Ber Ber Ber

0-Poi 0-Poi 0-Poi 0-Poi

Here M stands for multinomial. The dependence groups are
{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}, and every other node is a
dependence group by itself.



A Graph With Dependence Groups (cont.)

In the graph on the preceding slide

y{1,2,3} is multinomial with sample size 1.

y{4,5,6} is conditionally multinomial with sample size y2.

y{7,8,9} is conditionally multinomial with sample size y5.

y{10,11,12} is conditionally multinomial with sample size y8.

y13 is conditionally binomial with sample size y3.

And so forth. All of the arrows that do not involve dependence
groups with more than one node work just like arrows in a graph
without dependence groups.



A Graph With Dependence Groups (cont.)

The intended application for this graph is life history of an insect.

The “columns” of the graph are for different days.

Nodes in the top “row” of this graph (y1, y4, y7, and y10) indicate
death.

Nodes in the second “row” of this graph (y2, y5, y8, and y11)
indicate the individual is a larva (caterpillar).

Nodes in the third “row” of this graph (y3, y4, y9, and y12) indicate
the individual is an adult (moth, with wings, flying around trying
to mate).

Nodes in the fourth “row” of this graph (y13 through y16) indicate
the mating success.

Nodes in the bottom “row” of this graph (y17 through y20) count
number of eggs laid.



A Graph With Dependence Groups (cont.)

In some ways this graph is very different from the way graphs
without dependence groups work. Here death is a node. y1 = 1
indicates death (or y4 = 1, etc.). In the graph for Example One in
Deck 1 y1 = 0 indicates death (or y2 = 0, etc.).

Here death is one category in a multinomial switch. The categories
are dead, larva, adult.

The individual can move from larva at one day to any of these
categories the next day. But it cannot move from death to
anywhere. Nor can it move from adult to anywhere. The adults
live a few days at most and either reproduce or not, and it is
reproduction that is recorded (with zero inflation).



The Magic of Cumulant Functions

If
l(ϕ) = 〈y , ϕ〉 − c(ϕ)

is the log likelihood of an exponential family, then we can write the
ratio of the PMDF for ϕ and another parameter value ϕ∗ as

e l(ϕ)−l(ϕ
∗)

because l(ϕ) is the log of the PMDF for ϕ except, perhaps, some
additive terms not containing ϕ that may have been dropped from
the log likelihood. But, since any dropped terms do not depend on
the parameter, they are the same for ϕ and ϕ∗ and cancel in
l(ϕ)− l(ϕ∗).



The Magic of Cumulant Functions (cont.)

Thus
Eϕ∗

{
e l(ϕ)−l(ϕ

∗)
}

= 1

(probabilities must sum-integrate to one). And this is

Eϕ∗

{
e〈Y ,ϕ−ϕ

∗〉−c(ϕ)+c(ϕ∗)
}

= 1

or
c(ϕ) = c(ϕ∗) + log Eϕ∗

{
e〈Y ,ϕ−ϕ

∗〉
}

If we think of ϕ as variable and ϕ∗ as fixed, then this determines
c(ϕ) for all ϕ up to an unknown additive constant c(ϕ∗), which
can be dropped from log likelihoods.



The Magic of Cumulant Functions (cont.)

More precisely,

c(ϕ) = c(ϕ∗) + log Eϕ∗

{
e〈Y ,ϕ−ϕ

∗〉
}

determines the cumulant function if the expectation exists. If the
expectation does not exist, then we give c(ϕ) the value ∞ so it is
defined for all vectors ϕ.

Let
Φ = {ϕ : c(ϕ) <∞}

We say the set Φ is the canonical parameter space of the full
exponential family (containing the originally given exponential
family if it was not full).

Any new distributions added to the family have ratios of their
PMDF to the PMDF for parameter value ϕ∗

e〈y ,ϕ−ϕ
∗〉−c(ϕ)+c(ϕ∗)

just like the distributions in the originally given family.



Moment Generating Functions

The moment generating function (MGF) of a random vector Y is

Mϕ(t) = Eϕ
{

e〈Y ,t〉
}

(ϕ is the parameter vector for the distribution of Y ) provided that
this expectation is finite for all t in some neighborhood of zero
(otherwise, we say Y does not have an MGF).



Moment Generating Functions (cont.)

The reason for the name is because ordinary moments can be
computed by differentiating the MGF and evaluating the
derivatives at t = 0

Eϕ(Yi ) =
∂Mϕ(t)

∂ti

∣∣∣∣
t=0

Eϕ(YiYj) =
∂2Mϕ(t)

∂ti∂tj

∣∣∣∣
t=0

Eϕ(YiYjYk) =
∂2Mϕ(t)

∂ti∂tj∂tk

∣∣∣∣
t=0

and so forth.



Moment Generating Functions (cont.)

The reason why this works is “differentiation under the integral
sign”

∂Mϕ(t)

∂ti
=

∂

∂ti
Eϕ
{

e〈Y ,t〉
}

= Eϕ

{
∂

∂ti
e〈Y ,t〉

}
= Eϕ

{
Yie
〈Y ,t〉

}
(the middle equality being “differentiation under the integral sign”
although, of course, the expectation may be a combination of
summation and integration or even all summation). Setting t = 0
gives

∂Mϕ(t)

∂ti

∣∣∣∣
t=0

= Eϕ(Yi )



Moment Generating Functions (cont.)

Differentiation under the integral sign does not always work, but it
is a theorem of MGF theory that it always does work for MGF (this
is a theorem of measure-theoretic probability that uses the
so-called dominated convergence theorem).

And now we see the reason for requirement that Mϕ(t) be finite
for all t in some neighborhood of zero. We need it in order for
partial derivatives at zero to exist. And we don’t care about these
partial derivatives existing at any other point.



Cumulant Generating Functions

The log of an MGF is called a cumulant generating function
(CGF) and its partial derivatives evaluated at zero are called
cumulants

κi =
∂ log Mϕ(t)

∂ti

∣∣∣∣
t=0

κij =
∂2 log Mϕ(t)

∂ti∂tj

∣∣∣∣
t=0

κijk =
∂2 log Mϕ(t)

∂ti∂tj∂tk

∣∣∣∣
t=0

and so forth.

The cumulants of order m are polynomial functions of the ordinary
moments up to order m and vice versa. The actual formulas can
be found in comprehensive textbooks of mathematical statistics.



Cumulant Generating Functions (cont.)

We are only interested in the first two cumulants

Eϕ(Yi ) =
∂ log Mϕ(t)

∂ti

∣∣∣∣
t=0

covϕ(Yi ,Yj) =
∂2 log Mϕ(t)

∂ti∂tj

∣∣∣∣
t=0

or, rewriting these as vector and matrix equations

Eϕ(Y ) = ∇ log Mϕ(0)

varϕ(Y ) = ∇2 log Mϕ(0)



Cumulant Generating Functions (cont.)

In
Eϕ(Y ) = ∇ log Mϕ(0)

the left-hand side denotes the mean vector, which has
components Eϕ(Yi ) and the right-hand side denotes the gradient
vector, which has components ∂ log Mϕ(t)/∂ti evaluated at t = 0.

In
varϕ(Y ) = ∇2 log Mϕ(0)

the left-hand side denotes the variance matrix, which has
components covϕ(Yi ,Yj) and the right-hand side denotes the
hessian matrix, which has components ∂2 log Mϕ(t)/∂ti∂tj
evaluated at t = 0.

The variance matrix is also called the covariance matrix, the
variance-covariance matrix, or the dispersion matrix.



The Magic of Cumulant Functions (cont.)

What is the CGF of an exponential family?

The MGF is

Mϕ(t) = Eϕ
{

e〈Y ,t〉
}

= Eϕ∗

{
e〈Y ,t〉e〈Y ,ϕ−ϕ

∗〉−c(ϕ)+c(ϕ∗)
}

= ec(ϕ+t)−c(ϕ)

provided this satisfies the condition to be an MGF, that is,
provided that ϕ is an interior point of Φ.



The Magic of Cumulant Functions (cont.)

An exponential family is regular if its full canonical parameter
space Φ is an open set. For a regular exponential family

Mϕ(t) = ec(ϕ+t)−c(ϕ)

is an MGF for all ϕ ∈ Φ.

And the cumulant function is

Kϕ(t) = log Mϕ(t) = c(ϕ+ t)− c(ϕ)



The Magic of Cumulant Functions (cont.)

And the first two cumulants are

∇Kϕ(0) = ∇c(ϕ+ t)
∣∣
t=0

= ∇c(ϕ)

∇2Kϕ(0) = ∇2c(ϕ+ t)
∣∣
t=0

= ∇2c(ϕ)

derivatives of the CGF evaluated at zero are derivatives of the
cumulant function c evaluated at ϕ.

In short

Eϕ(Y ) = ∇c(ϕ)

varϕ(Y ) = ∇2c(ϕ)

This is tremendously important with lots of consequences.



The Magic of Cumulant Functions (cont.)

Do aster models have this magic? The only requirement we needed
is that the exponential family be full and regular. So the question
becomes are aster models full and regular?

The answer is yes, provided all the exponential families for
dependence groups are full and regular.

But the proof is somewhat complicated, so we have put it in a
separate file in the “Course Notes” section of the course web site.



Convex Sets

A convex set of vectors is a set S having the property that for any
two points x1 and x2 in the set, the entire line segment with these
points as end points is also in the set, that is,

tx1 + (1− t)x2 ∈ S , 0 < t < 1



The Extended Real Number System

R denotes the real number system.

R denotes the extended real number system.

As sets, R is R with two points added, which are denoted +∞ and
−∞.

To make a number system out of R, we need to specify

its ordering,

its arithmetic, and

its topology.



The Extended Real Number System (cont.)

The ordering is obvious −∞ < x < +∞ for x ∈ R and the usual
ordering on R.

Most of the arithmetic is obvious

x +∞ =∞, x 6= −∞
x · ∞ =∞, x > 0

x · ∞ = −∞, x < 0

and so forth.

But there are no obvious definitions of ∞−∞ or 0 · ∞.

People adopt different conventions in different contexts or just
leave them undefined, like divide by zero in R.



The Extended Real Number System (cont.)

The topology can be described by defining neighborhoods.

A set is a neighborhood of x ∈ R if it contains the interval
(x − ε, x + ε) for some ε > 0.

A set is a neighborhood of +∞ if it contains the interval (x ,+∞]
for some x ∈ R.

A set is a neighborhood of −∞ if it contains the interval [−∞, x)
for some x ∈ R.



The Extended Real Number System (cont.)

This topology is metrizable. Take any bounded increasing function
on R, and extend it to R by taking limits. The arc tangent
function atan will do. atan(±∞) = ±π/2. Now take the distance
between x and y in R to be |atan(x)− atan(y)|.
R is a compact metrizable space. Every sequence has a
convergent subsequence. If the sequence is bounded, then it has a
subsequence that converges by the Bolzano-Weierstrass theorem.
If the sequence is unbounded, then it has a subsequence that
converges to +∞ or to −∞.



Convex Functions

An extended-real-valued function f on a vector space is convex if

f
(
tx + (1− t)y

)
≤ tf (x) + (1− t)f (y),

whenever f (x) <∞, f (y) <∞, and 0 < t < 1

The restrictions f (x) <∞, f (y) <∞, and 0 < t < 1 avoid any
possibility of ∞−∞ or 0 · ∞.

If f is an extended-real-valued convex function, then the set

dom f = { x : f (x) <∞}

is called its effective domain. Of course, the domain of f is the
whole vector space on which it is defined.

It follows immediately from the definition that dom f is a convex
set.



Strictly Convex Functions, Proper Convex Functions

A convex extended-real-valued function f on a vector space is
strictly convex if

f
(
tx + (1− t)y

)
< tf (x) + (1− t)f (y),

whenever f (x) ∈ R, f (y) ∈ R, and 0 < t < 1

A convex extended-real-valued function f on a vector space is
proper if

it is not everywhere equal to +∞, and

it is not anywhere equal to −∞.



The Magic of Cumulant Functions (cont.)

Theorem

The cumulant function of an exponential family is a proper convex
extended-real-valued function. It is strictly convex unless the
probability distributions of the canonical statistic are concentrated
on a hyperplane.

Proof.

Hölder’s inequality and the conditions for equality in Hölder’s
inequality.



Concave Functions

A function f is concave if and only if −f is convex.

Stand on your head and convex becomes concave and vice versa.

A function f is strictly concave if and only if −f is strictly convex.

A concave function f is proper if and only if −f is proper.

The effective domain of a concave function f is dom(−f ).

The main virtue of convex functions is in minimization.

The main virtue of concave functions is in maximization.



Concave Functions (cont.)

The log likelihood of an exponential family is a proper concave
extended-real-valued function. It is strictly concave unless the the
probability distributions of the canonical statistic are concentrated
on a hyperplane.



Local and Global Maximizers and Minimizers

A point x is a global minimizer of a function f if

f (x) ≤ f (y), for all y

A point x is a local minimizer of a function f if

f (x) ≤ f (y), for all y in some neighborhood of x



Local and Global Maximizers and Minimizers (cont.)

Theorem

Every local minimizer of a convex function is a global minimizer.

Proof.

Let f be a convex function. If it is everywhere equal to +∞, then
every point is a global minimizer. If it is anywhere equal to −∞,
then that point is a global minimizer. Otherwise f is proper. So
suppose f (x) is finite. For any other point y such that
f (y) < f (x), we have

f
(
tx + (1− t)y

)
≤ tf (x) + (1− t)f (y) < f (x)

for all t ∈ (0, 1). Thus if x is not a global minimizer is it not a
local minimizer either.



Local and Global Maximizers and Minimizers (cont.)

Theorem

A proper strictly convex function has at most one local minimizer.

If a local minimizer exists, then it is the unique global minimizer by
this theorem and the preceding theorem.

Proof.

Assume to get a contradiction that x and y are distinct local
minimizers. By the preceding theorem, they are global minimizers.
So f (x) = f (y). By definition of strict convexity, for 0 < t < 1,

f
(
tx + (1− t)y

)
< tf (x) + (1− t)f (y) = f (x) = f (y)

but this contradicts x and y being local minimizers. It follows
(proof by contradiction) that the assumption that two local
minimizers exist is false.



Local and Global Maximizers and Minimizers (cont.)

Theorem

A convex function f that is finite and differentiable on an open
convex set O satisfies

f (y) ≥ f (x) + 〈∇f (x), y − x〉, x , y ∈ O.

This is part (b) of Theorem 2.14 in Rockafellar and Wets
Variational Analysis.

Corollary

For a proper convex function whose effective domain is an open set
and which is differentiable on that open set, every point where the
derivative is zero is a global minimizer.



Local and Global Maximizers and Minimizers (cont.)

Corollary

For a regular full exponential family, a necessary and sufficient
condition that a parameter vector (globally) maximize the log
likelihood is that the first derivative of the log likelihood is zero
there.
If the probability distributions of the canonical statistic are not
concentrated on a hyperplane (so the log likelihood is strictly
concave) the maximizer is unique if it exists.



Local and Global Maximizers and Minimizers (cont.)

A local minimizer or maximizer need not exist.

Consider the convex function exp defined on R considered as a
one-dimensional vector space. Its infimum is zero, but exp(x) > 0
for all x .

The phenomenon does occur in aster models and other exponential
family models. Much more on this later (Deck 9).



Mean Value Parameterizations

The map h defined by

h(ϕ) = ∇c(ϕ) = Eϕ(Y ), ϕ ∈ Φ

maps the canonical parameter vector ϕ of a regular full exponential
family to the mean value parameter vector µ = h(ϕ).

Of course, we don’t yet know that µ parameterizes the family. So
calling it a parameter is premature.



Mean Value Parameterizations (cont.) I

Theorem

In a regular full exponential family no two distributions have the
same mean vector.

Hence the mean value parameterization not only is a
parameterization, it is an identifiable one.

A parameterization is identifiable if each distinct parameter
(vector) value corresponds to a distinct distribution.

Proof

Suppose ∇c(θ1) = ∇c(θ2) = µ, and consider the function lµ
defined by

lµ(θ) = 〈µ, θ〉 − c(θ)

(which is just like the log likelihood except that the data vector y
is replaced by a possible mean vector µ). Then lµ is concave just



Mean Value Parameterizations (cont.) II

like the log likelihood. Since ∇lµ is zero at θ1 and θ2, they are
both global maximizers. By definition of concavity, every point in
the interval (θ1, θ2) is also a global maximizer. Consequently

r(t) = lµ
(
tθ1 + (1− t)θ2)

is constant on (0, 1), hence

r ′(t) =
〈
µ−∇c

(
tθ1 + (1− t)θ2), θ1 − θ2

〉
and

r ′′(t) = −
〈
θ1 − θ2,∇2c

(
tθ1 + (1− t)θ2)(θ1 − θ2)

〉
are both zero when 0 < t < 1. But we also know that

r ′′(t) = −
〈
θ1 − θ2, vartθ1+(1−t)θ2(Y )(θ1 − θ2)

〉
= − vartθ1+(1−t)θ2(〈Y , θ1 − θ2〉)



Mean Value Parameterizations (cont.) III

so 〈Y , θ1 − θ2〉 is almost surely constant, and this is true for all
distributions in the family because all distributions in an
exponential family have the same support.

Now the PDMF of the distribution having parameter θ1 with
respect to the distribution having parameter θ2 is

e l(θ1)−l(θ2) = e〈Y ,θ1−θ2〉−c(θ1)+c(θ2)

and we have just established that this is almost surely constant. In
order for the PDMF to sum-integrate to one, the constant must be
one. Hence θ1 and θ2 correspond to the same distribution.



Mean Value Parameterizations (cont.)

The preceding proof almost proves the following theorem.

Theorem

In a regular full exponential family having canonical statistic Y ,
canonical parameter vectors θ1 and θ2 correspond to the same
distribution if and only if 〈Y , θ1 − θ2〉 is constant almost surely.

Proof.

If θ1 and θ2 correspond to the same distribution, then they have
the same mean vector, and the preceding proof shows 〈Y , θ1 − θ2〉
is constant almost surely.
Conversely, if 〈Y , θ1 − θ2〉 is constant almost surely, then the
preceding proof shows θ1 and θ2 correspond to the same
distribution.



Mean Value Parameterizations (cont.)

A vector η in the parameter space such that 〈Y , η〉 is constant
almost surely, is called a direction of constancy.

The set of all directions of constancy is called the constancy
space. Clearly, it is a vector subspace of the vector space
containing the canonical parameter space.

If θ is an element of the full canonical parameter space, and η is a
direction of constancy, then θ + η is in the full canonical parameter
space, and θ and θ + η correspond to the same distribution.

The reason for the name is that the log likelihood is constant in
that direction, that is, l(θ + tη) is a constant function of t.

Thus the canonical parameterization of a regular full exponential
family is not necessarily identifiable.



Mean Value Parameterizations (cont.)

But all unconditional canonical parameterizations of aster models
currently implemented are identifiable so long as the aster model
has no multinomial dependence groups.

If the aster model has a multinomial dependence group G , then
the indicator vector η ∈ RJ defined by

ηj =


1, j ∈ G

−1, j = q(G )

0, otherwise

is a direction of constancy because

〈Y , η〉 =

{
−Yq(G) +

∑
j∈G Yj , q(G ) ∈ J∑

j∈G Yj , q(G ) /∈ J

and in either case is constant almost surely by definition of the
multinomial distribution and the predecessor is sample size
property.



Mean Value Parameterizations (cont.)

Because the aster transform is invertible, the same also applies to
conditional canonical parameterizations.

All conditional canonical parameterizations of aster models
currently implemented are identifiable so long as the aster model
has no multinomial dependence groups.



Mean Value Parameterizations (cont.) I

Theorem

For a regular full exponential family, if the canonical
parameterization is identifiable, then the mapping between the
canonical parameter and the mean value parameter is invertible.
Moreover, it is a C∞ diffeomorphism. The matrix inverse of the
first derivative is the first derivative matrix of the inverse mapping.

Proof

If the canonical parameterization is identifiable, then the mapping
θ ←→ µ is one-to-one, hence invertible.

In the theorem about identifiability of canonical parameters, we
learned that ∇2c(θ) has a trivial null space if and only if the
canonical parameterization is identifiable, hence it is invertible if
and only if the canonical parameterization is identifiable, hence by
the inverse function theorem (of real analysis) the mapping



Mean Value Parameterizations (cont.) II

θ ←→ µ locally invertible and differentiable both ways. Higher
order derivatives of the inverse mapping are given by higher order
derivatives of the cumulant function, the chain rule, and the rule
for the derivative of the inverse of a matrix.

In symbols, the last sentence of the theorem statement and the
inverse function theorem say

µ = h(θ) = ∇c(θ)

implies

∇h(θ) = ∇2c(θ)

and

∇h−1(µ) =
[
∇2c(θ)

]−1



Mean Value Parameterizations (cont.)

The formula for the derivative of matrix inversion mentioned in the
proof is easily derived from AA−1 = I , where I denotes the identity
matrix. Differentiating gives

∂A

∂t
A−1 + A

∂A−1

∂t
= 0

and multiplying by A−1 on the left gives

∂A−1

∂t
= −A−1

∂A

∂t
A−1



Mean Value Parameterizations (cont.)

A similar analysis applied to the conditional exponential families
associated with dependence groups gives the following.

The map hG defined by

hG (θG ) = ∇cG (θG )

maps the canonical parameter vector θG of a regular full
exponential family associated with dependence group G to
ξG = hG (θG ).

The conditional mean value parameter vector is the vector ξ
having subvectors ξG .



Mean Value Parameterizations (cont.)

So what expectations are the ξG?

Recall that yG = z1 + · · ·+ zyq(G)
, where the zi are IID realizations

of the canonical statistic of the exponential family with cumulant
function cG and canonical parameter θG (yG is a random sum of
random variables with yq(G) terms).

Thus

E (yG |yq(G)) =

yq(G)∑
i=1

E (Zi ) = yq(G)ξG

(because E (Zi ) = ξG for all i). And

E (yG |yq(G) = 1) = ξG (∗)

assuming this makes sense. Equation (∗) does not make sense
when the event yq(G) = 1 has probability zero.



Mean Value Parameterizations (cont.)

When equation (∗) does not make sense, we cannot use it as a
definition of ξG .

Then we have to use the circumlocution: ξG is the mean of each of
the yq(G) IID random variables the sum of which is yG . (This is the
general definition that works in all cases.)



Mean Value Parameterizations (cont.)

Because the mean of a random vector is just the vector whose
components are the means of the components of the random
vector, we don’t need to refer to dependence groups in the
definitions just given.

For all j ∈ J
ξj = E (yj |yp(j) = 1)

when the conditioning event has nonzero probability.

Otherwise we use the circumlocution: ξj is the mean of each of the
yp(j) IID random variables the sum of which is yj .

This is where the node-to-node predecessor function p comes in
handy even when the aster model has dependence groups.



A Confession

The first aster paper (Geyer, Wagenius, and Shaw, Biometrika,
2007) did not define conditional mean value parameters this way.
They said

ξj = E (yj |yp(j)) = yp(j)E (yj |yp(j) = 1)

rather than
ξj = E (yj |yp(j) = 1)

A referee said the former definition is dumb. It is a function of
random variables yp(j) and parameters E (yj |yp(j) = 1) and so
shouldn’t be called a parameter and shouldn’t be denoted by a
Greek letter. The R package aster uses the same dumb definition
by default.

We didn’t listen then. But now we agree with the referee. The R
package aster2 and recent papers and technical reports use the
latter (non-dumb) definition (if they mention conditional mean
value parameters at all).



A Confession (cont.)

Since version 1.0.2 of R package aster, the aster and
aster.formula methods of R generic function predict have a
new optional argument is.always.parameter = FALSE that
controls which definition of ξ is used.

When this argument is TRUE it uses the new good definition

ξj = E (yj |yp(j) = 1)

When this argument is FALSE it uses the old dumb definition

ξj = E (yj |yp(j))

The default is FALSE for backwards compatibility. We do not want
to break old code. Almost always you will want to add
is.always.parameter = TRUE if you want conditional mean
value parameters.



Mean Value Parameterizations (cont.)

It is useful to examine the direct change of parameter

µ←→ ξ

rather than the long way round

µ←→ ϕ←→ θ ←→ ξ

Applying the iterated expectation theorem to

E (yj |yp(j)) = yp(j)ξj

gives

µj = E (yj) = E{E (yj |yp(j))} = E (yp(j)ξj) = ξjE (yp(j)) = ξjµp(j)



Mean Value Parameterizations (cont.)

And iterating this gives

µj = ξjµp(j)

= ξjξp(j)µp(p(j))

= ξjξp(j)ξp(p(j))µp(p(p(j)))

= ξjξp(j)ξp(p(j))ξp(p(p(j)))µp(p(p(p(j))))

and so forth.

Keep going until the only µ is for an initial node, in which case,
since the expectation of a constant is a constant,

µp(p(p(p(j)))) = yp(p(p(p(j))))

(or perhaps with more p’s, whatever it takes to get to an initial
node).



Mean Value Parameterizations (cont.)

Here is a way to write µ in terms of ξ without saying “or perhaps
with more p’s, whatever it takes”.

Let ≺ denote the transitive closure of the node-to-node
predecessor relation defined by j ≺ k if and only if one of the
following holds

j = p(k)

j = p(p(k))

j = p(p(p(k)))

...

where the dots indicate arbitrarily many applications of p.

If we allowed ourselves to use the term “ancestor” like it is used in
graph theory, this would be the “ancestor relation”. But we avoid
biological terminology for describing graphs and so have to use the
more long-winded term in boldface above.



Mean Value Parameterizations (cont.)

But ≺, which is a strict partial order relation, is not as useful as �,
its corresponding partial order relation, defined by j � k if and only
if j ≺ k or j = k.

� has the even more long-winded name: reflexive transitive
closure of the node-to-node predecessor relation.

But it would have a clumsy name even if we used “ancestor”’ like it
is used in graph theory. What would you call it? Ancestor-or-self
relation? Reflexive closure of the ancestor relation?

Whatever one calls them, we now have the two useful symbols ≺
and � for these relations.



Mean Value Parameterizations (cont.)

Using this new notation

µk =

∏
j∈J
j�k

ξj


 ∏

j∈N\J
j�k

yj


(the second product always has exactly one term).



Mean Value Parameterizations (cont.)

Going the other way is even easier

ξj =
µj
µp(j)

assuming we do not have divide by zero. Since we already know
that the mapping µ←→ ξ is invertible, it must be that we never
have divide by zero.



A Plethora of Parameterizations

Now we have four different parameterizations. All are equally
good, and any one can be mapped to any other.

θ ϕ

ξ µ
-

�

-
�

multiplication

division

aster transform

inverse aster transform

?

6

?

6

∇cG ∇c



A Plethora of Parameterizations (cont.)

In the figure, the black arrows all have closed form expressions and
all are infinitely differentiable.

The red arrows have no closed form expression and do not even
exist if the canonical parameterizations are not identifiable (either
both are identifiable or neither is).

In aster models currently implemented canonical parameterizations
are identifiable unless there are multinomial dependence groups.
Then the red arrows indicate infinitely differentiable functions.

We saw in the proof of identifiability of mean value parameters
how to find ϕ given µ. Maximize the function lµ defined by

lµ(ϕ) = 〈µ, ϕ〉 − c(ϕ)



A Plethora of Parameterizations (cont.)

Similarly, to find θG given ξG , maximize the function lξG defined by

lξG (θG ) = 〈ξG , θG 〉 − cG (θG )

When there are multinomial dependence groups and the full
canonical parameterizations are not identifiable, the canonical
parameterizations can be made identifiable by imposing equality
constraints on the canonical parameters. More on this later.



Some Distribution Theory

Let us do a little distribution theory to have some concrete
examples.



Some Distribution Theory: Bernoulli

The PMF of the Bernoulli distribution is

fp(x) =

{
1− p, x = 0

p, x = 1

where p is the “usual parameter” satisfying 0 < p < 1. We can
write this without case splitting

fp(x) = px(1− p)1−x

so the log likelihood is

l(p) = x log(p) + (1− x) log(1− p)

= x
[

log(p)− log(1− p)
]

+ log(1− p)



Some Distribution Theory: Bernoulli (cont.)

From this we see that the usual statistic x is the canonical
statistic. But the usual parameter is not the canonical parameter.
The canonical parameter must be the term in square brackets

θ = log(p)− log(1− p) = log

(
p

1− p

)
= logit(p)

We can solve for the usual parameter in terms of the canonical
parameter

eθ = p/(1− p)

(1− p)eθ = p

eθ = p + peθ

eθ = p + peθ

p = eθ/(1 + eθ)



Some Distribution Theory: Bernoulli (cont.)

Recall the log likelihood

l(p) = x logit(p) + log(1− p)

and the change of parameter

p =
eθ

1 + eθ

The term that does not contain x must be minus the cumulant
function, that is,

c(θ) = − log(1− p) = − log

(
1− eθ

1 + eθ

)
= − log

(
1

1 + eθ

)
or

c(θ) = log
(

1 + eθ
)



Some Distribution Theory: Bernoulli (cont.)

And

c(θ) = log
(

1 + eθ
)

c ′(θ) =
eθ

1 + eθ

Thus we see that the “usual” parameter p is also the mean value
parameter ξ, so we will use that notation from now on.

And

c ′(θ) =
1

e−θ + 1

c ′′(θ) =
e−θ

[e−θ + 1]2
=

eθ

[1 + eθ]2
= ξ(1− ξ)



Some Distribution Theory: Bernoulli (cont.)

Thus we recover the usual theory of the Bernoulli distribution

E (X ) = ξ

var(X ) = ξ(1− ξ)

But we obtain a lot more, everything we need to know to use
Bernoulli arrows in aster models.



Some Distribution Theory: Poisson

The PMF of the Poisson distribution is

fm(x) =
mxe−m

x!

where m is the “usual parameter” satisfying 0 < m <∞. So the
log likelihood is

l(m) = x log(m)−m

(we drop the term log(x!) that does not contain the parameter).



Some Distribution Theory: Poisson (cont.)

From this we see that the usual statistic x is the canonical
statistic. But the usual parameter is not the canonical parameter.
The canonical parameter is what multiplies x in the log likelihood,
that is,

θ = log(m)

which has inverse change of parameter

m = eθ

The term in the log likelihood that does not contain x must be
minus the cumulant function, that is,

c(θ) = m = eθ



Some Distribution Theory: Poisson (cont.)

And

c(θ) = eθ

c ′(θ) = eθ

c ′′(θ) = eθ

Thus we see that the “usual” parameter m is also the mean value
parameter ξ, so we will use that notation from now on.

And we recover the usual theory of the Poisson distribution

E (X ) = ξ

var(X ) = ξ

But we obtain a lot more, everything we need to know to use
Poisson arrows in aster models.



Some Distribution Theory: Zero-Truncated Poisson

The PMF of the zero-truncated Poisson distribution is

fm(x) =
mxe−m

x!(1− e−m)

where m is the “usual parameter” satisfying 0 < m <∞. So the
log likelihood is

l(m) = x log(m)−m − log(1− e−m)

(we drop the term log(x!) that does not contain the parameter).



Some Distribution Theory: Zero-Truncated Poisson (cont.)

From this we see that the usual statistic x is the canonical
statistic. But the usual parameter is not the canonical parameter.
The canonical parameter is what multiplies x in the log likelihood,
that is,

θ = log(m)

which has inverse change of parameter

m = eθ

The term in the log likelihood that does not contain x must be
minus the cumulant function, that is,

c(θ) = m + log(1− e−m) = eθ + log
(

1− e−e
θ
)



Some Distribution Theory: Zero-Truncated Poisson (cont.)

And

c(θ) = eθ + log
(

1− e−e
θ
)

c ′(θ) = eθ +
eθe−e

θ

1− e−eθ

= m +
me−m

1− e−m

=
m

1− e−m

Thus we see that the “usual” parameter m is not the mean value
parameter ξ either. In fact, m is the mean of the (untruncated)
Poisson random variable that we truncate to get X .

Although for the Bernoulli and Poisson distributions, there was a
closed form expression for the mapping ξ −→ θ, for this
distribution there is not.



Some Distribution Theory: Zero-Truncated Poisson (cont.)

And

c ′(θ) = eθ +
eθe−e

θ

1− e−eθ

c ′′(θ) = eθ +
eθe−e

θ

1− e−eθ
− e2θe−e

θ

1− e−eθ
− e2θe−2e

θ

(1− e−eθ)2

= eθ − eθ(eθ − 1)e−e
θ

1− e−eθ
−

[
eθe−e

θ

1− e−eθ

]2

= m − m(m − 1)e−m

1− e−m
−
[

me−m

1− e−m

]2



Some Distribution Theory: Zero-Truncated Poisson (cont.)

Thus we discover the theory of the zero-truncated Poisson
distribution

E (X ) =
m

1− e−m
= ξ

var(X ) = m − m(m − 1)e−m

1− e−m
−
[

me−m

1− e−m

]2
= ξ(1− ξe−m)

= ξ(1 + m − ξ)

And we obtain a lot more, everything we need to know to use
zero-truncated Poisson arrows in aster models.



A Plethora of Parameterizations (cont.)

But don’t we need to know a lot more distribution theory than
that?

No. We just need to teach the computer a bit about the basics of
differentiation: the rules for derivative of a sum, derivative of a
product, derivative of a quotient, and the chain rule.

Then the computer can combine cumulant functions for
one-parameter conditional distributions to obtain the cumulant
function for the whole aster model, the log likelihood, and the
gradient vector and hessian matrix of the log likelihood. These are
needed to do maximum likelihood estimation and likelihood-based
inference, which uses the Fisher information matrix and the
delta method (much more on these later).

The computer can also do all of the changes of parameter between
θ, ϕ, ξ, and µ and all the derivatives (Jacobian matrices) for these
changes of parameter, which are needed for the delta method.



Unconditional Canonical Affine Submodels

It may come as a shock, that all of this theory and all of these
parameterizations do not give us any useful models. Too many
parameters!

We call the models already presented saturated aster models.
They have one parameter per arrow in the graph, which is one
parameter per non-initial node of the graph, which is one
parameter per component of the response vector.

Useful models have to be submodels of these models .



Unconditional Canonical Affine Submodels (cont.)

We already know how to specify submodels, just like in linear
models (LM) and generalized linear models (GLM), we specify the
saturated model parameters as linear functions of other parameters.

As we learn from GLM theory, we do not want to specify means as
linear functions because linear functions do not respect constraints.
If we are doing Bernoulli GLM, then we know 0 < µi < 1, but
writing a linear function

µi = α + βxi

gives means outside the allowed range. Logistic regression specifies
the saturated model canonical parameter vector as a linear function

θi = logit(µi ) = α + βxi

And since the range of θi is −∞ to +∞, this works.



Unconditional Canonical Affine Submodels (cont.)

In order to get all canonical affine submodels at once, we adopt
matrix notation

ϕ = a + Mβ

where

ϕ is the saturated model unconditional canonical parameter,

a is a known vector (not a function of unknown parameters)
called the offset vector.

M is a known matrix (not a function of unknown parameters,
usually a function of covariate data) called the model matrix.

β is an unknown parameter vector.



Unconditional Canonical Affine Submodels (cont.)

“Offset vector” and “model matrix” is the terminology of the R
function glm.

The aster package says “origin” rather than “offset vector” (which
it probably shouldn’t).

Other people say “design matrix” rather than “model matrix” but
this doesn’t really make sense when some of the covariates are
random rather than fixed by experimental design.



Unconditional Canonical Affine Submodels (cont.)

The offset vector is zero in most applications. This gives us
canonical linear submodels specified by

ϕ = Mβ

This is what we have seen over and over again in books on LM and
GLM.

R package aster puts an offset vector in every model by default
(it probably shouldn’t, and the aster2 package does not, more
bad design).

However, as long as varb is in the model, the offset vector only
affects the betas for varb, and these are of no scientific interest.
So it doesn’t really matter (but is confusing).



Unconditional Canonical Affine Submodels (cont.)

Nevertheless, offset vectors are occasionally useful. How many
knew about and have used the offset optional argument of the R
function glm?

So we keep them.



Unconditional Canonical Affine Submodels (cont.)

When we plug ϕ = a + Mβ into the aster model log likelihood we
get

l(β) = 〈y , a〉+ 〈y ,Mβ〉+ c(a + Mβ)

for the submodel log likelihood. We may drop the additive term
that does not contain the parameter vector β obtaining

l(β) = 〈y ,Mβ〉+ c(a + Mβ)

and now we revert to matrix notation to see

〈y ,Mβ〉 = yTMβ = βTMT y = 〈MT y , β〉

so
l(β) = 〈MT y , β〉+ c(a + Mβ)



Unconditional Canonical Affine Submodels (cont.)

And we see that

l(β) = 〈MT y , β〉+ c(a + Mβ)

has the form of an exponential family log likelihood with

canonical statistic vector MT y

canonical parameter vector β

cumulant function

csub(β) = c(a + Mβ)

This is important: unconditional canonical affine submodels are
themselves regular full exponential families.



Unconditional Canonical Affine Submodels (cont.)

csub(β) = c(a + Mβ)

∇csub(β) = MT∇c(a + Mβ)

∇2csub(β) = MT∇2c(a + Mβ)M



Unconditional Canonical Affine Submodels (cont.)

To see these, use coordinates. The i-th component of Mβ is∑
k

mikβk

so
∂csub(β)

∂βk
=
∑

i

∂c(ϕ)

∂ϕi

∂ϕi

∂βk
=
∑

i

∂c(ϕ)

∂ϕi
mik

and
∂2csub(β)

∂βk∂βl
=
∑

i

∑
j

∂2c(ϕ)

∂ϕi∂ϕj
mikmjk



Unconditional Canonical Affine Submodels (cont.)

This gives us everything we need for maximum likelihood
estimation and likelihood inference for canonical affine submodels.

Because these submodels are regular full exponential families,
maximum likelihood estimates (MLE), if they exist, can be found
by any algorithm that goes uphill on the log likelihood and doesn’t
stop until it finds a point where the gradient vector is zero.

If the canonical affine submodel is identifiable, then MLE are
unique if they exist.



Unconditional Canonical Affine Submodels (cont.)

By our theorem about identifiability of the canonical
parameterization of a regular full exponential family, as applied to
the canonical affine submodel, the submodel is identifiable if and
only if the only vector η in the submodel parameter space such that

〈MTY , η〉 = 〈Y ,Mη〉 (∗)

is almost surely constant is η = 0. The set of all vectors η such
that (∗) is almost surely constant is the submodel constancy space.

If η is in the submodel constancy space, then Mη is in the
saturated model constancy space and vice versa.



Unconditional Canonical Affine Submodels (cont.)

Identifiability can fail in two ways, one deterministic, one
stochastic.

If Mη = 0 for some η 6= 0, then we have classic collinearity.
R function aster solves this the same way R functions lm and
glm solve this: drop one or more columns of the model matrix
while maintaining the same column space (hence the same
submodel).

If 〈Y ,Mη〉 is almost surely constant for some η 6= 0, then we
have a direction of constancy.
R function transformUnconditional in R package aster2

solves this by dropping one or more columns of the model
matrix while maintaining the same intersection of the model
matrix column space and the saturated model constancy
space.



Unconditional Canonical Affine Submodels (cont.)

We can always do this: obtain identifiability while keeping the
same model by dropping some columns of the model matrix.

That is what users are used to from R functions lm and glm so
that is what we do in R packages aster and aster2.

Which columns get dropped is arbitrary. This is another aspect of
canonical parameters are meaningless.

Because we have the same model after dropping columns of M,
mean value parameters stay the same. This is another aspect of
probabilities and expectations are meaningful.



Unconditional Canonical Affine Submodels (cont.)

By the theory of exponential families, the submodel mean value
parameter is

τ = ∇csub(β) = E (MT y) = MTE (y) = MTµ



A Plethora of Parameterizations (cont.)

Now we have six parameterizations:

saturated model conditional canonical parameter vector θ,

saturated model unconditional canonical parameter vector ϕ,

saturated model conditional mean value parameter vector ξ,

saturated model unconditional mean value parameter vector µ,

unconditional canonical affine submodel canonical parameter
vector β,

unconditional canonical affine submodel mean value parameter
vector τ ,

All six parameterizations are important.

All six parameterizations play roles in scientific inference (not all on
stage at the same time).



A Plethora of Parameterizations (cont.)

θ ϕ β

ξ µ τ
-

�

-
�

multiplication

division

aster transform

inverse aster transform

?

6

?

6

∇cG ∇c

-µ 7→ MTµ

� β 7→ a + Mβ

?

∇csub

6

�

-



A Plethora of Parameterizations (cont.)

As before, the black arrows all have closed form expressions and all
are infinitely differentiable.

As before, the vertical red arrows have no closed form expression
and do not even exist if the canonical parameterizations are not
identifiable.

Like the other vertical red arrows, the one τ−→β is computed by
maximization of

lsub,τ (β) = 〈τ, β〉 − csub(β)

The horizontal red arrow µ←−τ can only be computed as the
composition τ−→β −→ ϕ −→ µ.

The horizontal red arrow ϕ←−β only makes sense when ϕ has the
form ϕ = Mβ for some β, in which case we already know which β
corresponds to which ϕ.



A Plethora of Parameterizations (cont.)

Let I be the index set for β and τ . As before, J is the index set of
θ, ϕ, ξ, and µ.

Let n be the cardinality of J, the length of θ, ϕ, ξ, µ, and y . Let r
be the cardinality of I , the length of β and τ .

The possible values of β form an open subset of RI , the full
canonical parameter space of the submodel.

Only ϕ such that ϕ = a + Mβ for some β occur, so the
possible values of ϕ form an r -dimensional affine subspace of
RJ or a relatively open subset thereof.

Since the inverse aster transform and derivatives of cumulant
functions are nonlinear, the possible values of θ, ξ, and µ form
r -dimensional curved submanifolds of RJ .

The possible values of τ form an open subset of RI .



A Plethora of Parameterizations (cont.)

In GLM because components of the response vector are
independent (conditional on covariates), there is no distinction
between conditional and unconditional so we have ϕ = θ and
µ = ξ and thus only four parameterizations.

In LM because mean value parameters are canonical for normal
location models, we have θ = ϕ = µ = ξ and thus only three
parameterizations

µ = Mβ

τ = MTµ



A Plethora of Parameterizations (cont.)

That we still have multiple parameterizations for LM and GLM
(though not so many as aster) is hidden by the usual way
textbooks and teachers woof about them.

Policy in all statistics courses (not policy enforced by anybody, just
part of the culture) says that we only call β a parameter vector.

The parameter vector µ we do not mention at all. Its estimates are
denoted ŷ in LM rather than µ̂ and are called “predicted values”
even though they are “predicting” the expectation of data already
observed rather than any future data. And τ̂ = MT ŷ are not
mentioned at all or computed by any R function (although you can
of course compute this matrix multiplication yourself).



A Plethora of Parameterizations (cont.)

I guess (who can really say where bits of culture come from) that
this policy is an attempt to not confuse students with multiple
parameterizations. The betas are the parameters; that’s all you
need to know.

But then what is

ŷi ± t critical value× standard error of ŷi

It is a confidence interval, but for what? A confidence interval is
an interval estimate of a parameter! What parameter? The
parameter who must not be named!

IMHO this causes as much confusion as it avoids.



A Plethora of Parameterizations (cont.)

GLM teachers and textbooks again say β is the only parameter
vector. They call ϕ the “linear predictor”, a term not used in
general statistical theory. And µ and µ̂ are not called anything.

But there is a function to compute them in R. If gout is the result
of a call to the glm function, then ϕ̂ is computed by

phi.hat <- predict(gout)

and µ̂ is computed by

mu.hat <- predict(gout, type = response)



A Plethora of Parameterizations (cont.)

If the glm function was called with optional argument x = TRUE so
its result (gout) has a component gout$x which is the model
matrix, then

tau.hat <- t(gout$x) %*% mu.hat

computes the submodel canonical statistic τ̂ .



A Plethora of Parameterizations (cont.)

Whether or not you think these parameterizations must not be
named, they exist and are important for scientific inference.

IMHO the names and the symbols help. It’s hard to talk about
something that must not be named.

And ŷ is (again, just IMHO) silly. Nowhere else in statistics to we
put a hat on a symbol for a statistic to symbolize a parameter
estimate. That is confusing all by itself.



Invariance of Maximum Likelihood

Maximum likelihood estimates transform by invariance.

Suppose θ is a parameter vector (not necessarily having anything
to do with aster models or even exponential families) and ψ = h(θ)
is an invertible transformation θ = h−1(ψ).

Theorem. If θ̂ is the MLE for θ, then ψ̂ = h(θ̂) is the MLE for ψ.

Proof. Think geometrically. The graph of the log likelihood is a
hypersurface over the domain. The maximum occurs at one point
(let us assume). θ and ψ are different coordinatizations of the
domain. The point where the maximum occurs is called θ̂ in one
coordinatization and ψ̂ in the other. The relationship between the
coordinatizations is ψ = h(θ). QED



Invariance of Maximum Likelihood (cont.)

So if we know the MLE for any parameter, we know the MLE for
every parameter (transform by invariance).



Observed Equals Expected

The log likelihood for an exponential family (not necessarily an
aster model) is

l(ϕ) = 〈y , ϕ〉 − c(ϕ)

and the gradient vector is

∇l(ϕ) = y −∇c(ϕ)

Assuming the distribution of the canonical statistic y is not
concentrated on a hyperplane so the MLE is unique if it exists, the
unique MLE is determined by

y = ∇c(ϕ̂)

but
µ = h(ϕ) = ∇c(ϕ)

is the change of parameter from canonical to mean value.



Observed Equals Expected (cont.)

So the relation between the MLE for ϕ and µ is

µ̂ = h(ϕ̂) and ϕ̂ = h−1(µ̂)

and
y = µ̂

This is called the observed equals expected property of
maximum likelihood in a regular full exponential family: the
observed value of the canonical statistic y is equal to the MLE of
its expected value µ̂.

This is true for any regular full exponential family. It is a large part
of the traditional woof about log-linear models for categorical data
analysis. It is entirely absent from the traditional woof about GLM.
There is no reason for this absence (other than tradition).



Observed Equals Expected (cont.)

When we apply the observed equals expected property to aster
canonical affine submodels, we get

MT y = τ̂

We cannot use this directly to find MLE of other parameters
because we have no closed form expression for the transformation
β = h−1(τ) that gives

β̂ = h−1(MT y)

We have to find β̂ using optimization software to maximize the log
likelihood l(β), and then use the transformations

ϕ̂ = a + Mβ̂

µ̂ = ∇c(ϕ̂)

τ̂ = MT µ̂



Observed Equals Expected (cont.)

Although
MT y = τ̂

does not allow us to determine the MLE for any other
parameterization except by doing maximum likelihood to find β̂, it
is extremely important because it is the only simple algebraic fact
about maximum likelihood: maximum likelihood in a regular
full exponential family has the observed equals expected
property. This is an important part of interpretation of MLE.



Sufficient Dimension Reduction

Almost all statistical inference does dimension reduction. It
replaces the whole of the data (dimension n) with a smaller vector
of statistics (dimension r).

For example, when you reduce a vector of n numbers to its mean,
r = 1. When you reduce it to its mean and variance, r = 2.

When you reduce the data to the MLE β̂ for a statistical model, r
is its dimension.



Sufficient Dimension Reduction (cont.)

Fisher (1922), the paper that introduced many of the ideas of
mathematical statistics (statistical models, the idea that inference
estimates parameters, maximum likelihood, Fisher information,
asymptotics of maximum likelihood, efficiency, and sufficiency),
asked and answered the question: how much information does a
dimension reduction throw away?

A dimension reduction is sufficient if it throws away no
information about the parameters. That is the ideal situation.



Sufficient Dimension Reduction (cont.)

A statistic (singular) is a random variable or random vector that is
a function of the data and is not a function of the parameters of
the statistical model. (This means it can actually be calculated
even though the values of the parameters are unknown.)

A statistic is sufficient if the conditional distribution of the whole
data given this statistic does not depend on the parameters of the
statistical model.



Sufficient Dimension Reduction (cont.)

When we factorize the distribution of the data into marginal times
conditional we get

fθ(whole data)

= f (whole data|sufficient statistic)fθ(sufficient statistic)

and we can drop the multiplicative term that does not contain the
parameter from the likelihood

L(θ) = fθ(sufficient statistic)

and log likelihood

l(θ) = log fθ(sufficient statistic)



Sufficient Dimension Reduction (cont.)

Thus MLE depend on the whole data only through the sufficient
statistic.

There is a converse to this. The Neyman-Fisher factorization
criterion (which we do not prove) says that if the likelihood or log
likelihood depends on the whole data only through some
statistic, then that statistic is sufficient.

In particular, the canonical statistic vector for an exponential
family is always sufficient.



Sufficient Dimension Reduction (cont.)

Some people (like my thesis adviser) always say canonical
sufficient statistic rather than canonical statistic even though
this is redundant (because the canonical statistic is always
sufficient).

Just a reminder. Don’t want anyone to forget how important
sufficiency is.



Sufficient Dimension Reduction (cont.)

Any one-to-one function of a sufficient statistic is sufficient.

For an unconditional canonical affine submodel of an aster model,
if τ = h(β) is the mapping from submodel canonical parameter to
submodel mean value parameter, then

β̂ = h−1(MT y)

is a one-to-one function of the submodel canonical sufficient
statistic vector MT y , hence β̂ is sufficient.

Since every other parameter is a one-to-one function of β, the
MLE for all other parameters θ̂, ϕ̂, ξ̂, and µ̂ are also sufficient
statistic vectors.



Sufficient Dimension Reduction (cont.)

In short, maximum likelihood for an unconditional aster model
does sufficient dimension reduction.

(We haven’t yet talked about so-called conditional aster models.
They do not do sufficient dimension reduction.)



Maximum Entropy

Edwin Jaynes introduced the “maximum entropy formalism” that
describes exponential families in terms of entropy.

Entropy comes from physics, in particular, from thermodynamics
and statistical physics.

Negative entropy (also called negentropy) is also called Shannon
information in information theory and Kullback-Leibler information
in statistics.



Maximum Entropy (cont.)

The second law of thermodynamics says entropy increases in
any isolated physical process.

A physical system that has maximum entropy is at thermodynamic
equilibrium.

A glass of water with ice cubes in it is not at thermodynamic
equilibrium. As the ice melts and the surrounding water becomes
colder, entropy increases. After the ice melts and we have a glass
of water at uniform temperature throughout, we are at
thermodynamic equilibrium and at maximum entropy.



Maximum Entropy (cont.)

Ludwig Boltzmann and Josiah Willard Gibbs figured out the
connection between entropy and probability and between the
thermodynamic properties of bulk matter and the motions and
interactions of atoms and molecules.

In this theory entropy is not certain to increase to its maximum
possible value. It is only overwhelmingly probable to do so in any
large system.

In a very small system, such as a cubic micrometer of air, it is less
probable that entropy will be near its maximum value. In such a
small system the statistical fluctuations are large.

This is the physical manifestation of the law of large numbers. The
larger the sample size (the more molecules involved) the less
stochastic variation.



Kullback-Leibler Divergence I

For any probability distributions P having density f with respect to
another probability distribution Q, the Kullback-Leibler
divergence between them is

D(P,Q) = −EQ{log f (X )}

Theorem

Kullback-Leibler divergence D(P,Q) is strictly positive unless
P = Q, in which case D(P,Q) = 0.

Proof

From f (x + h) > f (x) + f ′(x)h unless h = 0 for any strictly convex
function f (this is part (b’) of Theorem 2.13 in Rockafellar and
Wets Variational Analysis), we get

− log(x) > 1− x , x 6= 1.



Kullback-Leibler Divergence II

It follows that

D(P,Q) = −EQ{log f (X )}
> EQ{1− f (X )}
= 0

unless f (x) = 1 for all x , in which case P = Q.



Maximum Entropy (cont.)

The entropy of a probability measure P having density f with
respect to another probability measure Q is

H(P) = −EQ{f (X ) log f (X )}

Theorem

The distribution that maximizes H(P) subject to the constraint

EP(Y ) = µ (1)

is the distribution in the exponential family generated by Q and Y
having mean value parameter µ, assuming the given µ is a possible
value of the mean value parameter of this exponential family.



Maximum Entropy (cont.) I

Proof

Choose θ to be the canonical parameter corresponding to mean
value parameter µ in the exponential family referred to in the
theorem statement. And let fθ denote the density with respect to
Q of that distribution

fθ(x) = e〈Y (x),θ〉−c(θ)

where we give Q parameter value 0 in the exponential family,
where c is the cumulant function for the family, and where we



Maximum Entropy (cont.) II

assume c(0) = 0. Then

H(P) = −EQ{f (X ) log f (X )}

= −EQ

{
f (X ) log

(
f (X )

fθ(X )

)}
− EQ{f (X ) log fθ(X )}

= −EQ

{
f (X ) log

(
f (X )

fθ(X )

)}
− EQ{fθ(X ) log fθ(X )}

= −EQ

{
f (X ) log

(
f (X )

fθ(X )

)}
+ H(Pθ)

where Pθ is the distribution having density fθ with respect to Q
and where the third equality is the fact that
log fθ(X ) = 〈Y (X ), θ〉 − c(θ) has the same expectation with
respect to P and Pθ, by the assumption that E (Y ) = µ for both.



Maximum Entropy (cont.) III

Now we notice that

−EQ

{
f (X ) log

(
f (X )

fθ(X )

)}
= −EP

{
log

(
f (X )

fθ(X )

)}
= EP

{
log

(
fθ(X )

f (X )

)}
= −D(Pθ,P)

so

H(P) = −D(Pθ,P) + H(Pθ) < H(Pθ), unless P = Pθ,

so Pθ is the unique distribution maximizing entropy.



Maximum Entropy (cont.)

To the extent that our statistics models real-world physics (and
chemistry and biology), it should also maximize entropy.

This is a weak spot in the argument. How well do our models
model? Should imperfect models, which leave out a lot of physics
and chemistry and biology, still maximize their entropy?

Nevertheless, Jaynes considered maximizing entropy.



Maximum Entropy (cont.)

In the context of aster models, we choose the base measure Q to
be any distribution in the saturated aster model. We choose the
submodel canonical statistic vector MT y to be the statistic we
control the means of.

Then the maximum entropy model is the canonical linear model
with model matrix M.

If we want an offset vector, we can get that too by modifying the
base measure.



Maximum Entropy (cont.)

So now the other shoe drops on interpretation of exponential
families in general and aster models in particular.

Subject to being in the saturated aster model determined by the
aster graph, the maximum entropy model that constrains the
vector expectation

τ = E (MT y) (∗)

is the canonical linear model with model matrix M.

This submodel leaves all other aspects of the distribution of the
response as random as possible (in the sense of maximum entropy)
given (∗) holds.



Maximum Entropy (cont.)

The maximum entropy argument and the sufficient dimension
reduction argument work together.

An unconditional aster model (or any exponential family model)
has the sufficient dimension reduction property that makes the
canonical affine submodel canonical statistic vector MT y and the
MLE of all the parameters sufficient statistics.

Subject to having that property, every other aspect of the
distributions in the model is as random as possible (maximizes
entropy) subject to MT y having the expectation τ = E (MT y)
that it does, which is the submodel mean value parameter.



Maximum Entropy (cont.)

If you haven’t seen it before, this is a new and different way to
justify statistical models

Choose the “correct” submodel sufficient statistic vector MT y ,
where “correct” means its components include the scientifically
important and interpretable quantities.

Make the model the exponential family having MT y as the
submodel canonical statistic vector.

Then we get the sufficient dimension reduction and maximum
entropy properties.



Multivariate Monotonicity

A function h from a convex open subset Φ of a finite-dimensional
vector space to the same finite-dimensional vector space is
multivariate monotone if

〈h(ϕ∗∗)− h(ϕ∗), ϕ∗∗ − ϕ∗〉 ≥ 0, for all ϕ∗ and ϕ∗∗ in Φ

and is strictly multivariate monotone if

〈h(ϕ∗∗)− h(ϕ∗), ϕ∗∗ − ϕ∗〉 > 0, whenever ϕ∗ 6= ϕ∗∗



Multivariate Monotonicity (cont.)

Multivariate monotonicity generalizes univariate monotonicity. If
the space is one dimensional so ϕ∗, ϕ∗∗, h(ϕ∗), and h(ϕ∗∗) are
scalars, we have

〈h(ϕ∗∗)− h(ϕ∗), ϕ∗∗ − ϕ∗〉 =
[
h(ϕ∗∗)− h(ϕ∗)

]
·
[
ϕ∗∗ − ϕ∗

]
≥ 0

and the only way this can hold is if

ϕ∗ < ϕ∗∗ implies h(ϕ∗) ≤ h(ϕ∗∗)

that is, h is nondecreasing.

Similarly, strict multivariate monotonicity of h and one-dimensional
implies h is increasing.



Multivariate Monotonicity (cont.)

Theorem

The gradient function of a convex function is multivariate
monotone. The gradient function of a strictly convex function is
strictly multivariate monotone.

This is part (a) of Theorem 2.14 in Rockafellar and Wets
Variational Analysis and the part about strict convexity.

Corollary

The mapping from canonical parameter vector to mean value
parameter vector for a regular full exponential family is multivariate
monotone. It is strictly multivariate monotone if the canonical
parameterization is identifiable.



Multivariate Monotonicity (cont.)

Multivariate monotonicity is a hard concept to wrap your mind
around, especially if you never heard of it before.

Here is a dumbed-down version. Suppose we increase one
component of the unconditional canonical parameter vector ϕ,
holding all other components of ϕ fixed. Then the corresponding
component of the unconditional mean value parameter vector µ
also increases (other components of µ can go any which way).

The dumbed-down version is not equivalent. It is implied by, but
does not imply, strict multivariate monotonicity.



Multivariate Monotonicity (cont.)

Multivariate monotonicity is equivalent to the following. For every
nonzero vector δ and every ϕ ∈ dom h, the scalar function

g(t) = 〈h(ϕ+ tδ), δ〉

is nondecreasing for t in any interval I where ϕ+ tδ ∈ dom h.

Proof. Take t∗ and t∗∗ in I , with t∗ < t∗∗. Then

g(t∗∗)− g(t∗) = 〈h(ϕ+ t∗∗δ)− h(ϕ+ t∗δ), δ〉 (∗)

and
(ϕ+ t∗∗δ)− (ϕ+ t∗δ) = (t∗∗ − t∗)δ

so (∗) is nonnegative if and only if (∗∗) is too.

〈h(ϕ+ t∗∗δ)− h(ϕ+ t∗δ), (ϕ+ t∗∗δ)− (ϕ+ t∗δ)〉 (∗∗)

QED



Multivariate Monotonicity (cont.)

Similarly, strict multivariate monotonicity is equivalent to the
following. For every nonzero vector δ and every ϕ ∈ dom h, the
scalar function

g(t) = 〈h(ϕ+ tδ), δ〉

is increasing for t in any interval where ϕ+ tδ ∈ dom h.

The dumbed-down version only considers direction vectors δ that
point along coordinate axes. That is not enough for equivalence.

The first aster paper (Geyer, Wagenius, and Shaw, Biometrika,
2007) only presented the dumbed-down version (in the discussion).
In a later paper (Shaw and Geyer, Evolution, 2010) we found we
needed the real definition of multivariate monotonicity (in an
appendix) to explain why the aster models under discussion worked.



Multivariate Monotonicity (cont.)

A more symmetric way to talk about multivariate monotonicity is
the following. Let ϕ∗ and ϕ∗∗ be two distinct valid values of the
saturated model unconditional canonical parameter vector. And let
µ∗ and µ∗∗ be the corresponding values of the saturated model
unconditional mean value parameter vector. Then

〈µ∗∗ − µ∗, ϕ∗∗ − ϕ∗〉 ≥ 0

and this inequality is strict (> 0) if the aster model is
non-degenerate.

This formulation makes it clear that the inverse of a multivariate
monotone relationship is also multivariate monotone, and similarly
with strictly multivariate monotone in both places.



Multivariate Monotonicity (cont.)

Since an unconditional canonical affine submodel of an aster model
is itself a regular full exponential family, we have the same
properties for its canonical and mean value parameters as for the
saturated model.

Let β∗ and β∗∗ be two distinct valid values of an unconditional
canonical affine model canonical parameter vector. And let τ∗ and
τ∗∗ be the corresponding values of an unconditional canonical
affine model mean value parameter vector. Then

〈τ∗∗ − τ∗, β∗∗ − β∗〉 ≥ 0

and this inequality is strict (> 0) if the aster model is
non-degenerate.



Multivariate Monotonicity (cont.)

Not only are the map ϕ −→ µ and its inverse strictly multivariate
monotone, so are the map β −→ τ and its inverse.



Multivariate Monotonicity (cont.)

Applying what we know about monotonicity to the conditional
distributions for dependence groups, we see that

θG 7→ ∇cG (θG )

is multivariate monotone for each G .

In particular if G = {j} is a singleton set, we have

θj 7→ c ′j (θj)

is an increasing function.

If there are no dependence groups (pedantically, if every
dependence group is a singleton) there is a componentwise
univariate strictly monotone relationship between the saturated
model conditional canonical vector θ and the saturated model
conditional mean value parameter ξ.



Multivariate Monotonicity (cont.)

Let θ∗ and θ∗∗ be two distinct valid values of the saturated model
conditional canonical parameter vector. And let ξ∗ and ξ∗∗ be the
corresponding values of the saturated model conditional mean
value parameter vector. Then

〈ξ∗∗ − ξ∗, θ∗∗ − θ∗〉 ≥ 0

and this inequality is strict (> 0) if the aster model is
non-degenerate.

If there are no dependence groups, more is true. Actually,[
ξ∗∗j − ξ∗j

]
·
[
θ∗∗j − θ∗j

]
≥ 0, j ∈ J



Multivariate Monotonicity (cont.)

The map θ −→ ξ and its inverse are strictly multivariate monotone
when the canonical parameterization is identifiable.

When there are no dependence groups, the map θj −→ ξj and its
inverse are strictly univariate monotone, for each j ∈ J.



The Story So Far

We started off with our aster model assumptions (with or without
dependence groups). These imply a statistical model with a valid
factorization joint = product of conditionals.

The additional assumption predecessor is sample size yields the
simple transformation between conditional and unconditional
mean value parameters (multiplication and division).

The additional assumption distributions for dependence groups
are exponential family yields exponential family saturated
model and aster transform.

Then unconditional canonical affine submodels yield
exponential family submodels.



The Story So Far (cont.)

Exponential families have many important properties.

Strictly concave log likelihood assures MLE are unique if
they exist and well-behaved optimization.

Derivatives of cumulant function give mean and variance
of canonical statistic makes statistical inference easy.

Observed = expected.

Sufficient dimension reduction.

Maximum entropy.

Multivariate monotone relationship between canonical and
mean value parameters.

First two for the computer, the rest for people.



Interpretation of Aster Models

Observed Equals Expected Maximum likelihood matches the MLE
of the submodel mean value parameter τ̂ to the
observed value of the submodel canonical statistic
MT y . This determines MLE of all other parameters.

Sufficiency The submodel canonical statistic MT y and MLE of
all parameters are sufficient statistic vectors.

Maximum Entropy Subject to having the expectations of MT y
that they do and having the aster graph that they do,
the distributions in the submodel are as random as
possible (maximize entropy).

Multivariate Monotonicity To the extent that canonical parameters
can be interpreted, their interpretation involves their
multivariate monotone relationship with mean value
parameters.



Interpretation of Aster Models (cont.)

When one first sees interpretation of regression-like models in intro
statistics, one starts with “simple” linear regression. The data are
independent (Xi ,Yi ) pairs and the regression equation is

E (Yi |Xi ) = α + βXi

and this magically corresponds to the R formula mini-language
formula y ~ x

One also learns to parrot that β is the slope of the regression line.
Slope is rise over run, so β is the change in the (conditional) mean
of the response Y corresponding to unit change in the predictor X .



Interpretation of Aster Models (cont.)

One may also learn that

Correlation is not causation. And regression isn’t either.

(because simple linear regression is just another view of
correlation).

So the regression equation is only good for prediction for new
data from the same population from which the (Xi ,Yi ) pairs are a
random sample. It is not good for explanation, and does not
necessarily have anything to do with the causal relationship (if
any) between the response and predictor.



Interpretation of Aster Models (cont.)

One may also learn that in a designed experiment with the levels
of certain factors (call them treatments) controlled by the
experimenters and randomized assignment of individuals to
treatments, that one can make causal inferences about treatment
effects.

But even in this setting any covariates that are not controlled by
the experimenters are still subject to correlation is not causation.



Interpretation of Aster Models (cont.)

All of the this elementary material about model interpretation
except for the interpretation of “slope” applies to any LM, GLM, or
aster model (or other regression-like statistical models).

In a GLM the interpretation of regression coefficients gets more
complicated. Even in the “simple” (just one predictor case) we have
for logistic regression

ϕi = α + βxi

but there is a complicated nonlinear relationship between this and

µi = E (Yi |Xi )

which are canonical parameter and mean value parameter,
respectively.



Interpretation of Aster Models (cont.)

∂µi
∂β

=
∂

∂β

1

1 + e−α−βxi

=
xie
−α−βxi

(1 + e−α−βxi )2

= xiµi (1− µi )

And this changes as α and β change. So the simple “rise over run”
interpretation does not transfer from LM to GLM.



Interpretation of Aster Models (cont.)

Some textbooks, wanting to keep the simple “rise over run”
interpretation say it still holds but for

ϕi = log

(
µi

1− µi

)
But why be interested that function of µi? The question cannot be
answered without a lot of exponential family theory.

No matter which way you try to go, interpretation of GLM is not
as simple as interpretation of LM.



Interpretation of Aster Models (cont.)

At least in GLM we have independence of components of the
response vector (conditional on covariates).

This means the nonlinear relationship between canonical and mean
value parameters is a componentwise univariate monotone
relationship. So we only have to deal with univariate functions and
univariate monotonicity.



Interpretation of Aster Models (cont.)

In aster models we have dependence of components of the
response vector (conditional on covariates).

This means the nonlinear relationship between unconditional
canonical and mean value (either for saturated models or for
canonical affine submodels) parameters is an inherently
multivariate monotone relationship.

We cannot escape or simplify multivariate monotonicity. We just
have to deal with it.



Interpretation of Aster Models (cont.)

Somewhere after an intro statistics course — in a real regression or
theory course — one gets introduced to multiple regression and
model matrices.

There may be more than one predictor vector and the mean value
parameter vector (for LM) or the canonical parameter vector (for
GLM and aster) may be a function of any or all of the predictor
vectors.

Furthermore, even if one is only given one predictor to start with
say x , then one can make up other predictors, for example, x2, x3,
. . . (polynomial regression) or sin(x), cos(x), sin(2x), cos(2x), . . .
(trigonometric series regression, a. k. a., Fourier series regression).

There is always a potentially infinite number of predictor vectors,
no matter how few were “given”.



Interpretation of Aster Models (cont.)

Nevertheless, one is still trained to write out the regression
equation

µi = α + β1xi1 + β2xi2 + · · ·+ βkxik

where the xij are elements of the j-th predictor vector. These can
be “given” or “made up”. For example,

µi = α + β1xi + β2x2
i + · · ·+ βkxk

i

(polynomial regression) or

µi = α+β1 sin(xi ) +β2 cos(xi ) + · · ·+β2k−1 sin(kxi ) +β2k cos(kxi )

(trigonometric series regression).



Interpretation of Aster Models (cont.)

Then one learns that there is no good reason to treat the
“intercept”α specially. It is just a regression coefficient like the
rest. The predictor vector it goes with is the constant predictor
vector having all components equal to one, for example,

µi = β1 · 1 + β2xi1 + β3xi2 + · · ·+ βk+1xik

µi = β1 · 1 + β2xi + β3x2
i + · · ·+ βk+1xk

i

µi = β1 · 1 + β2 sin(xi ) + β3 cos(xi ) + · · ·
+ β2k sin(kxi ) + β2k+1 cos(kxi )



Interpretation of Aster Models (cont.)

Then one learns that the preceding slide still treated the intercept
(now called β1 specially). Just write

µi =

p∑
j=1

xijβj (∗)

so now we are writing xi1 instead of 1 and have bumped the
indices of the other predictor vectors to correspond to their
regression coefficients.

And we recognize (∗) as the matrix equation

µ = Mβ

where M, the model matrix, is the matrix with components xij .



Interpretation of Aster Models (cont.)

The triumph of this matrix notation in LM theory is that we can
write an explicit formula for the MLE

β̂ = (MTM)−1MT y (∗)

Note that this goes together with what we know about
parameterizations for LM; µ = Mβ and τ = MTµ, so τ = MTMβ.
By the observed equals expected property, we have τ̂ = MT y . And
by the invertibilty of the mapping β −→ τ , we have

β̂ = (MTM)−1τ̂

which is the same as (∗).



Interpretation of Aster Models (cont.)

In GLM and aster model theory, we no longer have a closed-form
expression for MLE as a function of data. All we can do is run
optimization software to find out the value of β̂ corresponding to
each value of MT y .

Also there is a difference between the unconditional mean value
parameter vector µ and the unconditional canonical parameter
vector ϕ and it is the latter that is linearly

ϕ = Mβ

or affinely
ϕ = a + Mβ

related to the regression coefficient parameter vector β.



Interpretation of Aster Models (cont.)

Still, both teachers and students are tempted by the carryover from
LM theory to make regression equations like

ϕi = β1xi1 + β2xi2 + β3xi3 + · · ·+ βpxip

ϕi = β1 + β2xi + β3x2
i + · · ·+ βpxp−1

i

ϕi = β1 · 1 + β2 sin(xi ) + β3 cos(xi ) + · · ·

+ βp−1 sin
(
p−1
2 xi

)
+ βp cos

(
p−1
2 xi

)
and use them as the basis of one’s “interpretation” of the model.



Interpretation of Aster Models (cont.)

I am here to tell you this is (IMHO) all wrong.

Remember that canonical parameters are meaningless quantities,
and if there’s no meaning in them, that saves a world of trouble as
we needn’t try to find any.

Consider the two linear transformations

β 7→ Mβ

µ 7→ MTµ

Since M determines MT and vice versa, if you understand one of
these transformations, then you also “understand” the other, but
you “understand” it implicitly without clearly seeing it.



Interpretation of Aster Models (cont.)

Staring at ϕ = Mβ written out with explicit sum and indices

ϕi = β1xi1 + β2xi2 + β3xi3 + · · ·+ βrxir (∗)

doesn’t tell you much about τ = MTµ written out with explicit
sum and indices

τi = µ1x1i + µ2x2i + µ3x3i + · · ·+ µnxni (∗∗)

These sums do not have the same number of terms: r is the
submodel dimension and n is the saturated model dimension.
Moreover, (∗) contains xij in the i-th row of M and (∗) contains xij
in the j-th column of M, the former covariate values pertaining to
one node of the graph, the latter pertaining to one regression
coefficient.



Interpretation of Aster Models (cont.)

The mapping
ϕ = Mβ

relates unconditional canonical parameter vectors (submodel to
saturated model).

The mapping
τ = MTµ

relates unconditional mean value parameter vectors (saturated
model to submodel).

Remember which kind of parameters is meaningless and which kind
is meaningful?



Interpretation of Aster Models (cont.)

The mapping
ϕ = Mβ

doesn’t become meaningful without the very messy, highly
nonlinear (but multivariate monotone) mapping

µ = h(ϕ) = ∇c(ϕ)



Interpretation of Aster Models (cont.)

The mapping
τ = MTµ

is directly related to the observed equals expected property

τ̂ = MT y (∗)

Also (∗) is the sufficient dimension reduction from whole data y to
sufficient statistic vector τ̂ (since all MLE are one-to-one functions
of each other, all other MLE are one-to-one functions of τ̂ , hence
themselves sufficient statistic vectors).



Interpretation of Aster Models (cont.)

Thus (IMHO) the mapping µ 7→ MTµ (which can also be written
y 7→ MT y) is more important than the mapping β 7→ Mβ and
deserves to be woofed about at least as much if not more when
one is “interpreting” aster models (or GLM or LM).

The first submission of the first aster paper (Geyer, Wagenius, and
Shaw, Biometrika, 2007) made an attempt in this direction only
discussing models in terms of y 7→ MT y and not at all in terms of
β 7→ Mβ. But the referees didn’t get it, and we were forced to
interpret both ways in the published version.



Interpretation of Aster Models (cont.)

This wasn’t really our fault or the referees’ fault. It’s embedded in
the culture.

The R generic function summary prints out the components of β̂
and a lot of information about them.

No function prints out the submodel canonical sufficient statistic
vector τ̂ or any information about it. At least, no generic function
with a glm method will do this job. The aster and
aster.formula methods of the generic function predict will do
this job, as we shall presently see, but not in a user-friendly fashion.



Interpretation of Aster Models (cont.)

This wasn’t really R’s fault either. SAS or SPSS or Stata or
whatever is no better. Nor are thousands of intro stats and
regression and linear models textbooks any better.



Example One Revisited

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.0506435 0.1843320 -5.6997 1.200e-08

varbfl03 -0.3490958 0.2679185 -1.3030 0.19258

varbfl04 -0.3442222 0.2438992 -1.4113 0.15815

varbhdct02 1.3214136 0.2611741 5.0595 4.203e-07

varbhdct03 1.3433740 0.2146250 6.2592 3.870e-10

varbhdct04 1.8513276 0.1998528 9.2635 < 2.2e-16

varbld02 -0.0293022 0.3157033 -0.0928 0.92605

varbld03 1.7400507 0.3961890 4.3920 1.123e-05

varbld04 4.1885771 0.3342661 12.5307 < 2.2e-16

layerfl:nsloc 0.0701024 0.0146520 4.7845 1.714e-06

layerhdct:nsloc -0.0058043 0.0055499 -1.0458 0.29564

layerld:nsloc 0.0071652 0.0058667 1.2213 0.22196

layerfl:ewloc 0.0179769 0.0144128 1.2473 0.21229

layerhdct:ewloc 0.0076060 0.0055608 1.3678 0.17138

layerld:ewloc -0.0047874 0.0059191 -0.8088 0.41863

fit:popAA 0.1292377 0.0891292 1.4500 0.14706

fit:popEriley -0.0495612 0.0712789 -0.6953 0.48686

fit:popLf -0.0332786 0.0795727 -0.4182 0.67579

fit:popNWLF 0.0210283 0.0635998 0.3306 0.74092

fit:popNessman -0.1862690 0.1277869 -1.4577 0.14494

fit:popSPP 0.1491795 0.0677156 2.2030 0.02759



Example One Revisited (cont.)

So back to example one. It is actually easier to figure out the
components of the unconditional canonical affine submodel
canonical sufficient statistic vector MT y from looking at the names
of the regression coefficients than from looking at the formula

> aout$formula

resp ~ varb + layer:(nsloc + ewloc) + fit:pop

For one thing, there is one component of the submodel canonical
sufficient statistic vector for each regression coefficient. But there
is no such correspondence with terms in the formula. There is
some correspondence, but it is not one-to-one.

Let’s go through the regression coefficient names one by one.



Example One Revisited (cont.)

A component of MT y has the form xT y where x is a column of M
(a predictor vector, either “given” or “made-up”). So we need to
figure out what the columns of the model matrix are.

Simplest first, the predictor vector named "(Intercept)". All its
components are equal to one, so the corresponding submodel
canonical sufficient statistic is

xT y =
n∑

i=1

yi

This may not seem to make much sense, because the components
of y are different kinds of variables, so this is like adding apples
and oranges, but it will presently.



Example One Revisited (cont.)

Next come the predictor vectors with "varb" in the name:
varbfl03, varbfl04, varbhdct02, varbhdct03, varbhdct04,
varbld02, varbld03, and varbld04.

Recall that the variable varb in the data frame redata is a factor

> class(redata$varb)

[1] "factor"

> levels(redata$varb)

[1] "fl02" "fl03" "fl04" "hdct02" "hdct03"

[6] "hdct04" "ld02" "ld03" "ld04"



Example One Revisited (cont.)

Recall that factors (categorical variables) get turned into dummy
variables, which are zero-or-one-valued, zero indicating not in a
particular category and one indicating in that category.

That gives nine dummy variables (for the nine levels of varb
corresponding to the nine nodes of the aster graph). But these
nine dummy variables add up to the "(Intercept)" dummy
variable. So if we kept them all, we would not have a full rank
model. R drops the first one in alphabetical order, which would
have been named varbfl02 if it hadn’t been dropped.



Example One Revisited (cont.)

For a zero-or-one-valued predictor variable x the corresponding
submodel canonical sufficient statistic is

xT y =
n∑

i=1

xiyi =
∑

i∈{1,...,n}
xi=1

yi

Each of these submodel canonical sufficient statistics is a sum of
the components of the response vector corresponding to a
particular node of the aster graph.



Example One Revisited (cont.)

Thus we have one submodel canonical sufficient statistic for each
node of the graph, except for the one ("fl02") that R dropped.

But if we know the sum for all nodes (the "(Intercept)"

statistic) and we know the sum for each node except "fl02" then
we also know the sum for "fl02" (subtract the sums for each of
the other nodes from the total).

In short, if we replaced the "(Intercept)" component of the
submodel canonical sufficient statistic vector with the "varbfl02"

component (what that component would have been if it hadn’t
been dropped) we would still have a sufficient statistic vector.

R would actually do this for us if we specified no intercept by
putting 0 + at the beginning of the formula.



Example One Revisited (cont.)

Next come the predictor vectors with "nsloc" or "ewloc" in the
name: layerfl:nsloc, layerhdct:nsloc, layerld:nsloc,
layerfl:ewloc, layerhdct:ewloc, and layerld:ewloc.

Recall that the variable layer is a factor and the variables nsloc
and ewloc are quantitative

> sapply(redata, class)

pop ewloc nsloc varb

"factor" "integer" "integer" "factor"

resp id root layer

"integer" "integer" "numeric" "character"

fit

"numeric"

> levels(redata$layer)

NULL



Example One Revisited (cont.)

The factor gets turned into three dummy variables (one for each of
its levels). Nothing gets done to the quantitative variables.

Then the “interaction” operator (:) says take each of the former
and multiply it componentwise by each of the latter making
3× 2 = 6 new predictor variables. The colon in the regression
coefficient name shows the corresponding predictor variable arose
this way and also shows what variables were multiplied to make it.



Example One Revisited (cont.)

Now we have predictor vectors having components

xi = dizi

where di is the corresponding component of a dummy
(zero-or-one-valued) variable (named layerfl, layerhdct, or
layerld) and zi is the corresponding component of a quantitative
variable (nsloc or ewloc).

The corresponding submodel canonical sufficient statistic is

xT y =
n∑

i=1

xiyi =
∑

i∈{1,...,n}
di=1

yizi



Example One Revisited (cont.)

In short, this set of components of the sufficient statistic vector is
sums of products of components of the response vector and
corresponding components of a quantitative variable (nsloc or
ewloc), the sums running over each “layer” of the graph (either the
three "ld" nodes or the three "fl" nodes, or the three "hdct"

nodes).

Why would we want something like that? Does that have a clear
scientific interpretation?



Example One Revisited (cont.)

Again recall that any one-to-one function of a sufficient statistic
vector is another sufficient statistic vector.

This means we can combine these sufficient statistics with others
we already know about to make new sufficient statistics.



Example One Revisited (cont.)

Here we know ∑
i∈{1,...,n}

di=1

yizi and
∑

i∈{1,...,n}
di=1

yi

are functions of the submodel canonical statistic, the former we
just calculated and the latter is a sum of components with names
containing varb, for example the sum over the "ld" layer is the
sum of the sums over the "ld02", "ld03", and "ld04" nodes.

We also “know” ∑
i∈{1,...,n}

di=1

zi

because z (either nsloc or ewloc) is not considered random (it is
a predictor, not the response).



Example One Revisited (cont.)

Any sums like these can be considered as n times expectations with
respect to the conditional distribution

Ê (YZ |layer) =
1

n

∑
i∈{1,...,n}

di=1

yizi

Ê (Y |layer) =
1

n

∑
i∈{1,...,n}

di=1

yi

Ê (Z |layer) =
1

n

∑
i∈{1,...,n}

di=1

zi

where di are the components of the dummy variable for one of the
levels of the factor layer.



Example One Revisited (cont.)

For any random variables Y , Z , and L in any probability model
(not necessarily having anything to do with aster or even
regression) the identity

cov(Y ,Z |L) = E (YZ |L)− E (Y |L)E (Z |L)

holds. And this holds, in particular, for empirical distributions

ĉov(Y ,Z |L) = Ê (YZ |L)− Ê (Y |L)Ê (Z |L)

holds.



Example One Revisited (cont.)

And this means components of MT y having the form

n · Ê (YZ |layer)

can be replaced by
n · ĉov(Y ,Z |layer)

and we get another sufficient statistic vector.

The latter seem to have more obvious scientific significance.



Example One Revisited (cont.)

Finally come the predictor vectors with "fit" in the name:
fit:popAA, fit:popEriley, fit:popLf, fit:popNessman,
fit:popNWLF, and fit:popSPP.

The variable fit is numeric and zero-or-one-valued and the
variable pop is a factor.

> class(redata$pop)

[1] "factor"

> class(redata$fit)

[1] "numeric"

> unique(redata$fit)

[1] 0 1



Example One Revisited (cont.)

So pop, being categorical, gets turned into 7 dummy variables one
for each level of the factor

> levels(redata$pop)

[1] "AA" "Eriley" "Lf" "NWLF" "Nessman"

[6] "SPP" "Stevens"

Then each of these dummy variables are multiplied componentwise
by fit because that is what the “interaction” (:) operator
indicates.



Example One Revisited (cont.)

We seem to have lost one. That makes 7 dummy variable times
fit combinations, but we only got six. Where did the other one
go?

> aout$dropped

[1] "fit:popStevens"

It was dropped because, if it hadn’t been, then the model matrix
wouldn’t have been full rank. Why is that?



Example One Revisited (cont.)

Recall the definition of fit. It indicates the “layer” of nodes of the
graph having hdct in their names.

> identical(redata$fit == 1, grepl("hdct", redata$varb))

[1] TRUE

If we kept fit:popStevens, then all of these components of the
submodel canonical sufficient statistic would add up to fit

(because every individual is in exactly one ancestral population).
And fit is the sum of the dummy variables for varbhdct02,
varbhdct03, and varbhdct04. So that is the collinearity that
fit:popStevens was dropped to avoid.



Example One Revisited (cont.)

In short, the last set of components of the sufficient statistic vector
is sums of components of the response vector for each ancestral
population over the “fitness layer” of the graph (nodes with hdct in
their names).



Example One Revisited (cont.)

That was exhausting. Does interpretation of aster models have to
be that hard?

But notice that it was only hard because (1) it is unfamiliar (have
you done anything like this before?) and (2) there is no computer
support, nothing like the R function summary that prints out a lot
of stuff you think you understand (even though we argue it is really
“meaningless”).

And it was only hard because we (being unfamiliar with the ideas)
had to go through everything in gory detail.

The summary is not that complicated.



Example One Revisited (cont.)

The components of the unconditional canonical affine submodel
canonical sufficient statistic are

sums of response over each node of the graph,

sums of response-location crossproducts over each layer of the
graph, and

sums of response over the fitness layer of the graph for each
population.

These are what the observed equals expected property matches
(observed values to MLE expected values).

The last group of sufficient statistics are scientifically crucial. They
are observed fitness for each population.



Example One Revisited (cont.)

So what maximum likelihood is really doing in this model is what
the preceding slide described: making MLE expected values of
components of the submodel canonical sufficient statistic equal to
their observed values.

And the maximum entropy property says every other aspect of the
maximum likelihood model is as random as possible (maximizes
entropy) subject to the constraints that the components of the
submodel canonical sufficient statistic have the MLE expectations
that they do and subject to the model having the structure
described by the aster graphical model.

Notice this description of what maximum likelihood is really doing
does not even mention the regression coefficients (betas).



Example One Revisited (cont.)

This is why we claim that understanding an aster model means
understanding the submodel canonical sufficient vector MT y .

If its components determine all scientifically important quantities,
then the model has straightforward scientific interpretation.
Otherwise it doesn’t.



Interpretation Revisited

Did you notice that the word “interaction” only appeared in our
interpretation in scare quotes as a name for the colon (:) operator?

Do you now see why the word “interaction” is not really helpful in
interpreting aster models?

You may think that is because we are using the R formula
mini-language in tricky ways, not as it was intended to be used.
But it was never designed to be used with aster models or any
models with dependence among components of the response
vector. So we have to be “tricky” if we are going to use formulas at
all.



A Technical Quibble

We have been saying the canonical statistic, the canonical
parameter, and the cumulant function, but this is technically
incorrect.

Suppose we have a general full exponential family (not necessarily
an aster model) with log likelihood

l(ϕ) = 〈y , ϕ〉 − c(ϕ)

and we do a one-to-one change of statistic

y = a + Mz

where a is a known vector and M is a known matrix (not an offset
vector and model matrix, despite using the same letters — those
names are reserved for submodel changes of parameter).



A Technical Quibble (cont.)

Then

l(ϕ) = 〈a, ϕ〉+ 〈Mz , ϕ〉 − c(ϕ)

= 〈z ,MTϕ〉 − c(ϕ) + 〈a, ϕ〉

and we see we again have the exponential family form with

canonical statistic vector z ,

canonical parameter vector MTϕ, and

cumulant function

cnew(ϕ) = c(ϕ)− 〈a, ϕ〉



A Technical Quibble (cont.)

Or suppose we do a one-to-one change of parameter

ϕ = a + Mβ

where a is a known vector and M is a known matrix (still not an
offset vector and model matrix, despite using the same letters —
those names are reserved for submodel changes of parameter —
and this isn’t a submodel because the mapping is one-to-one, and
M is full rank).

Then
l(β) = 〈y , a〉+ 〈y ,Mβ〉 − c(a + Mβ)

and we can drop the term 〈y , a〉 that does not contain the
parameter.



A Technical Quibble (cont.)

Then

l(β) = 〈y ,Mβ〉 − c(a + Mβ)

= 〈MT y , β〉 − c(a + Mβ)

and we see we again have the exponential family form with

canonical statistic vector MT y ,

canonical parameter vector β, and

cumulant function

cnew(β) = c(a + Mβ)

(this is the same as we had for canonical affine submodels of aster
models).



A Technical Quibble (cont.)

Finally, as we saw when we were discussing affine change of
canonical statistic, the new cumulant function in a change can be
the old cumulant function plus an arbitrary real-valued affine
function.



A Technical Quibble (cont.)

Summary.

Any one-to-one affine function of a canonical statistic is
another canonical statistic.

Any one-to-one affine function of a canonical parameter is
another canonical parameter.

An arbitrary real-valued affine function can be added to a
cumulant function.

These changes are not independent, changing one requires changes
in the others as shown in previous slides.



Meaningless Quantities Revisited

In aster models, we have little interest in changing the saturated
model canonical statistic vector. We want its components to be
the components of the response vector for the nodes of the aster
graphical model.

But we do change parameters in going from saturated models to
submodels.

And there is no one right offset vector and model matrix that
determine a submodel. Let V denote the affine subspace of the
saturated model canonical parameter space that corresponds to the
submodel

V = { a + Mβ : β ∈ Rp }

If the saturated model unconditional canonical parameter space Φ
is a full vector space, then V ∩Φ is the set of submodel values of ϕ.



Meaningless Quantities Revisited (cont.)

If the offset vector a and the model matrix M change but the set
V ∩ Φ does not. Then the submodel does not change.

Nor do the sets of allowed values of µ and ξ because these are
defined by unconditional and conditional expectations of the
saturated model canonical sufficient statistic, which has not been
changed.

In short, the canonical “meaningless” parameters can change while
the mean value “meaningful” parameters do not.

And the statistical model (the family of probability distributions)
has not changed either.



Meaningless Quantities Revisited (cont.)

In practice, you get arbitrariness of the model matrix when you
decide (or R decides) which dummy variables to drop to obtain full
rank.

Does this arbitrariness matter? No! It is still the same statistical
model, and it still has the same sets of saturated model mean
value parameters.

In practice, you get arbitrariness of the model matrix when you
decide (or R decides) how to parameterize polynomial functions of
predictors (this comes up in the aster model competitor to
Lande-Arnold analysis).

Does this arbitrariness matter? No! It is still the same statistical
model, and it still has the same sets of saturated model mean
value parameters.



Meaningless Quantities Revisited (cont.)

There may be other kinds of arbitrariness that arise in practice but
I can’t think of right now.

Would that arbitrariness matter? No! It would still be the same
statistical model, and it would still have the same sets of saturated
model mean value parameters.



A Technical Quibble (cont.)

In practice we don’t quibble about arbitrariness of canonical
statistics, canonical parameters, and cumulant functions. We keep
to the definitions of the saturated model parameters (all four
parameterizations) presented above.

And we recognize the arbitrariness of model matrices but don’t
fuss about it. Any choice of model matrix that results in the
desired model is o. k. It doesn’t matter to us that some other
model matrix would do the same job.

We just have to be aware of the issue in case someone asks, why
not some other model matrix?


