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1 Introduction

The purpose of this note is to rewrite Appendix E of the technical report
(Geyer, Wagenius, annd Shaw, 2005) that backed up the first paper on aster
models (Geyer, Wagenius, and Shaw, 2007). That appendix proved a the-
orem about when aster models without dependence groups are regular and
full. The reason it did not do general aster models is because at the time
that technical report was written aster models had not yet been generalized
as far as they were by Geyer, et al. (2007) as can be seen from the non-
appendix part of that technical report, which is essentially the version of
Geyer, et al. (2007) that was originally submitted to the journal. The tech-
nical report was not updated to match the published version of the paper
because R package aster (Geyer, 2018) did not then and does not now do
aster models with dependence groups and R package aster2 (Geyer, 2017,
first appeared on CRAN November 2010), which does do aster models with
dependence groups, did not yet exist.

Aster models are exponential familes of distributions. What this docu-
ment discusses is when they have the additional properties of fullness and
regularity, which are used everywhere in the theory of aster models. All fam-
ilies implemented by R packages aster and aster2 are regular full exponen-
tial families. Hence it follows from this document that every unconditional
aster model is a regular full exponential family.
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2 Basic Exponential Family Theory

2.1 Definitions

Here is a really short definition of exponential families introduced in
Geyer (2009). An exponential family of distributions is a statistical model
having log likelihood of the form

l(θ) = 〈y, θ〉 − c(θ), (1)

where y is a vector statistic, θ is a vector parameter, and 〈 · , · 〉 is the bilinear
form placing the vector space where y lives and the vector space where θ
lives in duality. Readers who like to think of vectors as being matrices with
one column will write

〈y, θ〉 = yT θ = θT y,

but we like our notation with angle brackets, which comes from physics and
functional analysis via Geyer (1990, 2009), because it makes it clear that
〈y, y〉 and 〈θ, θ〉 are mistakes by definition of 〈 · , · 〉, whereas yT y and θT θ
are not clearly mistakes.

A change of statistic or a change of parameter may be necessary to get
a log likelihood of this form. There may also be an additive term in the log
likelihood that is a function of data only, but such terms can be dropped
from a log likelihood and need to be dropped to get the form (1).

To indicate the special vector statistic y and vector parameter θ that give
a log likelihood of the form (1), they are called the canonical statistic and
canonical parameter (alternate terminology is natural statistic and natural
parameter). The function c is called the cumulant function of the family.

The canonical statistic, canonical parameter, and cumulant function are
not unique. Any one-to-one affine function of a canonical statistic is an-
other canonical statistic, any one-to-one affine function of a canonical pa-
rameter is another canonical parameter, and any cumulant function plus
any (real-valued) affine function is another cumulant function. These alter-
ations are not algebraically independent. Changing any one requires changes
in the others to maintain the form (1). Usually no fuss is made about this
nonuniqueness. One fixes a choice of canonical statistic, canonical parame-
ter, and cumulant function and leaves it at that.
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2.2 Cumulant Functions, Fullness, and Regularity

2.2.1 Cumulant Functions

One can only determine the cumulant function directly from the log
likelihood when the family is full (a concept that will be defined presently).
In case the family is not full, one must use equation (5) in Geyer (2009)

c(θ) = c(ψ) + logEψ
(
e〈y,θ−ψ〉

)
(2)

to define the cumulant function up to an arbitrary additive constant c(ψ).
In (2), ψ is any valid value of the canonical parameter, held fixed, and θ
varies over the whole vector space containing the canonical parameter space.
We define c(θ) =∞ when the expectation does not exist.

2.2.2 Full Families

Then
Θ = { θ : c(θ) <∞} (3)

is the parameter space of the full exponential family containing the originally
given exponential family. Densities in the full family with respect to the
probability distribution for parameter value ψ are given by equation (4) in
Geyer (2009)

fθ(ω) = e〈Y (ω),θ−ψ〉−c(θ)+c(ψ), (4)

where ω, as usual in probability theory, is the whole data (recall that Y
is just a statistic). These agree with the original definition for the original
family but extend to the full family if the original family was not full.

2.2.3 Regular Full Families

The full family is regular if Θ is an open subset of the vector space
containing it.

2.2.4 Moment and Cumulant Generating Functions

For any θ in the interior of Θ the distribution of Y for parameter value
θ has moment generating function

Mθ(t) = ec(θ+t)−c(θ)

and cumulant generating function

Kθ(t) = c(θ + t)− c(θ).
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For θ on the boundary of Θ the distribution of Y for parameter value θ does
not have a moment generating function.

2.2.5 Moments and Cumulants

Consequently, from the theory of moment generating functions, the cu-
mulant function is infinitely differentiable at θ in the interior of Θ, and
derivatives at θ are cumulants of the distribution of Y for parameter value
θ. In particular, the first two derivatives are

∇c(θ) = Eθ(Y ) (5)

∇2c(θ) = varθ(Y ) (6)

2.2.6 One Point of Regularity

If the full family is regular, then the boundary of the full canonical
parameter space (3) is empty, hence every distribution in the family had
moments and cumulants of all orders given by derivatives of the moment
and cumulant generating functions evaluated at zero.

2.2.7 Another Point of Regularity

Cumulant functions are convex by Hölder’s inequality. Hence the full
canonical parameter space of an exponential family is a convex set, and the
log likelihood of the family is a concave function (Rockafellar and Wets, 1998,
Exercise 2.3). Consequently, every local maximizer of the log likelihood is
a global maximizer (Rockafellar and Wets, 1998, Theorem 2.6). Better,
every point where the first derivative of the log likelihood is zero is a global
maximizer (Rockafellar and Wets, 1998, Theorem 2.14, part (b)).

For a regular full exponential family, the first derivative of the log like-
lihood is

∇l(θ) = y −∇c(θ) = y − Eθ(Y ) (7)

by (5), and this derivative exists at every point of the canonical parameter
space. From multivariable calculus we know that a necessary condition for
a local maximum in the interior of the domain of a function is that the first
derivative is zero. Concavity, discussed above, says that it is also a sufficient
condition.

Hence, for a regular full exponential family, maximum likelihood esti-
mates satisfy the observed equals expected property: a point θ is an MLE if
and only if

y = Eθ(Y )
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In words, the observed value of the canonical statistic is equal to its expected
value under the MLE.

If a full exponential family is not regular, then MLE can occur on the
boundary of the full canonical parameter space where the first derivative
does not exist (and one-sided derivatives are not zero). An example of this
is the Strauss process, a spatial point process (Geyer and Møller, 1994).

2.3 Canonical Affine Submodels

As in LM and GLM we consider linear submodels in which the canonical
parameters are expressed as a linear function of other parameters, called
regression coefficients. Actually, LM and GLM as implemented by the
R functions lm and glm allow submodels to express canonical parameters
as affine functions of regression coefficients through the offset argument.
Thus, strictly speaking, they should be called “affine models” and “gener-
alized affine models.” But offsets are rarely used, so the terminology LM
and GLM with L for linear persists. In aster model theory we do call affine
submodels “affine” rather than “linear.”

A canonical affine submodel has parameterization

θ = a+Mβ, (8)

where a is a known vector and M is a known matrix; a is called the offset
vector and M is called the model matrix by the R functions lm and glm. M
is called the design matrix by others. We use the terminology favored by R.

The log likelihood for the canonical affine submodel is

l(β) = 〈y, a+Mβ〉 − c(a+Mβ)

= 〈MT y, β〉+ 〈y, a〉 − c(a+Mβ)

and the term 〈y, a〉 that does not contain the parameter can be dropped
giving the log likelihood

l(β) = 〈MT y, β〉 − c(a+Mβ) (9)

and this shows the canonical affine submodel is again an exponential family
with canonical statistic vector MT y, canonical parameter vector β, and
cumulant function defined by

csub(β) = c(a+Mβ).

The proof that we get a log likelihood of this form is trivial

〈y,Mβ〉 = yT (Mβ) = yTMβ = (MT y)Tβ = 〈MT y, β〉.
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The full canonical parameter space of the submodel is

B = {β ∈ RQ : c(a+Mβ) <∞}
= {β ∈ RQ : a+Mβ ∈ Θ }

where Q is the finite set indexing β. In the worst case, if a and M are
chosen badly, B could be empty, and the submodel does not exist. But if B
is nonempty, it is the full canonical parameter space of the canonical affine
submodel.

In order to distinguish the originally given exponential family model
with parameter space Θ from its canonical affine submodels, we call this
originally given model the saturated model.

Since the preimage of an open set is open for any continuous function
(this is the definition of continuous function in general topology) and affine
functions are continuous, a full canonical affine submodel is regular if the
saturated model was regular.

3 Aster Models

3.1 Vectors and Subvectors

In aster model theory (Geyer, et al., 2007) we consider vectors and ran-
dom vectors to be elements of RJ for some abstract finite set J rather than
Rd for some positive integer d. That means indices j for components yj
of some vector y range over J rather than from 1 to d. We also consider
subvectors yA for subsets A ⊂ J .

As in abstract set theory we can also consider elements of RJ to be
functions J → R. If y ∈ RJ , then yA ∈ RA is the restriction of y to A. If
y ∈ RJ , then yj ∈ R is function evaluation but we write yj , as is usual in
discussing vectors, rather than y(j).

We have nothing to distinguish components yj from subvectors yA except
the convention that lower case is for elements of sets and upper case for sets.

We also have the convention that lower case is for ordinary scalars and
vectors like y, yj , and yA, and upper case is for random scalars and random
vectors like Y , Yj , and YA.

3.2 Aster Models and their Graphs

An aster model is a parametric statistical model for a random vector Y
taking values in RJ for some finite set J . The model is described as follows.
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• There is a partition G of J .

• There is a function q : G → N , where J ⊂ N .

• There is a total ordering on G such that G,H ∈ G and q(G) ∈ H imply
G precedes H in the ordering.

• The probability mass-density function of Y factors as

fθ(y) =
∏
G∈G

fθG(yG | yq(G)) (10)

where the total ordering condition assures this is a valid factorization
(what purport to be conditional distributions actually are).

• The conditional distribution of YG given Yq(G) is the distribution of
the sum of Yq(G) independent and identically distributed (IID) random
vectors whose distribution does not depend on Y . This is called the
predecessor is sample size property.

• Write YG = Z1 + · · ·+ZYq(G)
, where the terms of this sum are IID and

where, by convention, the sum of zero terms is zero, that is Yq(G) = 0
implies YG = 0. The distribution of the Zk is in an exponential family
of distribution having canonical statistic Zk, canonical parameter θG,
and cumulant function cG.

From the theory of exponential families and the last item, the conditional
distribution of YG given Yq(G) is also in an exponential family having canon-
ical statistic YG, canonical parameter θG, and cumulant function Yq(G)cG.

It follows from these assumptions that the log likelihood of the family is

l(θ) =
∑
G∈G

[
〈yG, θG〉 − yq(G)cG(θG)

]
=

∑
j∈J

yjθj

−∑
G∈G

yq(G)cG(θG)

(11)

Aster models are a special case of chain graph models (Lauritzen, 1996,
Section 3.2.3), which are the most general models that factorize as products
of marginals and conditionals. Hence we give aster models a graph as de-
scribed by Lauritzen (1996). For all G ∈ G and for all j ∈ G, the graph
has a directed edge (arrow) from q(G) to j. For all G ∈ G and for all pairs
i, j ∈ G, there is an undirected edge (line) between i and j. There are no
other edges, directed or undirected.
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3.3 Drawing Graphs

We make an exception to the definition in the preceding section when
drawing graphs. We allow omission of some lines so long as the graph of
lines (omitting arrows) has the same maximal connected sets. We take those
maximal connected sets to be the elements of G.

In the theory in Lauritzen (1996) omission of some lines would mean
that the probability mass-density function could be further factored going
from his equation (3.23) to his equation (3.24). But in aster models we do
not factorize further. We keep (10). Hence the omission of some lines is
harmless so long as we recover the same partition G from the graph.

Note that a node with no incoming lines is an element of G all by itself,
or, more precisely, if j is such a node {j} ∈ G.

3.4 Infinite Divisibility

If there is an arrow j → k, then we say j is the predecessor of k and k is
a successor of j. Thus q(G) is the predecessor of every element of G.

In order for the predecessor-is-sample-size property to hold, we must have
every variable Yq(G) at a predecessor node be nonnegative-integer-valued.
Otherwise YG being a random sum of Yq(G) IID terms makes no sense.

Except Geyer, et al. (2007) note an exception. The exponential family of
distributions having cumulant function cG is infinitely divisible if and only
if rcG is a cumulant function for any r > 0. Examples of such distributions
that are currently implemented in R package aster are the Poisson family
of distributions and the normal location family of distributions.

If we have this infinite divisibility property for all G such that q(G) = j,
then we can allow Yj to have any nonnegative-real-valued distribution that
obeys the aster model assumptions. We just define the conditional distri-
bution of YG given Yq(G) to be the exponential family of distributions hav-
ing canonical statistic YG, canonical parameter θG, and cumulant function
Yq(G)cG.

If the conditional distribution of YG given Yq(G) is not infinitely divisi-
ble, then Yq(G) must be nonnegative-integer-valued. But if the conditional
distribution of YG given Yq(G) is infinitely divisible, then Yq(G) must be
nonnegative-real-valued. The aster log likelihood is still given by (11) when
some families are infinitely divisible and have nonnegative-real-valued pre-
decessors.
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3.5 The Aster Transform

Looking at (11) we see that the log likelihood is linear in y, so the aster
model is an exponential family and y is the canonical statistic. But θ is not
the canonical parameter, that is, subvectors of θ are canonical parameters
for the conditional distributions in the factorization (10), but θ is not the
canonical parameter of the (joint) distribution of the aster model.

To find the canonical parameter, we rewrite (11) collecting terms that
multiply the same component of y

l(θ) =

∑
j∈J

yi

θj − ∑
G∈G
q(G)=j

cG(θG)


− ∑

G∈G
q(G)/∈J

yq(G)cG(θG)

Then matching this up with the general exponential family log likelihood
(1), we see that the components of the aster model canonical parameter
vector ϕ are the terms in square brackets above

ϕj = θj −
∑
G∈G
q(G)=j

cG(θG) (12)

and the cumulant function is the terms that are left over

c(ϕ) =
∑
G∈G
q(G)/∈J

yq(G)cG(θG) (13)

Observe that in (13) every q(G) is an initial node so every yq(G) is a constant
random variable, so (13) defines a deterministic (nonrandom) function, as
it must so that this is the cumulant function of an exponential family.

• The parameter vector θ is called the conditional canonical parameter
vector (its subvectors are canonical parameter vectors of the condi-
tional distributions in the factorization (10)).

• The parameter vector ϕ is called the unconditional canonical parame-
ter vector (it is the canonical parameter vector of the (joint, uncondi-
tional) distribution of the aster model).

The aster transform is invertible. To invert it just rewrite (12) solving
for θj

θj = ϕj +
∑
G∈G
q(G)=j

cG(θG) (14)
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and use (14) in any order that visits successors before predecessors, so that
when calculating θj all components of θG for G such that q(G) = j have
already been calculated.

Since cumulant functions are infinitely differentiable (assuming a reg-
ular full exponential family), the aster transform and its inverse are both
infinitely differentiable. The aster transform is a C∞ diffeomorphism.

3.6 The Aster Transform and Fullness

Theorem 1. The aster transform of the Cartesian product of the full canon-
ical parameter spaces of the conditional exponential families in the aster
model factorization (10) is the full canonical parameter space of the satu-
rated aster model. For ϕ in this full canonical parameter space, the cumulant
function is given by (13).

In symbols, if ΘG is the full canonical parameter space of the exponential
family having cumulant function cG and

Θ =
∏
G∈G

ΘG

and h denotes the aster transform θ 7→ ϕ, then Φ = h(Θ) is the full canonical
parameter space of the aster model.

Proof. Let G1, G2, . . . , Gm an enumeration of G such that q(Gi) ∈ Gj
implies i < j, the existence of such an enumeration being asserted by the
third item in the list of assumptions in Section 3.2. Let ≺ be a total order
on G defined by G1 ≺ G2 ≺ · · · ≺ Gm. Define

Li = {G ∈ G : G ≺ Gi }, i = 0, 1, . . . ,m

so L0 is empty and Lm = G.
We also use the notation in the comments between the theorem state-

ment and proof. Fix θ∗ in Θ, and let ϕ∗ be its aster transform.
We prove the theorem by mathematical induction using the induction

hypothesis that

ec(ϕ)−c(ϕ
∗) = Eϕ∗


∏
G∈Li
q(G)/∈Li

eYq(G)[cG(θG)−cG(θ∗G)]
∏

H∈G\Li

e〈YH ,ϕH−ϕ∗
H〉

 (15)

provided that θG ∈ ΘG for all G ∈ Li, and otherwise c(ϕ) =∞.
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In case i = 0 or i = m, one of the products in (15) is empty. By
convention, an empty product is equal to one.

The case i = 0 of the induction hypothesis is true by (2). The case
i = m of the induction hypothesis is the theorem statement, because then
Li = G, so the second product is empty, every Yq(G) in the first product is a
constant random variable, the expectation is trivial, and (15) is equivalent
to

c(ϕ)− c(ϕ∗) =
∑
G∈G
q(G)/∈G

Yq(G) [cG(θG)− cG(θ∗G)]

which agrees with (13). Moreover, the “provided” part of the induction
hypothesis, case i = m, says c(ϕ) <∞ if and only if θ ∈ Θ.

So it only remains to establish the induction step. Suppose case i of the
induction hypothesis is true, where 0 ≤ i < m. By (12) we have

ϕGi+1 − ϕ∗Gi+1
= θGi+1 − θ∗Gi+1

−
∑
G∈G

q(G)∈Gi

[cG(θG)− cG(θ∗G)]

and

ec(ϕ)−c(ϕ
∗) = Eϕ∗


∏
G∈Li
q(G)/∈Li

eYq(G)[cG(θG)−cG(θ∗G)]
∏

H∈G\Li

e〈YH ,ϕH−ϕ∗
H〉


= Eϕ∗


∏
G∈Li

q(G)/∈Li+1

eYq(G)[cG(θG)−cG(θ∗G)]

× e〈YGi+1
,θGi+1

−θ∗Gi+1
〉 ×

∏
H∈G\Li+1

e〈YH ,ϕH−ϕ∗
H〉


= Eϕ∗

Eϕ∗

 ∏
G∈Li

q(G)/∈Li+1

eYq(G)[cG(θG)−cG(θ∗G)]

× e〈YGi+1
,θGi+1

−θ∗Gi+1
〉 ×

∏
H∈G\Li+1

e〈YH ,ϕH−ϕ∗
H〉

∣∣∣∣∣∣∣∣Yq(Gi+1)
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and, because YGi+1 is conditionally independent of YG\
⋃
Li+1

given Yq(Gi+1)

by the factorization (10), the conditional expectation above factors as

Eϕ∗

[
e
〈YGi+1

,θGi+1
−θ∗Gi+1

〉
∣∣∣Yq(Gi+1)

]

× Eϕ∗

 ∏
G∈Li

q(G)/∈Li+1

eYq(G)[cG(θG)−cG(θ∗G)]
∏

H∈G\Li+1

e〈YH ,ϕH−ϕ∗
H〉

∣∣∣∣∣∣∣∣Yq(Gi+1)


and

Eϕ∗

[
e
〈YGi+1

,θGi+1
−θ∗Gi+1

〉
∣∣∣Yq(Gi+1)

]
= e

Yq(Gi+1)

[
cGi+1

(θGi+1
)−cGi+1

(θ∗Gi+1
)
]

Putting this all together gives case i+ 1 of the induction hypothesis, so that
finishes the proof.

3.7 The Aster Transform and Regularity

Theorem 2. An aster model is a regular full exponential family of distri-
butions if each conditional family in the factorization (10) is a regular full
exponential family.

Proof. The aster transform, being a diffeomorphism, maps open sets to open
sets. Using the notation established following the statement of Theorem 1,
if each ΘG is an open set, then Θ is an open set, hence Φ is an open set,
and Theorem 1 says that Φ is the full canonical parameter space.

3.8 Canonical Affine Submodels of Aster Models

3.8.1 Two Kinds

In aster models, canonical affine submodels come in two kinds, which
are called conditional and unconditional.

3.8.2 Unconditional

The latter models the unconditional canonical parameter as an affine
function of regression coefficients

ϕ = a+Mβ.

Since ϕ is the canonical parameter vector of the aster model (of its joint dis-
tribution), the theory of Section 2.3 applies and an unconditional canonical
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affine submodel is a regular full exponential family if the saturated model
is. And Theorems 1 and 2 tell us that happens if each conditional family
for each dependence group is regular and full.

And every family implemented in R packages aster and aster2 is reg-
ular and full. So every unconditional aster model that can be fitted using
these packages is regular and full.

3.8.3 Conditional

R packages aster and aster2 also allow submodels that parameterize
the conditional canonical parameter as an affine function of regression coef-
ficients

θ = a+Mβ.

Since θ is not vectorwise canonical, none of the theory above applies to
these models. Since the aster transform is smooth (infinitely differentiable),
these submodels are smooth submodels of the saturated model. Hence they
are so-called curved exponential families. But curved exponential families
have no nice exponential family properties. In particular, they do not have
the observed-equals-expected property. Indeed, they do not have submodel
canonical statistics. In general, the full exponential family generated by a
canonical affine submodel is the saturated model. Thus discussion of fullness
and regularity in the context of conditional aster models is pointless.
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