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1 License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (http:
//creativecommons.org/licenses/by-sa/4.0/).

2 Data
In our example the count is 17
x <- 17

3 Maximum Likelihood Estimator
The usual estimator of the parameter 𝜇 is ̂𝜇 = 𝑥. This turns out to also be the maximum likelihood estimator.
mu.hat <- x

4 Log Likelihood
We can plot the log likelihood function using the following code
logl <- function(mu) {

result <- x * log(mu) - mu
result[is.nan(result)] <- (- mu)
return(result)

}
curve(logl, from = 0.0001, to = 50, n = 1001,

xlab = expression(mu), ylab = "log likelihood",
ylim = logl(mu.hat) + c(-10, 0))

abline(v = mu.hat, lty = "dashed")

The dashed vertical line shows where the MLE is, and it does appear to be where the log likelihood is
maximized. The log likelihood goes to minus infinity as 𝜇 → 0 or 𝜇 → ∞. Except when 𝑥 = 0 the log
likelihood increases to 0 as 𝜇 → 0. Thus we cannot try to draw the curve from zero to infinity but rather
from a little bit above zero to some big number. But that gives us a plot in which it is hard to see what is
going on.

Hence the ylim optional argument to R function curve. It will turn out that the only interesting part of
the log likelihood is the region near the maximum. Hence we include in our plot only the part of the curve
in which the log likelihood is within 10 of the maximum. The 10 was pulled out of the air. We don’t really
want to get scientific about this yet (but do in the section on likelihood-based confidence intervals below).
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Figure 1: Log Likelihood
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Also it really doesn’t matter, since we are just using this plot to get some idea what is going on. We don’t
use this plot for statistical inference.

5 Confidence Intervals
5.1 Confidence Level
Set the confidence level. It is best programming practice to never hard code numbers like this, that is, the
number 0.95 should only occur in your document once where it is used to initialize a variable. Then use that
variable elsewhere.

If there is ever a need to change this (to use say 0.90 for the confidence level), then it only need be changed
in one place and will be consistently used everywhere.
conf.level <- 0.95

5.2 Wald Confidence Interval
This interval is

̂𝜇 ± 𝑧𝛼/2 ⋅ √ ̂𝜇
where 𝑧𝛼/2 is the 1−𝛼/2 quantile of the standard normal distribution, because the variance of the distribution
is 𝜇.
mu.hat + c(-1, 1) * qnorm((1 + conf.level) / 2) * sqrt(mu.hat)

## [1] 8.918861 25.081139

As with the binomial distribution, the Wald interval for the Poisson distribution is zero width, hence ridicu-
lous, when ̂𝜇 = 0.

The Wald interval can be repaired by using a different procedure (Geyer, 2009, DOI: 10.1214/08-EJS349).
For the Poisson distribution, this recipe uses the interval [0, − log(𝛼)] for coverage 1 − 𝛼. Thus when we
observe 𝑥 = 0 and want 95% confidence, the interval is
alpha <- 1 - conf.level
c(0, - log(alpha))

## [1] 0.000000 2.995732

This same fix can be used for any confidence interval, not just the Wald interval.

5.3 Score Interval (also called Rao)
To derive this inverval we invert the score test. The test statistic is

𝑥 − 𝜇√𝜇

so the interval is the set of 𝜇 such that

∣𝑥 − 𝜇√𝜇 ∣ < 𝑧𝛼/2

or
𝑥2 − 2𝑥𝜇 + 𝜇2 < 𝜇𝑧2

𝛼/2

or
𝜇2 − (2𝑥 + 𝑧2

𝛼/2)𝜇 + 𝑥2 < 0
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From the quadratic formula this interval has endpoints

2𝑥 + 𝑧2
𝛼/2 ± √(2𝑥 + 𝑧2

𝛼/2)2 − 4𝑥2

2
or

𝑥 +
𝑧2

𝛼/2
2 ± 𝑧𝛼/2

√𝑥 +
𝑧2

𝛼/2
4

z <- qnorm((1 + conf.level) / 2)
x + z^2 / 2 + c(-1, 1) * z * sqrt(x + z^2 / 4)

## [1] 10.61447 27.22699

5.4 Likelihood Interval (also called Wilks)

crit <- qchisq(conf.level, df = 1)
fred <- function(mu) 2 * (logl(mu.hat) - logl(mu)) - crit
tol <- sqrt(.Machine$double.eps)
if (mu.hat == 0) {

low <- 0
} else {

low <- uniroot(fred, lower = 0, upper = mu.hat, tol = tol)$root
}
hig <- uniroot(fred, lower = mu.hat, upper = 2 * mu.hat,

extendInt = "upX", tol = tol)$root
c(low, hig)

## [1] 10.14533 26.40924

6 Hypothesis Tests
6.1 Hypotheses
6.1.1 Upper-Tailed

𝐻0 ∶𝜇 = 𝜇0
𝐻1 ∶𝜇 > 𝜇0

6.1.2 Lower-Tailed

𝐻0 ∶𝜇 = 𝜇0
𝐻1 ∶𝜇 < 𝜇0

6.1.3 Two-Tailed

𝐻0 ∶𝜇 = 𝜇0
𝐻1 ∶𝜇 ≠ 𝜇0

Suppose we have
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mu.zero <- 13

6.2 Score Test (also called Rao)
The test statistic is (repeating what was said in the section on the score interval above)

𝑡 = 𝑥 − 𝜇√𝜇

where in both places 𝜇 is now the value of 𝜇 hypothesized under the null hypothesis. Call that 𝜇0 and we
have

𝑡 = 𝑥 − 𝜇0√𝜇0

tstat <- (x - mu.zero) / sqrt(mu.zero)
tstat

## [1] 1.1094
# P-values
# upper-tailed
pnorm(tstat, lower.tail = FALSE)

## [1] 0.1336287
# lower-tailed
pnorm(tstat)

## [1] 0.8663713
# two-tailed
2 * pnorm(abs(tstat), lower.tail = FALSE)

## [1] 0.2672575

6.3 Likelihood Ratio Test (also called Wilks)
As always the test statistic for a two-tailed test is

𝑡 = 2[𝑙( ̂𝜇) − 𝑙(𝜇0)]

and has a chi-square distribution on one degree of freedom under the null hypothesis.

This can be converted into an asymptotically normal distribution by taking the square root and assigning
the sign of ̂𝜇 − 𝜇0 because the square of a standard normal random variable is chi-square with one degree of
freedom.

And we can also use this signed likelihood ratio test statistic for the two-tailed test because its square is the
original likelhood ratio test statistic.
tstat <- sign(mu.hat - mu.zero) * sqrt(2 * (logl(mu.hat) - logl(mu.zero)))
tstat

## [1] 1.058761
# P-values
# upper-tailed
pnorm(tstat, lower.tail = FALSE)

## [1] 0.1448542
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# lower-tailed
pnorm(tstat)

## [1] 0.8551458
# two-tailed
2 * pnorm(abs(tstat), lower.tail = FALSE)

## [1] 0.2897085

6.4 Wald Test
This is just like the score test except that the variance is estimated under the alternative rather than under
the null.

𝑡 = 𝑥 − 𝜇0
√ ̂𝜇

and this has the problem of blowing up when ̂𝜇 = 0. It also doesn’t make intuitive sense to assume 𝜇0 is the
true unknown parameter value and then not use √𝜇0 for the standard deviation.

So nobody recommends this (for Poisson), and we won’t even illustrate it.

6.5 Exact Test
Here the test statistic is just 𝑥.
# P-values
# upper-tailed
ppois(x - 1, mu.zero, lower.tail = FALSE)

## [1] 0.1645069
# lower-tailed
ppois(x, mu.zero)

## [1] 0.890465

The reason for the x - 1 is the discreteness of the Poisson distribution (that’s the way lower.tail = FALSE
works).

There is no exact two-tailed because the exact (Poisson) distribution is not symmetric, so there is no reason
to us |𝑋 − 𝜇0| as a test statistic. One could also say there are many possible two-tailed exact tests and no
reason to prefer any one of them.

6.6 Fuzzy Test
There is a fuzzy test, but there is no computer implementation available. So we don’t cover that either.
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