
Stat 5421 Lecture Notes: Completion of Exponential Families

Charles J. Geyer

August 30, 2023

Contents
1 License 2

2 R 2

3 History of Theory 3

4 Directions in the Canonical Parameter Space 3

5 Limits 4

6 History of Computing 5

7 The Binomial Family of Distributions 6

8 Canonical Affine Submodels 7

9 Separation versus Degeneracy 8

10 Complete Separation Example of Agresti 8
10.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
10.2 Attempt to Fit Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
10.3 Log-Linear Models Done Right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
10.4 So Now What? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
10.5 Valid Region for Beta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
10.6 GDOR Need Not Be Unique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
10.7 Mathematical Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
10.8 Intervals for Beta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
10.9 Intervals for Theta and Mu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
10.10Submodel Canonical Statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
10.11Complete Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
10.12Region for Tau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
10.13Confidence Interval for Closeness to the Boundary . . . . . . . . . . . . . . . . . . . . . . . . 28
10.14Confidence Intervals for Hypothetical Individuals . . . . . . . . . . . . . . . . . . . . . . . . . 28

11 A Clinical Trial Example of Agresti 30

12 Theory of Confidence Intervals 32
12.1 Confidence Intervals for OM when there is a GDOR . . . . . . . . . . . . . . . . . . . . . . . 32
12.2 Confidence Intervals for LCM when it is Not Completely Degenerate . . . . . . . . . . . . . . 32
12.3 The Combination of the Two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
12.4 Confidence Regions to Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1



13 Quasi-Complete Separation Example of Agresti 33
13.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
13.2 Fit Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
13.3 Valid Region for Beta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
13.4 Intervals for Beta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
13.5 Intervals for Theta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
13.6 Intervals for Mu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
13.7 Submodel Canonical Statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
13.8 Region for Tau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
13.9 Quasi-Complete Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
13.10Confidence Intervals for Hypothetical Individuals . . . . . . . . . . . . . . . . . . . . . . . . . 48

14 Theory of Hypothesis Tests 49

15 Categorical Data Example of Geyer 50

16 Multinomial and Product Multinomial Sampling 52
16.1 Alligators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
16.2 A Digression about AIC and BIC and LCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
16.3 AIC for Alligators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
16.4 Other Ways to Specify Multinomial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
16.5 A Simple Multinomial Model with Completely Degenerate LCM . . . . . . . . . . . . . . . . 59
16.6 A Simple Multinomial Model with Partially Degenerate LCM . . . . . . . . . . . . . . . . . . 60
16.7 On the Baseline-Category Logit Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . 65
16.8 Mapping Canonical to Mean Value Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 67
16.9 DOR, DOC, and GDOR for Multinomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Bibliography 69

1 License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (http:
//creativecommons.org/licenses/by-sa/4.0/).

2 R

library(alabama)

## Loading required package: numDeriv
library(rcdd)

## If you want correct answers, use rational arithmetic.
## See the Warnings sections in help pages for
## functions that do computational geometry.
library(llmdr, lib.loc = "~/Software/llmdr/package/llmdr.Rcheck")
library(sfsmisc)
library(MASS)
library(glmbb)
library(nnet)
library(CatDataAnalysis)

• The version of R used to make this document is 4.3.1.

2

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


• The version of the alabama package used to make this document is 2022.4.1.

• The version of the numDeriv package used to make this document is 2016.8.1.1.

• The version of the rcdd package used to make this document is 1.5.2.

• The version of the llmdr package used to make this document is 0.1.

• The version of the sfsmisc package used to make this document is 1.1.15.

• The version of the MASS package used to make this document is 7.3.60.

• The version of the glmbb package used to make this document is 0.5.1.

• The version of the nnet package used to make this document is 7.3.19.

• The version of the CatDataAnalysis package used to make this document is 0.1.5.

• The version of the rmarkdown package used to make this document is 2.23.

At present, R package llmdr is not publicly available. That is why it is loaded from a nonstandard location
on the author’s computer. It will be available soon.

3 History of Theory
Maximum likelihood estimates (MLE) do not have to exist. Theoretically, the problem of when MLE exist
in regular full exponential families of distributions has been completely understood for a long time.

For exponential families having finite support, this theory is due to Barndorff-Nielsen (1978), Theorem 9.15
and the surrounding discussion. Finite support means there are only a finite number of possible values of the
canonical statistic vector, as happens in logistic regression and log-linear models for categorical data when
multinomial or product-multinomial sampling is assumed.

Brown (1986), Chapter 6, Section “Aggregate Exponential Families” extended Barndorff-Nielsen’s theory to
exponential families with countable support under certain regularity conditions. Countable support means
we have a discrete probability distribution, and Poisson regression with log link and log-linear models for
categoriccal data when Poisson sampling is assumed satisfy Brown’s regularity conditions.

Geyer (2009) reworked this theory to use the concepts

• direction of recession (DOR)

• direction of constancy (DOC)

• generic direction of recession (GDOR)

4 Directions in the Canonical Parameter Space
Following Geyer (2009) we are going to be sloppy about the mathematical meaning of the word direction.
Strictly speaking, it is the direction in which a vector points, so every positive scalar multiple of a vector
points in the same direction. So a direction is not a vector. Vectors have length, directions do not. Also
the zero vector does not point in any direction. But we are just going to call vectors directions, and we are
going to allow the zero vector. There is a reason for this in the correspondence between DOR and normal
vectors (Geyer (2009), Theorem 3), which we do not want to discuss. Mostly this does not cause confusion.
Occasionally it does lead to some clumsy language.

When the MLE does not exist in the original model (OM), this is because there is a DOR that is not a DOC,
(Geyer (2009), Theorems 1, 3, and 4).

Here are the definitions of these concepts that give them their names.

3



• A vector 𝛿 in the canonical parameter space of a regular full exponential family is a DOR if the log
likelihood function 𝑙 is nondecreasing in that direction, meaning for any 𝜃 in the canonical parameter
space and any positive real number 𝑠 we have 𝑙(𝜃) ≤ 𝑙(𝜃 + 𝑠𝛿).

• A vector 𝛿 in the canonical parameter space of a regular full exponential family is a DOC if the log
likelihood function 𝑙 is constant in that direction, meaning for any any 𝜃 in the canonical parameter
space and any real number 𝑠 we have 𝑙(𝜃) = 𝑙(𝜃 + 𝑠𝛿).

Every DOC is a DOR, but not vice versa.

And here are some equivalent characterizations. In them 𝑌 denotes the canonical statistic vector, thought
of as a random vector having some probability distribution in the family, and 𝑦 denotes its observed value.

• A vector 𝛿 in the canonical parameter space of a regular full exponential family is a DOC if and only
if for any real number 𝑠 and any 𝜃 in the canonical parameter space 𝜃 and 𝜃 + 𝑠𝛿 correspond to the
same distribution.

• A vector 𝛿 in the canonical parameter space of a regular full exponential family is a DOC if and only
if ⟨𝑌 , 𝛿⟩ is a constant random variable.

• A vector 𝛿 in the canonical parameter space of a regular full exponential family is a DOR if and only
⟨𝑌 , 𝛿⟩ ≤ ⟨𝑦, 𝛿⟩ with probability one.

In summary,

• 𝛿 is a DOC if and only if ⟨𝑌 , 𝛿⟩ is constant,

• 𝛿 is a DOR if and only if ⟨𝑦, 𝛿⟩ is extreme, the upper endpoint of the range of ⟨𝑌 , 𝛿⟩, and

• 𝛿 is a DOC if and only if and only if 𝜃 and 𝜃 + 𝛿 correspond to the same distribution.

The last bullet point here says that DOC are about identifiability, If there is a DOC, then we need to drop
some parameters to gain identifiability. Usually, the software can do this for us.

The other two bullet points here are about maximum likelihood.

The MLE exists in the OM if and only if every DOR is a DOC (Geyer (2009), Theorem 4).

What happens when the MLE does not exist in the OM is the subject of the following section.

5 Limits
If we take straight line limits in the direction of a DOR 𝛿 then all of the probability goes to as far as it can
go in that direction (Geyer (2009), Theorem 6, but similar theorems are found in Barndorff-Nielsen (1978),
Brown (1986), and Geyer (1990)). Probability piles up on the subset of the support

𝐻 = { 𝑌 ∶ ⟨𝑌 − 𝑦, 𝛿⟩ = 0 } (1)

The probability distribution for 𝜃+𝑠𝛿 converges as 𝑠 → ∞ to the conditional probability distribution for 𝜃 of
𝑌 given 𝑌 ∈ 𝐻. This family of conditional distributions (for all 𝜃) is an exponential family of distributions
that Geyer (2009) calls a limiting conditional model (LCM).

It is wrong to think of distributions in the LCM only as conditional distributions or only as limit distributions.
They are both.

Since the log likelihood is nondecreasing along a DOR, the log likelihood for an LCM lies on or above the
log likelihood for the OM. Hence maximizing the likelihood in the LCM maximizes the likelihood in the OM
too.

The canonical parameters do not converge as we take these limits. They go off to infinity.

But the probability distributions converge. So the MLE distribution in the LCM (if one exists, more on this
presently) can be thought of as the MLE.

4



Moreover, not only distributions converge. Under the regularity conditions of Brown, which hold for all
statistical models studied in this course, moments of all orders converge (Eck and Geyer (2021), Theorem
7), for example, the mean of the distribution in the OM for parameter 𝜃 + 𝑠𝛿 converges to the mean of the
distribution for the parameter 𝜃 in the LCM as 𝑠 → ∞. And the same goes for the variance and other
moments.

Thus mean value parameters are well behaved. When we take limits to complete exponential families, means
converge.

Every LCM is itself an exponential family, just a different exponential family from the OM. The LCM and
the OM have the same canonical statistic and the same canonical parameter. The LCM just restricts the
canonical statistic to the event 𝐻 described above.

If 𝛿 is a GDOR of the OM, then 𝛿 is a DOC of the LCM. This is clear from the fact that the LCM conditions
on the event 𝑌 ∈ 𝐻 with 𝐻 given by (1). This is the reason we have to allow DOC. Otherwise, we cannot
talk about the OM and LCM using the same parameters.

Since the LCM is an exponential family, we can tell when the MLE exists in it. Just apply the theory
described above to it. The MLE will exist in the LCM if and only if every DOR of the LCM (not OM) is a
DOC of the LCM (not OM). And (Geyer (2009), Section 3.6) show this happens whenever the DOR of the
OM that we used to form the LCM was generic, not in any way special. This we call a generic direction of
recession (GDOR).

A more precise characterization of GDOR will be given at the end of Section 8 below.

When we find a GDOR and its corresponding LCM, then the MLE in the LCM is the MLE distribution
and the mean value of this distribution is the MLE mean value. And this MLE satisfies the observed-equals-
expected property, because it is the MLE for an exponential family (the LCM). Hence the observed-equals-
expected property always holds. Similarly, the sufficient dimension reduction property and maximum entropy
properties always hold. It does not matter whether the MLE is found in the OM or an LCM.

One might ask when the MLE is in an LCM, what is the statistical model? The model cannot be the OM,
because if that is so, then there is no MLE. We have to say that the model is the OM and all of its limits.
Geyer (2009) calls that model the Barndorff-Nielsen completion of the OM.

The Barndorff-Nielsen completion has no canonical parameterization, because when you take limits canonical
parameters do not converge (they go off to infinity). But it is a family of distributions (the OM and all of
its LCM). Also (under the conditions of Brown) it has a mean value parameterization. Every distribution
in the Barndorff-Nielsen completion has a mean vector, and mean vectors do converge as limits are taken to
get LCM.

Each LCM is an exponential family that has a canonical parameterization, but the Barndorff-Nielsen com-
pletion as a whole does not have a canonical parameterization. The canonical parameterizations of the LCM
do not fit together to make one parameterization.

6 History of Computing
The thesis of your humble author (Geyer (1990), Chapter 2), included an algorithm using repeated linear
programming to discover DOR that are not DOC for exponential families. With software available at the
time it was very clumsy but was actually used to find MLE in LCM for some very complicated statistical
models (Geyer and Thompson, 1992).

Geyer (2009) used various functions in R package rcdd (Geyer et al., 2021) to find GDOR. This software
was also somewhat clumsy to use (there was no model fitting function comparable to R function glm) but
only a dozen or so lines of code were enough to find out whether the MLE existed in the OM or otherwise
a GDOR and its LCM and the MLE in that LCM. But this code was slow on big problems. Eck and Geyer
(2021) have an example (dataset bigcategorical in R package llmdr), a contingency table with 1024 cells

5



and 781 parameters, that took a little over 3 days and 4 hours of computing time to do with the methods of
this paragraph.

Eck and Geyer (2021) used R function glm to maximize the likelihood getting canonical parameter estimates
close to infinity by using small tolerances and then looking for directions in which the Fisher information
matrix is nearly singular (approximate null eigenvectors). This algorithm was fast but has problems with
inexactness of computer arithmetic. So it is difficult to know exactly when an approximate null eigenvector
of the Fisher information matrix is close to being a GDOR.

R package llmdr (Geyer, 2022) uses repeated linear programming but different linear programs from those
used by Geyer (1990) and Geyer (2009). It also uses the fast linear programming (R package glpkAPI,
Gelius-Dietrich (2021)) that scales to large problems (it uses sparse matrix arithmetic). But llmdr can also
use infinite-precision rational arithmetic from R packages rcdd (Geyer et al., 2021) and gmp (Lucas et al.,
2021) to prove, if requested, that its results are correct. The big categorical example of Eck and Geyer (2021),
mentioned above, that took over 3 days to do with the methods of Geyer (2009) took only 150 milliseconds
to do with R function llmdr in R package llmdr. If proofs were requested, they took, 25 minutes (slow, but
still an improvement over the methods of Geyer (2009)).

So we finally have, in this fourth generation algorithm, methods that are fast, easy, and safe enough for
ordinary users to use.

7 The Binomial Family of Distributions
The binomial family of distributions as usually taught has usual parameter 𝜋 and usual parameter space
0 ≤ 𝜋 ≤ 1.

The binomial family of distributions thought of as an exponential family has canonical parameter 𝜃 = logit(𝜋)
and has canonical parameter space −∞ < 𝜃 < +∞ and this corresponds to usual parameter space 0 < 𝜋 < 1.

We have lost the distributions for 𝜋 = 0 and 𝜋 = 1. The reason why these distributions cannot be in
the exponential family is all distributions in an exponential family have the same support. There is also
the problem that logit(0) and logit(1) are undefined, so there are no canonical parameter values for those
distributions to have (canonical parameters have to be real numbers or real vectors, infinite values are not
allowed).

This is a one-parameter family of distributions so its canonical parameter space is a one-dimensional vector
space. In a one-dimensional vector space, there are only two directions: toward +∞ and toward −∞. There
are an infinite number of vectors, but only two directions those vectors can point in.

The log likelihood for the binomial distribution is

𝑙(𝜋) = 𝑦 log(𝜋) + (𝑛 − 𝑦) log(1 − 𝜋)

When 𝑦 = 0, this becomes
𝑙(𝜋) = 𝑛 log(1 − 𝜋)

and this is a strictly increasing function of 𝜋 and 𝜃 in the minus direction (toward −∞). Because logit is a
monotone function, as 𝜃 decreases, 𝜋 also decreases, 1 − 𝜋 increases, and log(1 − 𝜋) increases. So −1 (or any
negative number, thought of as a vector in the one-dimensional vector space ℝ) is a DOR.

And what happens to the probabilities as we take limits? There are two cases. For 𝑦 = 0

𝑓(𝑦) = (1 − 𝜋)𝑛 → 1, as 𝜋 → 0 and 𝜃 → −∞.

And for 𝑦 > 0
𝑓(𝑦) = 𝜋𝑦(1 − 𝜋)𝑛−𝑦 → 0, as 𝜋 → 0 and 𝜃 → −∞.

Thus binomial distributions with usual parameter 𝜋 and canonical parameter 𝜃 converge to the completely
degenerate distribution concentrated at zero as 𝜋 → 0 and 𝜃 → −∞.

6

expfam.html#the-binomial-distribution
expfam.html#non-degeneracy
ch1.html#modifications


Now the theory described above says the MLE does not exist in the OM (because −1 is a DOR that is
not a DOC) and the LCM is the distribution concentrated at 𝑌 = 0. This is the only distribution in the
LCM, so the LCM has no identifiable parameters, and this only distribution is the MLE distribution. This
distribution has mean zero and variance zero, which are the limits of the mean 𝜋 and variance 𝜋(1 − 𝜋) as
𝜋 → 0 and 𝜃 → −∞.

This seems like a crazy amount of theory to throw at such a simple problem. And it is overkill for a one-
dimensional problem like this. But, as we shall soon, see. Even two dimensional problems can be hard for
humans to figure out.

So we need the computer to use the theory above to find the answers.

By the way, a similar story could be told about when the data are 𝑦 = 𝑛.

8 Canonical Affine Submodels
Canonical affine submodels of regular full exponential families are again regular full exponential families. If
𝑎 is the offset vector and 𝑀 is the model matrix, then

𝜃 = 𝑎 + 𝑀𝛽

is the relationship between

• the saturated model canonical parameter vector 𝜃 and

• the canonical affine submodel canonical parameter vector 𝛽.

And
𝜏 = 𝑀𝑇 𝜇

is the relationship between

• the saturated model mean value parameter vector 𝜇 and

• the canonical affine submodel mean value parameter vector 𝜏 .

And

• the saturated model canonical statistic vector is 𝑦 and

• the canonical affine submodel canonical statistic vector is 𝑀𝑇 𝑦.

So the only difference between saturated models and canonical affine submodels is that we replace 𝑦 with
𝑀𝑇 𝑦.

• A vector 𝛿 in the canonical parameter space of a canonical affine submodel a DOC if and only if
⟨𝑀𝑇 (𝑌 − 𝑦), 𝛿⟩ = ⟨𝑌 − 𝑦, 𝑀𝛿⟩ is zero with probability one.

• A vector 𝛿 in the canonical parameter space of a canonical affine submodel is a DOR if and only if for
any ⟨𝑀𝑇 (𝑌 − 𝑦), 𝛿⟩ = ⟨𝑌 − 𝑦, 𝑀𝛿⟩ is nonpositive with probability one.

A vector 𝛿 is a DOR for the submodel if and only if 𝜂 = 𝑀𝛿 is a DOR for the saturated model. Thus

• for Poisson sampling 𝜂 is a DOR if and only if 𝜂𝑖 ≤ 0 for all 𝑖 (because the Poisson distribution has no
upper bound) and 𝜂𝑖 < 0 implies 𝑦𝑖 = 0 (because zero is the lower bound),

• for binomial sampling 𝜂 is a DOR if and only if 𝜂𝑖 < 0 implies 𝑦𝑖 = 0 (because zero is the lower bound)
and 𝜂𝑖 > 0 implies 𝑦𝑖 = 𝑛𝑖 (because 𝑛𝑖 is the lower bound).

Multinomial and product multinomial sampling is considerably more complicated so we defer discussion of
that.

But already we can see why this problem is hard. We have to find a 𝛿 such that 𝜂 = 𝑀𝛿 satisfies the above
conditions. And for complicated models that is complicated. Fortunately, the computer can do it for us.

7

expfam.html#casm-sdr


When we have found a DOR 𝜂, the LCM says

• if 𝜂𝑖 ≠ 0, then the LCM conditions on 𝑌𝑖 = 𝑦𝑖 and

• if 𝜂𝑖 = 0, then the LCM makes no restrictions on 𝑌𝑖.

Hence the LCM is found by fitting the model to the cases with 𝜂𝑖 = 0. When we lose cases like this, we may
also have more non-identifiable parameters, but the computer can figure that out.

Now we can be a bit more precise about what a GDOR is. For Poisson and binomial sampling, a vector 𝛿
is a DOR has the the largest possible number of nonzero components so the LCM conditions on the largest
possible number of number of components of the response vector. Of course, you have no way to guess what
subset of components is “largest possible” but, again, the computer can figure it out.

9 Separation versus Degeneracy
Agresti (2013), Section 6.5.1, uses the terminology of complete separation and quasi-complete separation to
discuss the issues in this area.

We prefer the terminology of complete degeneracy and partial degeneracy to describe these issues.

Agresti’s terms only apply to logistic regression. Our terms only apply to all exponential families.

Complete separation occurs if all cases are plotted in regressor space, the successes and failures are labeled
with different colors, and there is a hyperplane in predictor space that separates them, all of one color on
one side and all of the other color on the other side. An example of such a plot is Figure 7 below.

This corresponds to an LCM that is completely degenerate, concentrated at a single point. The MLE
distribution says the only possible value of the response vector was the observed value.

Quasi-complete separation occurs if all cases are plotted in predictor space, the successes and failures are
labeled with different colors, and there is a hyperplane in predictor space that weakly separates them, all of
one color on one side or in the hyperplane and all of the other color on the other side or in the hyperplane.
An example of such a plot is Figure 14 below.

This corresponds to an LCM that is partially degenerate, not concentrated at a single point but having
support smaller than the OM. The MLE distribution is not completely degenerate but does give probability
zero to some outcomes that have positive probability in the OM.

10 Complete Separation Example of Agresti
10.1 Data
Section 6.5.1 of Agresti (2013) introduces the notion of complete separation with the following example.
x <- seq(10, 90, 10)
x <- x[x != 50]
y <- as.numeric(x > 50)
data.frame(x, y)

## x y
## 1 10 0
## 2 20 0
## 3 30 0
## 4 40 0
## 5 60 1
## 6 70 1
## 7 80 1
## 8 90 1

8



The following figure shows these data.

20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

Figure 1: Logistic Regression Data for Complete Separation Example of Agresti

10.2 Attempt to Fit Model
Suppose we want to do “simple” logistic regression (one predictor 𝑥 plus intercept, so the model is two-
dimensional). Let’s try to do it naively.
gout <- glm(y ~ x, family = binomial)

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(gout)

##
## Call:
## glm(formula = y ~ x, family = binomial)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -118.158 296046.187 0 1
## x 2.363 5805.939 0 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1.1090e+01 on 7 degrees of freedom

9



## Residual deviance: 2.1827e-10 on 6 degrees of freedom
## AIC: 4
##
## Number of Fisher Scoring iterations: 25

R function glm does give a warning. But what are you supposed to do about it? If the output of the R
function summary is to be taken seriously, you cannot tell whether either regression coefficient is nonzero.
As we shall see, that is complete nonsense. Both parameters have to go to infinity (one to plus infinity, the
other to minus infinity) in order to maximize the likelihood.

In fact, these data are not analyzable by the R function glm and its associated functions (generic functions
having methods for class "glm").

At least it did give a (not very clear) warning that its results are absolute rubbish. But that is no consolation
because

• it doesn’t give you any options to do the Right Thing and

• it gives both false negative and false positives on these warnings, so they are nonsense too. You cannot
rely on anything R function glm does.

10.3 Log-Linear Models Done Right
So we switch to R function llmdr which stands for log-linear models done right (a take-off on the name of
a well-known linear algebra textbook) in R package llmdr (Geyer, 2022).
lout <- llmdr(y ~ x, family = "binomial")
summary(lout)

##
## Call:
## llmdr(formula = y ~ x, family = "binomial")
##
## Estimate GDOR Std. Error z value Pr(>|z|)
## (Intercept) NA -1.250 NA NA NA
## x NA 0.025 NA NA NA
##
## Maximum likelihood distribution is the limit of distributions
## with parameter vectors Estimate + s * GDOR as s goes to infinity
## (NA in the Estimate column should be read as zero).

The fact that we have NA for every parameter estimate means all parameters have been dropped to obtain
identifiability in the LCM. Thus the LCM is completely degenerate (or we have complete separation in
Agresti’s terminology). The GDOR given is the direction the parameters go to infinity to get to the LCM.
Since no parameters have been estimated, everything else is also NA.

Admittedly this is not easy to understand. But of course canonical parameters are never easy to understand.

But mean value parameters are much easier to understand.
estimates(lout, type = "mu")

## 1 2 3 4 5 6 7 8
## 0 0 0 0 1 1 1 1

This says the MLE of the saturated model mean value parameter vector 𝜇 is equal to the observed data.
And since all of those values are on the boundary of the range (𝑦𝑖 can only be zero or one for these data),
this means we have a completely degenerate LCM (something we already knew from the Estimates column
in the summary being all NA).

10

http://www.catb.org/jargon/html/R/Right-Thing.html
https://www.amazon.com/Linear-Algebra-Right-Undergraduate-Mathematics/dp/3319110799/
https://www.amazon.com/Linear-Algebra-Right-Undergraduate-Mathematics/dp/3319110799/
expfam.html#alice


10.4 So Now What?
Agresti (2013), Section 6.5.3 gives several pieces of advice about what to do in this situation. We now think
all of it is bad, although we ourselves have given similar advice in the past. More on this below. None
of this section is intended to be critical of Agresti (2013). That book is an authoritative compendium of
conventional wisdom about the subject. The fact that conventional wisdom sometimes disagrees with long
established theory, albeit fairly esoteric theory, is not unique to categorical data analysis.

The first thing we can do is wonder if some simpler model fits the data. If so, then we might not have to
worry about this OM not having MLE. So let’s try that.
lout.null <- llmdr(y ~ 1, family = "binomial")
anova(lout.null, lout)

## Analysis of Deviance Table
##
## Model 1: y ~ 1
## Model 2: y ~ x
## Df as Null Df as Alt Deviance Df for test LRT P-value
## 1 1 0 11.09
## 2 0 2 0.00 1 11.09 0.00086778

We are getting a bit ahead of ourselves here (we will explain how hypothesis tests work in this situation in
Section 14 below). But the 𝑃 -value seems fairly strong. The response does depend on 𝑥. So we cannot drop
𝑥 from the model.

Save these data for future use (Section about AIC below)
save.complete <- list(null = lout.null, alternative = lout,

anova = anova(lout.null, lout), data = data.frame(x = x, y = y))

By the way, we could have gotten the same result from R function glm and friends.
gout.null <- glm(y ~ 1, family = "binomial")
anova(gout.null, gout, test = "LRT")

## Analysis of Deviance Table
##
## Model 1: y ~ 1
## Model 2: y ~ x
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 7 11.09
## 2 6 0.00 1 11.09 0.0008678 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This illustrates a general principle. When the MLE for the null hypothesis exists in the OM (of the null
hypothesis), then the usual theory about likelihood ratio tests and Rao tests is valid. It doesn’t matter
whether or not the MLE exists in the OM of the alternative hypothesis (Section 14 below).

So R function glm and friends are doing the Right Thing here. But it gives a warning in fitting the alternative
hypothesis that we have to be sophisticated enough to ignore (for the purposes of this hypothesis test).

Another thing Agresti recommends is to do likelihood-based confidence intervals. These at least will be
automatically one sided. But R function confint.glm in R package MASS messes up one-sided confidence
intervals. So we have to do that the hard way.
logl.factory <- function(modmat, response) {

stopifnot(is.numeric(modmat))
stopifnot(is.finite(modmat))

11

ch4.html#likelihood-intervals


stopifnot(is.matrix(modmat))
stopifnot(is.numeric(response))
stopifnot(is.finite(response))
stopifnot(round(response) == response) # check for integer-valued
stopifnot(response >= 0)
stopifnot(length(response) == nrow(modmat))
logpq <- function(theta) ifelse(theta > 0, - log1p(exp(- theta)),

theta - log1p(exp(theta)))
function(beta) {

stopifnot(is.numeric(beta))
stopifnot(is.finite(beta))
stopifnot(length(beta) == ncol(modmat))
theta <- drop(modmat %*% beta)
logp <- logpq(theta)
logq <- logpq(- theta)
return(sum(response * logp + (1 - response) * logq))

}
}
# need as.matrix because lout$x is sparse matrix class
logl <- logl.factory(as.matrix(lout$x), lout$y)

logl.gradient.factory <- function(modmat, response) {
stopifnot(is.numeric(modmat))
stopifnot(is.finite(modmat))
stopifnot(is.matrix(modmat))
stopifnot(is.numeric(response))
stopifnot(is.finite(response))
stopifnot(round(response) == response) # check for integer-valued
stopifnot(response >= 0)
stopifnot(length(response) == nrow(modmat))
pq <- function(theta) ifelse(theta > 0, 1 / (1 + exp(- theta)),

exp(theta) / (1 + exp(theta)))
function(beta) {

stopifnot(is.numeric(beta))
stopifnot(is.finite(beta))
stopifnot(length(beta) == ncol(modmat))
theta <- drop(modmat %*% beta)
p <- pq(theta)
q <- pq(- theta)
return(rbind(drop(crossprod(modmat, response * q - (1 - response) * p))))

}
}
logl.gradient <- logl.gradient.factory(as.matrix(lout$x), lout$y)

beta.try <- rnorm(2)
logl.gradient(beta.try)

## (Intercept) x
## [1,] 3.995975 299.9597
grad(logl, beta.try)

## [1] 3.995975 299.959694

12



# check that maximum of logl is zero
logl(100 * lout$gdor)

## [1] -2.777589e-11
logl(300 * lout$gdor)

## [1] -5.357274e-33

So now we are going to do something really tricky that does not generalize to problems with more than two
parameters but does really show what is going on in this example. We are going to draw the boundary of
the likelihood-based confidence region for 𝛽. Because we are going to compare this with some other regions,
we write a function to do it.
do.curve <- function(hin, hin.jac, eps = 0.1, cutoff = -10) {

# find one point on curve
beta.start <- c(0, 0)
gdor <- lout$gdor
aout <- auglag(beta.start,

fn = function(beta) sum(gdor * beta),
gr = function(beta) gdor,
hin = hin, hin.jac = hin.jac,
control.outer = list(trace = FALSE))

stopifnot(aout$convergence == 0)

beta.save <- aout$par

# Now step along the curve in counterclockwise direction
# using R function auglag to put us back on the curve
for (ii in 1:1000) {

foo <- logl.gradient(aout$par)
# rotate clockwise 90 degrees
bar <- rev(foo) * c(1, -1)
# normalize
bar <- bar / sqrt(sum(bar^2))

# slowly increase step size as we go along
beta.try <- aout$par + eps * bar * (1 + ii / 10)
aout <- auglag(beta.try,

fn = function(beta) sum((beta - beta.try)^2) / 2,
gr = function(beta) beta - beta.try,
hin = hin, hin.jac = hin.jac,
control.outer = list(trace = FALSE))

stopifnot(aout$convergence == 0)
beta.save <- rbind(beta.save, aout$par)
if (aout$par[1] < cutoff) break

}

# go back to the the first point
aout <- list(par = beta.save[1, ])
# and go the other way
for (ii in 1:1000) {

foo <- logl.gradient(aout$par)
# rotate counterclockwise 90 degrees

13



bar <- rev(foo) * c(-1, 1)
# normalize
bar <- bar / sqrt(sum(bar^2))

# slowly increase step size as we go along
beta.try <- aout$par + eps * bar * (1 + ii / 10)
aout <- auglag(beta.try,

fn = function(beta) sum((beta - beta.try)^2) / 2,
gr = function(beta) beta - beta.try,
hin = hin, hin.jac = hin.jac,
control.outer = list(trace = FALSE))

stopifnot(aout$convergence == 0)
beta.save <- rbind(aout$par, beta.save)
if (aout$par[1] < cutoff) break

}
beta.save

}

So that is a pretty complicated function, but now that we have it, it is fairly simple to use. Its arguments
are

• hin the function whose zero set is the curve,

• hin.jac the gradient of that function,

• eps how far apart we want points along the curve to be, and

• cutoff where to stop. The curve, of course, goes off to infinity in the direction of recession at both
ends, so we have to stop somewhere. Having made this plot in previous lecture notes (not in the same
way, we know that the curve goes off the left side of the plot, so we stop when 𝛽1 equals the cutoff.

This code (especially cutoff) is very specific to this particular problem, but since nothing of the sort works
for more than two parameters, we won’t worry about that.
level <- 0.95
# divide by 2 because our function is log likelihood not twice log likelihood
crit <- qchisq(level, df = length(lout$coefficients)) / 2
crit

## [1] 2.995732
beta.likelihood <- do.curve(function(beta) crit + logl(beta), logl.gradient)

foo <- beta.likelihood[,1] > -8
plot(beta.likelihood[,1], beta.likelihood[,2],

xlab = expression(beta[1]), ylab = expression(beta[2]),
xlim = range(beta.likelihood[foo,1]),
ylim = range(beta.likelihood[foo,2]), type = "l")

Now we can make likelihood-based confidence intervals for any parameter (any function of 𝛽) by maximizing
and minimizing it over this region. And all of these intervals will have simultaneous coverage because they
are all based on the same confidence region.

If we want non-simultaneous coverage. We do the same thing except we use the critical value for one degree
of freedom.
# divide by 2 because our function is log likelihood not twice log likelihood
crit <- qchisq(level, df = 1) / 2
crit

14



−7 −6 −5 −4 −3 −2

0.
05

0.
10

0.
15

0.
20

0.
25

β1

β 2

Figure 2: Likelihood-based Confidence Region for Beta

15



## [1] 1.920729
beta.likelihood.one.df <-

do.curve(function(beta) crit + logl(beta), logl.gradient)

plot(beta.likelihood[,1], beta.likelihood[,2],
xlab = expression(beta[1]), ylab = expression(beta[2]),
xlim = range(beta.likelihood[foo,1]),
ylim = range(beta.likelihood[foo,2]), type = "l")

lines(beta.likelihood.one.df[,1], beta.likelihood.one.df[,2], col = "red")

−7 −6 −5 −4 −3 −2

0.
05

0.
10

0.
15

0.
20

0.
25

β1

β 2

Figure 3: Level Sets of the Log Likelihood. Black, chi square critical value for 2 df. Red, chi square critical
value for 1 df.

But there is a problem with what we are doing. It isn’t justified by theory.

Let’s go back to the binomial distribution. We know that for large 𝑛 and 𝜋 not close to the boundary of its
parameter space that we have good normal approximation, which is what these likelihood based confidence
intervals assume.

But we also know that when 𝑛 is large and 𝜋 is close to the boundary so either 𝑛𝜋 or 𝑛(1 − 𝜋) is not large,
we have good Poisson approximation not normal approximation.

So that says that when the mean value parameter is close to the boundary, the usual asymptotics of maximum
likelihood do not work. So there is every reason to believe these intervals just do not work.

Another way to explain the same thing is to note that the multivariate normal distribution has no boundary.
Thus a sampling distribution is only approximately multivariate normal when the data for the distribution

16



being approximated are almost never on the boundary. Thus the mere fact that the MLE distribution is on
the boundary is sufficient reason to believe the asymptotics do not work.

10.5 Valid Region for Beta
Thus we introduce another sort of confidence region, proposed by Geyer (2009), Section 3.16. These, at least,
do have some theoretical justification. We won’t explain that theory now, although it is quite simple (see
Section 12 below). We will just put it too on our plot.
alpha <- 1 - level
alpha

## [1] 0.05
crit <- (- log(alpha))
crit

## [1] 2.995732
beta.geyer <- do.curve(function(beta) crit + logl(beta), logl.gradient,

cutoff = -1000)

plot(beta.likelihood[,1], beta.likelihood[,2],
xlab = expression(beta[1]), ylab = expression(beta[2]),
xlim = range(beta.likelihood[foo,1]),
ylim = range(beta.likelihood[foo,2]), type = "l")

lines(beta.likelihood.one.df[,1], beta.likelihood.one.df[,2], col = "red")
lines(beta.geyer[,1], beta.geyer[,2], col = "blue")
arrows(-5, 0.125, -5 + 2 * lout$gdor[1], 0.125 + 2 * lout$gdor[2])

The blue curve in the plot is exactly on top of the black curve. This is an accidental feature of this problem.
It happens because the LCM is completely degenerate (so both the blue curve and the black curve use the
same constraint function) and this problem has 2 parameters (which makes the critical values for the blue
curve and the black curve the same). The blue and black curves would be different if the LCM were only
partially degenerate or if the problem had number of parameters not equal to 2. If the number of parameters
was much greater than 2, then the black curve would be far outside the blue curve, and even the red curve
might be far outside the blue curve.

So we will henceforth discard the likelihood-based intervals as a bad idea (when near the boundary in the
mean value parameter space and near infinity in the canonical parameter space; likelihood-intervals are one
of the great ideas of statistics when far from the boundary) and use the proposal of Geyer (2009).

10.6 GDOR Need Not Be Unique
In this problem there are an infinite number of directions of recession. R package rcdd can find all of them.
tanv <- as.matrix(lout$x)
tanv[lout$y == 1, ] <- (- tanv[lout$y == 1, ])
vrep <- makeV(rays = tanv)
hrep <- scdd(vrep)$output
norv <- (- hrep[ , -(1:2), drop = FALSE])
norv

## [,1] [,2]
## [1,] -60 1
## [2,] -40 1

The rows of this matrix are the extreme directions of recession. They are not generic. Every vector pointing
in a direction between these vectors (every vector that is a linear combination of these vectors with strictly

17



−7 −6 −5 −4 −3 −2

0.
05

0.
10

0.
15

0.
20

0.
25

β1

β 2

Figure 4: Level Sets of the Log Likelihood. Black, chi square critical value for 2 df. Red, chi square critical
value for 1 df. Blue, minus log significance level. Arrow is GDOR. Blue curve is on top of black curve.

18



positive coefficients) is a GDOR. Let’s put these on our plot.
plot(beta.likelihood[,1], beta.likelihood[,2],

xlab = expression(beta[1]), ylab = expression(beta[2]),
xlim = range(beta.likelihood[foo,1]),
ylim = range(beta.likelihood[foo,2]), type = "n")

lines(beta.geyer[,1], beta.geyer[,2], col = "blue")
arrows(-5, 0.125, -5 + 2 * lout$gdor[1], 0.125 + 2 * lout$gdor[2])
norv <- norv / norv[1, 1] * lout$gdor[1]
arrows(-5, 0.125, -5 + 2 * norv[1, 1], 0.125 + 2 * norv[1, 2], col = "green3")
norv <- norv / norv[2, 1] * lout$gdor[1]
arrows(-5, 0.125, -5 + 2 * norv[2, 1], 0.125 + 2 * norv[2, 2], col = "green3")

−7 −6 −5 −4 −3 −2

0.
05

0.
10

0.
15

0.
20

0.
25

β1

β 2

Figure 5: Level Set of Log Likelihood and Directions of Recession. Blue curve is boundary of level set (same
as blue curve in Figure
reffig:agresti-complete-geyer-plot). Black arrow is GDOR. Green arrows are DOR that are not generic.

Any arrow pointing between the green arrows is a GDOR, so GDOR are not unique in this example (they
are unique in a slightly different example below).

There are two reasons why we don’t try to find all GDOR rather than just one GDOR.

• One GDOR is enough to do all the statistics.

• All the GDOR take a lot longer to find, hours, days, or worse for large examples.

19



10.7 Mathematical Proofs
The arrow in Figure 4 or the arrows in Figure 5 show that the log likelihood really does go uphill all the way
to infinity in the GDOR direction. Of course, just eyeballing a plot isn’t a proof, but the computer can do
a rigorous proof.
lout <- llmdr(y ~ x, family = "binomial", proofs = 2)
lout$proofs

## [1] 2

The argument proofs = 2 to R function llmdr asks it to do 2 proofs (more precisely 2 parts of one proof).
The result having lout$proofs == 2 indicates that both proofs were successful. The proofs have been done.
What is reported as a GDOR really is one. (Or for a problem in which a GDOR does not exist so the MLE
exists in the OM, that has been proved.)

By reporting it has done the proofs, the computer says that, although it found the answer using inexact
computer arithmetic, it went back and did enough work in infinite-precision rational arithmetic to prove
that what it says is a GDOR really is one.

The only reason R function llmdr does not do these proofs by default is that inexact computer arithmetic
usually gives the right answer and these proofs can take many minutes to do on large problems.

10.8 Intervals for Beta

beta <- beta.geyer
colnames(beta) <- names(lout$coefficients)
beta <- apply(beta, 2, range)
rownames(beta) <- c("lower", "upper")
beta <- t(beta)
beta

## lower upper
## (Intercept) -1.001834e+03 -1.34039
## x 3.354413e-02 25.11505

Except we know this is wrong. As the arrow in Figure 4 shows, 𝛽1 goes to −∞ as we travel in the GDOR
direction, and 𝛽2 goes to +∞ as we travel in the GDOR direction. We just don’t get that far on the plot.
So fix that up.
beta[1, "lower"] <- -Inf
beta[2, "upper"] <- Inf
beta

## lower upper
## (Intercept) -Inf -1.34039
## x 0.03354413 Inf

We can make these intervals if a user asks for them, but they are not very informative. They provide much
less information than the whole region whose boundary is the blue curve in Figure 4.

10.9 Intervals for Theta and Mu
Larry Brown (the author of Brown (1986)) told your humble author that nobody would ever understand the
intervals for 𝛽 so focus on 𝜇. Your humble author mostly agrees. The only reasons we bothered with 𝛽 is
because

• everything starts there, we can only do intervals for other parameters by mapping intervals for 𝛽 to
them,

20



• when writing an R package, you don’t know what users will want or what applications they will be
doing, so you have to provide all the possibilities you can if you want to be useful.

First we do sloppy intervals for 𝜃.
modmat <- as.matrix(lout$x)
theta.geyer <- modmat %*% t(beta.geyer)
theta.intervals <- apply(theta.geyer, 1, range)
theta.intervals <- t(theta.intervals)
colnames(theta.intervals) <- c("lower", "upper")
theta.intervals

## lower upper
## 1 -835.3521315 -0.9200953
## 2 -668.8705930 -0.4331595
## 3 -502.3890545 0.2852195
## 4 -335.9075160 2.9444390
## 5 -2.9444390 505.2454046
## 6 -0.2850279 756.3958874
## 7 0.4304010 1007.5463703
## 8 0.9193835 1258.6968531

But we can do a lot better than this by running the optimizer again. First we know that we have one-sided
intervals. If 𝑦𝑖 = 0, then we know the lower bound for 𝜃𝑖 is −∞. If 𝑦𝑖 = 1, then we know the upper bound
for 𝜃𝑖 is +∞. So we can just set them without any calculation.

Then we find the 𝛽 that optimizes each 𝜃𝑖 and use it as a starting point for optimization. And we write a
function to do that.
do.theta.intervals <- function(x) {

foo <- cbind(1, x) %*% t(beta.geyer)
gdor <- lout$gdor

lower <- rep(-Inf, length(x))
upper <- rep(+Inf, length(x))
for (i in seq(along = x)) {

eta <- sum(c(1, x[i]) * gdor)
eta <- zapsmall(eta)
if (eta < 0) {

# need upper bound
idx <- which(foo[i, ] == max(foo[i, ]))
idx <- idx[1] # just in case of ties
beta.start <- beta.geyer[idx, ]
aout <- auglag(beta.start,

fn = function(beta) sum(c(1, x[i]) * beta),
gr = function(beta) c(1, x[i]),
hin = function(beta) crit + logl(beta),
hin.jac = logl.gradient,
control.outer = list(trace = FALSE),
control.optim = list(fnscale = -1))

stopifnot(aout$convergence == 0)
upper[i] <- aout$value

} else {
# need lower bound
idx <- which(foo[i, ] == min(foo[i, ]))
idx <- idx[1] # just in case of ties
beta.start <- beta.geyer[idx, ]

21



aout <- auglag(beta.start,
fn = function(beta) sum(c(1, x[i]) * beta),
gr = function(beta) c(1, x[i]),
hin = function(beta) crit + logl(beta),
hin.jac = logl.gradient,
control.outer = list(trace = FALSE))

stopifnot(aout$convergence == 0)
lower[i] <- aout$value

}
}
cbind(lower, upper)

}
theta <- do.theta.intervals(x)
theta

## lower upper
## [1,] -Inf -0.9198396
## [2,] -Inf -0.4331413
## [3,] -Inf 0.2852195
## [4,] -Inf 2.9444390
## [5,] -2.9444390 Inf
## [6,] -0.2850279 Inf
## [7,] 0.4304010 Inf
## [8,] 0.9193829 Inf

And then we transform these to the mean value parameter scale.
mu <- 1 / (1 + exp(- theta))
mu

## lower upper
## [1,] 0.0000000 0.2849906
## [2,] 0.0000000 0.3933765
## [3,] 0.0000000 0.5708254
## [4,] 0.0000000 0.9500000
## [5,] 0.0500000 1.0000000
## [6,] 0.4292216 1.0000000
## [7,] 0.6059694 1.0000000
## [8,] 0.7149164 1.0000000

And then we plot them.
errbar(x, y, mu[ , 2], mu[ , 1], xlab = "x", ylab = "probability")

\begin{figure}

22



{

20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

pr
ob

ab
ili

ty

}

\caption{Simultaneous 95% Confidence intervals for Mean Value Parameters. Hollow circles are MLE.}
\end{figure}

This plot is fairly simple. The hollow dots are the MLE saturated model mean value parameter vector ̂𝜇.
They are on the boundary. The MLE distribution is completely degenerate and says the observed value of

the response vector is the only possible value.

But ̂𝜇 is not 𝜇. Estimates are not the parameters they estimate. This is the second most fundamental
concept in statistics. (The most fundamental is anecdotes are not data. The third most fundamental is it is

called a 95% confidence interval because it is wrong 5% of the time.)

So we see that we do not need to fear MLE on the boundary. We just need a proper theory of confidence
intervals that applies in the situation.

Note that the error bars say almost nothing about the probabilities near the jump in the regression
function. Not surprising in hindsight. If one of the Bernoulli random variables for 𝑥 = 40 or 𝑥 = 60 had

been different, we would have inferred the jump was at a different point. But the farther we get from the
jump the better the estimation.

So even in this toy problem with so little data, statistics can say something of consequence.

10.10 Submodel Canonical Statistic
Theory tells us that where the action is really happening is with the canonical statistic vector 𝑀𝑇 𝑦 of the

canonical affine submodel.

In most problems we can’t visualize that, but in this toy problem, where 𝑀𝑇 𝑦 is two-dimensional, we can.

23



Another reason why we can’t do anything like this section in non-toy problems is that the computing we do
in this section is exponential in the size of the data, so the computing time would be horrendously long for

non-toy data.

There are 2𝑛 possible values of the response vector where 𝑛 is the length of the response vector because
each component of 𝑦 can be either zero or one. The following code makes all of those vectors.

yy <- matrix(0:1, nrow = 2, ncol = length(x))
colnames(yy) <- paste0("y", x)
yy <- expand.grid(as.data.frame(yy))

head(yy)

## y10 y20 y30 y40 y60 y70 y80 y90
## 1 0 0 0 0 0 0 0 0
## 2 1 0 0 0 0 0 0 0
## 3 0 1 0 0 0 0 0 0
## 4 1 1 0 0 0 0 0 0
## 5 0 0 1 0 0 0 0 0
## 6 1 0 1 0 0 0 0 0
dim(yy)

## [1] 256 8

But there are not so many distinct values of the submodel canonical statistic.
m <- cbind(1, x)
mtyy <- t(m) %*% t(yy)
t1 <- mtyy[1, ]
t2 <- mtyy[2, ]
t1.obs <- sum(y)
t2.obs <- sum(x * y)

t.key <- paste(t1, t2, sep = ":")
t.idx <- match(unique(t.key), t.key)
t1.uniq <- t1[t.idx]
t2.uniq <- t2[t.idx]

par(mar = c(5, 5, 1, 0) + 0.1)
plot(t1.uniq, t2.uniq, xlab = expression(t[1] == sum(y)),

ylab = expression(t[2] == sum(x * y)))
points(t1.obs, t2.obs, pch = 19)

# add H
gdor <- lout$gdor
# rotate 90 degrees to convert normal vector to tangent vector
tanv <- rev(gdor) * c(-1, 1)
tanv

## x (Intercept)
## -0.025 -1.250
# now convert to slope and intercept of line
slope <- tanv[2] / tanv[1]
intercept <- t2.obs - t1.obs * slope
abline(intercept, slope)

24



0 2 4 6 8

0
10

0
20

0
30

0
40

0

t1 = ∑y

t 2
=

∑
xy

Figure 6: Possible values of the submodel canonical statistic vector 𝑀𝑇 𝑦 for the data shown in Figure
reffig:one. Solid dot is the observed value. Line is hyperplane
eqrefeq:h determined by the GDOR.

25



Having the hyperplane 𝐻 defined by (1) on the plot makes it clear that the observed value of the canonical
statistic really is extreme. It lies on the line, and all other possible (in the OM) values lie on one side of 𝐻.
The fact that only one point lies in 𝐻 means the LCM is concentrated at this one point, so is completely

degenerate.

10.11 Complete Separation
Just for completeness, we do show the “complete separation” plot that Agresti discusses.

dim(modmat)

## [1] 8 2
plot(modmat[ , 1], modmat[ , 2],

xlab = colnames(modmat)[1], ylab = colnames(modmat)[2])
points(modmat[y == 1, 1], modmat[y == 1, 2], pch = 19)
intercept <- 50 - 1 * slope
abline(intercept, slope)

0.6 0.8 1.0 1.2 1.4

20
40

60
80

(Intercept)

x

Figure 7: Complete Separation of Successes and Failures. Black dots successes. White dots failures. Black
line separating hyperplane

The separating hyperplane in Figure 7 is one whose normal vector is the GDOR found by R function
llmdr. It is clear that there are a lot of separating hyperplanes, so this plot, although easier to do than

Figure 6, doesn’t provide the same information. This will become even more clear in the following section.

Figure 7 is a little odd in that the point cloud isn’t really two-dimensional. All of the points have the same
value of the regressor (Intercept). But of course that always happens. That it what “intercept” means.

26



So it is odd, but also extremely common. Most models have an intercept.

10.12 Region for Tau
We can map the confidence region for 𝛽 that is the region bounded by the blue curve in Figure 4 to values

for 𝜏 thus obtaining a confidence region for 𝜏 .
theta <- tcrossprod(modmat, beta.geyer)
mu <- 1 / (1 + exp(- theta))
tau <- crossprod(modmat, mu)
# add observed value to these points
tau <- cbind(c(t1.obs, t2.obs), tau)

par(mar = c(5, 6, 1, 0) + 0.1)
plot(t1.uniq, t2.uniq, xlab = expression(t[1] == sum(y)),

ylab = expression(t[2] == sum(x * y)), type = "n")
polygon(tau[1, ], tau[2, ], border = NA, col = "gray")
points(t1.uniq, t2.uniq)
points(t1.obs, t2.obs, pch = 19)
intercept <- t2.obs - t1.obs * slope
abline(intercept, slope)
mtext(expression(tau[1]), side = 1, line = 4)
mtext(expression(tau[2]), side = 2, line = 5)

\begin{figure}

{

0 2 4 6 8

0
10

0
20

0
30

0
40

0

t1 = ∑y

t 2
=

∑
xy

τ1

τ 2

}

27



\caption{Same as Figure 6 Except Gray Region is 95% Confidence Region for Submodel Mean Value
Parameter} \end{figure}

From this figure it is clear that the confidence region is fairly restrictive, and most of the submodel mean
value parameter space is excluded by the confidence region.

10.13 Confidence Interval for Closeness to the Boundary
We can make confidence intervals for any function of parameters we can think of. Here is one that is

especially interesting.

The parameter ⟨𝜏, 𝛿⟩ measures how close a distribution is to the boundary (to the line in the figure).
sum(c(t1.obs, t2.obs) * gdor) - rev(range(crossprod(tau, gdor)))

## [1] 0.000000 1.363626

Admittedly, this is impossible to interpret by itself because the length of the GDOR is arbitrary. But we
can compare it to the range of the same GDOR applied to the whole sample space.

ttt <- rbind(t1.uniq, t2.uniq)
sum(c(t1.obs, t2.obs) * gdor) - rev(range(crossprod(ttt, gdor)))

## [1] 0 5

These data, few though they may be, do mush up the probability fairly close to the boundary.

10.14 Confidence Intervals for Hypothetical Individuals
We can also make confidence intervals for hypothetical individuals, what R generic function predict does

when its newdata argument is used.

Here we treat 𝑥 as a continuous variable and do intervals for 𝜇 for all possible 𝑥 values.
xx <- seq(0, 100, 0.1)
# be especially careful at jump
xx <- c(xx, 39.99, 40.01, 59.99, 60.01)
xx <- sort(xx)
theta <- do.theta.intervals(xx)
mu <- 1 / (1 + exp(- theta))
# have to do by hand since optimization isn't good enough
mu[xx < 60, 1] <- 0
mu[xx > 40, 2] <- 1

plot(x, y, type = "n",
xlab = expression(x), ylab = expression(mu(x)))

xxx <- c(xx, rev(xx))
yyy <- c(mu[ , 1], rev(mu[ , 2]))
length(xxx); length(yyy)

## [1] 2010

## [1] 2010
polygon(xxx, yyy, border = NA, col = "gray")
points(x, y)

That finishes our work on this toy problem. Admittedly, it is hard to know what you are supposed to learn
from a toy problem. But toy problems do have the advantage of at least being somewhat understandable.

28



20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

µ(
x)

Figure 8: Like Figurereffig:agresti-complete-mu-plot Except with Confidence Intervals for Every 𝑥 value

29



11 A Clinical Trial Example of Agresti
But analyses involving DOR are not always so complicated. Sometimes the issue and analysis are really

quite simple.

Section 6.5.2 in Agresti (2013) looks at the following data for a clinical trial.
center <- rep(1:5, each = 2)
center <- as.factor(center)
treatment <- rep(c("active_drug", "placebo"), times = 5)
success <- c(0, 0, 1, 0, 0, 0, 6, 2, 5, 2)
failure <- c(5, 9, 12, 10, 7, 5, 3, 6, 9, 12)
y <- cbind(success, failure)

If we dump that into R function llmdr we find the MLE does not exist in the OM.
lout <- llmdr(y ~ center + treatment, family = "binomial")
summary(lout)

##
## Call:
## llmdr(formula = y ~ center + treatment, family = "binomial")
##
## Estimate GDOR Std. Error z value Pr(>|z|)
## (Intercept) -0.4763 -1.0000 0.5058 -0.942 0.3463
## center2 -2.1802 1.0000 1.1327 -1.925 0.0543 .
## center3 NA 0.0000 NA NA NA
## center4 1.0631 1.0000 0.7011 1.516 0.1294
## center5 NA 1.0000 NA NA NA
## treatmentplacebo -1.5460 0.0000 0.7017 -2.203 0.0276 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Maximum likelihood distribution is the limit of distributions
## with parameter vectors Estimate + s * GDOR as s goes to infinity
## (NA in the Estimate column should be read as zero).

Furthermore, we cannot drop treatment because it is statistically significant (0.0276) by the Wald test
done in the summary, and we cannot drop center because

lout.null <- llmdr(y ~ treatment, family = "binomial")
anova(lout.null, lout)

## Analysis of Deviance Table
##
## Model 1: y ~ treatment
## Model 2: y ~ center + treatment
## Df as Null Df as Alt Deviance Df for test LRT P-value
## 1 2 0 23.9266
## 2 4 6 0.5021 4 23.424 0.00010415

So the model y ~ center + treatment is the only model under consideration that fits the data.

As usual it is very hard to figure out what canonical parameters mean. So we look at mean value
parameters.

data.frame(center, treatment, estimates(lout, "mu"))

## center treatment success failure

30

expfam.html#alice


## 1 1 active_drug 0.0000000 5.000000
## 2 1 placebo 0.0000000 9.000000
## 3 2 active_drug 0.8526289 12.147371
## 4 2 placebo 0.1473711 9.852629
## 5 3 active_drug 0.0000000 7.000000
## 6 3 placebo 0.0000000 5.000000
## 7 4 active_drug 5.7836818 3.216318
## 8 4 placebo 2.2163182 5.783682
## 9 5 active_drug 5.3636893 8.636311
## 10 5 placebo 1.6363107 12.363689

Oh! There were no successes in either treatment group in centers 1 and 3. And the MLE mean values also
say no successes in those centers.

If you were to decide to throw away the data from centers 1 and 3, just to make the data easier for you to
analyze, then you could be severely criticized for that. If you did it and didn’t admit it, that would be

fraud. If you did it and did admit it, then that would be sufficient reason for everybody to ignore
everything you say on the subject.

But if statistics does the same thing, following the theory of maximum likelihood estimation in exponential
families, then there is nothing to criticize. The MLE in the LCM is also the MLE in the completion of the
OM, arrived at by taking limits of sequences of distributions in the OM. There is nothing wrong with that.

If taking limits is wrong, then everything involving calculus has been wrong for over 400 years. So that
argument is a non-starter.

So having arrived at this conclusion, we mention that this is another situation in which the theory in these
notes matches conventional practice. If a conclusion can be drawn solely from the fit in the LCM alone
(with no reference to the OM), then it is valid (assuming the usual asymptotics of maximum likelihood

apply, that is, assuming the sample size of the LCM is large enough).

So that means the coefficient for the treatment effect and its standard error in the summary above are
valid. So we can turn that into a valid Wald confidence interval.

sout <- summary(lout)
fit <- sout$coefficients["treatmentplacebo", "Estimate"]
se.fit <- sout$coefficients["treatmentplacebo", "Std. Error"]
fit + c(-1, 1) * qnorm((1 + level) / 2) * se.fit

## [1] -2.9212133 -0.1707793

And the hypothesis test is valid too. We have a statistically significant treatment effect (with
aforementioned 𝑃 -value 𝑃 = 0.0276). And this agrees with the corresponding confidence interval not

containing zero (as it has to by the duality of hypothesis tests and confidence intervals).

Of course this does ignore the data from centers 1 and 3. But that is what maximum likelihood does with
these data. Once we decide that center needs to be in the model, then we have to let statistics do what it

does.

Of course, if we were interested in confidence intervals for centers 1 and 3, then we would have to do
calculations like those in the preceding section. But as long as we are happy with what has been done in

this section, then we’re good.

By the way
gout <- glm(y ~ center + treatment, family = "binomial")
summary(gout)

##
## Call:
## glm(formula = y ~ center + treatment, family = "binomial")

31



##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.305e+01 2.330e+04 -0.001 0.9992
## center2 2.039e+01 2.330e+04 0.001 0.9993
## center3 4.809e-03 3.172e+04 0.000 1.0000
## center4 2.363e+01 2.330e+04 0.001 0.9992
## center5 2.257e+01 2.330e+04 0.001 0.9992
## treatmentplacebo -1.546e+00 7.017e-01 -2.203 0.0276 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 28.53202 on 9 degrees of freedom
## Residual deviance: 0.50214 on 4 degrees of freedom
## AIC: 24.859
##
## Number of Fisher Scoring iterations: 21

gives a false negative by failing to warn fitted probabilities numerically 0 or 1 occurred.

It does agree with our 𝑃 -value for the treatment effect. But that is an accident of having orthogonal
predictors. If treatment and center were correlated predictors, then we wouldn’t get the same answers.

12 Theory of Confidence Intervals
12.1 Confidence Intervals for OM when there is a GDOR

These are the intervals based on the region bounded by the blue curve in Figure 4. We have already met
them. Now for the details.

Suppose the GDOR 𝛿 were known in advance of obtaining the data (this is not true; the GDOR depends on
the data), and suppose we chose ⟨𝑌 , 𝛿⟩ as a test statistic for a hypothesis test with a point null hypothesis

𝛽. We observe the largest possible value of this test statistic ⟨𝑦, 𝛿⟩. Thus the 𝑃 -value of this test is

pr𝛽(⟨𝑌 , 𝛿⟩ = ⟨𝑦, 𝛿⟩) = pr𝛽(𝑌 ∈ 𝐻)

where 𝐻 is given by (1). If we think decision theoretically, we reject the null hypothesis when this 𝑃 -value
is less than the significance level, call that 𝛼.

When we invert a hypothesis test to get a confidence region, the confidence region is the set of parameter
values considered as null hypotheses that are not rejected by the hypothesis test. Of course, the probability
that the null hypothesis is not rejected is 1 − 𝛼, so that is the coverage probability of the confidence region.

In short, our confidence region is the set of 𝛽 such that

pr𝛽(𝑌 ∈ 𝐻) ≥ 𝛼 (2)

It makes no sense to use confidence regions of this kind when the MLE exists in the OM. Then this
confidence region does nothing at all because saying there is no GDOR is equivalent to saying 𝛿 = 0, hence
𝐻 is the whole vector space where the canonical statistic lives, hence the region satisfying (2) is the whole

parameter space.

12.2 Confidence Intervals for LCM when it is Not Completely Degenerate
When the LCM is not completely degenerate, it is an exponential family for which the MLE exists and the
usual asymptotics may hold (if there is enough data after conditioning to make the LCM). So we use that.

32



Let 𝑙LCM be the log likelihood function for the LCM. Then we make a confidence region that is the set of 𝛽
such that

2[𝑙LCM( ̂𝛽) − 𝑙LCM(𝛽)] ≤ crit (3)

where crit is chosen to be an appropriate chi-square critical value with degrees of freedom chosen to give
the desired coverage, and where in case the MLE exists in the OM we say LCM = OM, so the log

likelihood in (3) is the log likelihood of the OM. One uses degrees of freedom equal to the number of
identifiable parameters in the LCM to get simultaneous coverage. One uses degrees of freedom equal to one

if one doesn’t care about simultaneous coverage.

So much, so conventional. But things get a little stranger when we use the same parameterization for both
of these kinds of confidence regions. If 𝛽 is the parameter of the OM, for both of these, then the region
satisfying (3) is also unbounded. The GDOR of the OM, at least, is a DOC of the LCM, so the region
satisfying (3) is also unbounded in the direction of the GDOR and also in the opposite direction, and

perhaps other directions (the LCM can have more DOC than the GDOR of the LCM).

It makes no sense to use confidence regions of this kind when the LCM is completely degenerate. Then this
confidence region does nothing at all because the LCM contains only one distribution, so every direction is

a DOC of the LCM and 𝑙LCM is a constant function of 𝛽, hence the region satisfying (3) is the whole
parameter space.

12.3 The Combination of the Two
To use both kinds of information, we use the confidence region consisting of 𝛽 that satisfy both (2) and (3)

except when the MLE exists in the OM, when we take the region satisfying (3) only, or except when the
LCM is completely degenerate, when we take the region satisfying (2) only.

In case the LCM is partially degenerate and we are using both kinds of confidence regions, we have to
correct for multiple testing. Because (2) only involves the probability of the event 𝑌 ∈ 𝐻 and (3) only
involves the probability distribution of 𝑌 given the event 𝑌 ∈ 𝐻, probabilities multiply (joint equals

marginal times conditional). Thus if the confidence level for the region satisfying (3) has confidence level
1 − 𝛼1 and the confidence level for the region satisfying (2) has confidence level 1 − 𝛼2, then the confidence

level of the combination is (1 − 𝛼1)(1 − 𝛼2). And we need to adjust 𝛼1 and 𝛼2 to get the desired level.
Usually we just take both 1 − 𝛼1 and 1 − 𝛼2 to be the square root of the desired level, except in case the

MLE exists in the OM and we take 1 − 𝛼1 to be the desired level or in case the LCM is completely
degenerate and we take 1 − 𝛼2 to be the desired level.

12.4 Confidence Regions to Confidence Intervals
For any function 𝑔(𝛽) we can form a confidence interval for this parameter by minimizing and maximizing

𝑔(𝛽) over the region satisfying both (2) and (3).

13 Quasi-Complete Separation Example of Agresti
13.1 Data

Section 6.5.1 of Agresti (2013) introduces the notion of quasi-complete separation with the following
example.

x <- seq(10, 90, 10)
x <- c(x, 50)
y <- as.numeric(x > 50)
y[x == 50] <- c(0, 1)
data.frame(x, y)

33



## x y
## 1 10 0
## 2 20 0
## 3 30 0
## 4 40 0
## 5 50 0
## 6 60 1
## 7 70 1
## 8 80 1
## 9 90 1
## 10 50 1

Figure 9 shows these data.

20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

Figure 9: Logistic Regression Data for Quasi-Complete Separation Example of Agresti

13.2 Fit Model

lout <- llmdr(y ~ x, family = "binomial")
summary(lout)

##
## Call:
## llmdr(formula = y ~ x, family = "binomial")
##
## Estimate GDOR Std. Error z value Pr(>|z|)

34



## (Intercept) 4.710e-16 -1.250e+00 1.414e+00 0 1
## x NA 2.500e-02 NA NA NA
##
## Maximum likelihood distribution is the limit of distributions
## with parameter vectors Estimate + s * GDOR as s goes to infinity
## (NA in the Estimate column should be read as zero).

Now we see that the model is not completely degenerate (because the Estimates column of the printout is
not all NA) but is partially degenerate (because the printout has a GDOR column). That’s what Agresti calls

quasi-complete separation.

As usual mean value parameters are easier to interpret.
data.frame(x, y, mu = estimates(lout, "mu"))

## x y mu
## 1 10 0 0.0
## 2 20 0 0.0
## 3 30 0 0.0
## 4 40 0 0.0
## 5 50 0 0.5
## 6 60 1 1.0
## 7 70 1 1.0
## 8 80 1 1.0
## 9 90 1 1.0
## 10 50 1 0.5

All of the components of the MLE ̂𝜇 are on the boundary except those corresponding to 𝑥 = 50 where we
have one success and one failure and predict ̂𝜇𝑖 = 0.5.

13.3 Valid Region for Beta

# names here are odd, these are the model matrix and response vector
# for the data that are fixed at their observed values in the LCM
modmat.lcm <- as.matrix(lout$x[x != 50, ])
y.lcm <- y[x != 50]

logl <- logl.factory(modmat.lcm, y.lcm)

logl.gradient <- logl.gradient.factory(modmat.lcm, y.lcm)

level1 <- level2 <- sqrt(level)
level1

## [1] 0.9746794
alpha <- 1 - level2
crit <- (- log(alpha))
crit

## [1] 3.676138
beta.geyer <- do.curve(function(beta) crit + logl(beta), logl.gradient,

cutoff = -1000)

foo <- beta.geyer[,1] > -8
plot(beta.geyer[,1], beta.geyer[,2],

xlab = expression(beta[1]), ylab = expression(beta[2]),

35



xlim = range(beta.geyer[foo,1]),
ylim = range(beta.geyer[foo,2]), type = "n")

lines(beta.geyer[,1], beta.geyer[,2], col = "blue")
arrows(-5, 0.125, -5 + 2 * lout$gdor[1], 0.125 + 2 * lout$gdor[2])

−8 −7 −6 −5 −4 −3 −2 −1

0.
05

0.
10

0.
15

0.
20

0.
25

β1

β 2

Figure 10: Confidence Region Consisting of 𝛽 satisfyingeqrefeq:confreg-geyer. Arrow is GDOR

The blue curves in Figures 4 and 10 are different because the confidence levels are different.

Now we want to add the region of 𝛽 satisfying (3). First we get the likelihood-based confidence region for
the LCM. Here we can do that the easy way using R function confint from R package MASS.

gout <- glm(c(0, 1) ~ 1, family = "binomial")
summary(gout)

##
## Call:
## glm(formula = c(0, 1) ~ 1, family = "binomial")
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.710e-16 1.414e+00 0 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2.7726 on 1 degrees of freedom
## Residual deviance: 2.7726 on 1 degrees of freedom

36



## AIC: 4.7726
##
## Number of Fisher Scoring iterations: 2
cout <- confint(gout, level = level1)

## Waiting for profiling to be done...
cout

## 1.3 % 98.7 %
## -3.845904 3.845904

So now we know the likelihood-based confidence region for 𝛽1 is −3.85 < 𝛽1 < 3.85 when we constrain
𝛽2 = 0. (R function summary says NA for coefficients it constrains to be zero.)

Now we know that the DOR for the OM is the only DOC for the LCM because we have only one
non-identifiable parameter for the LCM (𝛽2) so only one DOC.

Thus our confidence region of 𝛽 satisfying (3) is the set of all 𝛽 of the form

(𝛽1, 0) + 𝑠𝛿

with −3.85 < 𝛽1 < 3.85 and 𝑠 any real number and 𝛿 the GDOR. Its boundaries are the straight lines

(±3.85, 0) + 𝑠𝛿

So add them to our plot.
plot(beta.geyer[,1], beta.geyer[,2],

xlab = expression(beta[1]), ylab = expression(beta[2]),
xlim = range(beta.geyer[foo,1]),
ylim = range(beta.geyer[foo,2]), type = "n")

lines(beta.geyer[,1], beta.geyer[,2], col = "blue")
arrows(-5, 0.125, -5 + 2 * lout$gdor[1], 0.125 + 2 * lout$gdor[2])

gdor <- lout$gdor
slope <- gdor[2] / gdor[1]
intercept.lower <- (- slope * cout[1])
intercept.upper <- (- slope * cout[2])
abline(intercept.lower, slope, col = "pink3")
abline(intercept.upper, slope, col = "pink3")

Our confidence region for 𝛽 is the intersection of the two regions, the region inside the blue curve and
between the region between the pink lines in Figure 11. The lower pink line does eventually intersect the

blue curve, but that is off the plot to the left.

13.4 Intervals for Beta
So confidence intervals for 𝛽 are

beta <- matrix(NA_real_, 2, 2)
colnames(beta) <- c("lower", "upper")
rownames(beta) <- names(gdor)
beta[1, 1] <- -Inf
beta[2, 2] <- Inf
beta[1, 2] <- max(beta.geyer[ , 1])
beta[2, 1] <- min(beta.geyer[ , 2])
beta

37



−8 −7 −6 −5 −4 −3 −2 −1

0.
05

0.
10

0.
15

0.
20

0.
25

β1

β 2

Figure 11: Confidence Regions. Blue: 𝛽 satisfying
eqrefeq:confreg-geyer. Pink: 𝛽 satisfying
eqrefeq:confreg-lcm. Arrow is GDOR

38



## lower upper
## (Intercept) -Inf -0.7432528
## x 0.02235808 Inf

We won’t bother to make these intervals more precise using optimization. They are almost uninterpretable
anyway. Clearly they present a lot less information than Figure 11.

13.5 Intervals for Theta
First we need to find the intersection of our two confidence regions.

nrow(beta.geyer)

## [1] 875
beta.upper <- beta.geyer[ , 1] * slope + intercept.upper
is.up <- beta.geyer[ , 2] > beta.upper
range(which(is.up))

## [1] 457 875
beta.lower <- beta.geyer[ , 1] * slope + intercept.lower
is.dn <- beta.geyer[ , 2] < beta.lower
range(which(is.dn))

## [1] 1 399
beta.both <- beta.geyer
beta.both[is.up, 2] <- beta.geyer[is.up, 1] * slope + intercept.upper
beta.both[is.dn, 2] <- beta.geyer[is.dn, 1] * slope + intercept.lower

Then we map to 𝜃
modmat <- as.matrix(lout$x)
theta.both <- tcrossprod(modmat, beta.both)
theta <- apply(theta.both, 1, range)
theta <- t(theta)
colnames(theta) <- c("lower", "upper")
theta

## lower upper
## 1 -801.7587785 -0.42512173
## 2 -602.2805598 -0.03051594
## 3 -402.8023410 0.64116247
## 4 -203.3241223 2.18817937
## 5 -3.8459036 3.84590355
## 6 -2.1787839 204.82715993
## 7 -0.6411474 405.80841631
## 8 0.0293836 606.78967268
## 9 0.4235842 807.77092906
## 10 -3.8459036 3.84590355
# fix up infinite by hand
theta[x < 50, "lower"] <- -Inf
theta[x > 50, "upper"] <- Inf
theta

## lower upper
## 1 -Inf -0.42512173

39

expfam.html#alice
expfam.html#alice


## 2 -Inf -0.03051594
## 3 -Inf 0.64116247
## 4 -Inf 2.18817937
## 5 -3.8459036 3.84590355
## 6 -2.1787839 Inf
## 7 -0.6411474 Inf
## 8 0.0293836 Inf
## 9 0.4235842 Inf
## 10 -3.8459036 3.84590355

We might as well polish these up with optimization because we need the R function do.theta.intervals
defined in Section 10.9 above modified to do this problem in order to do the rest of our analysis of this

example.
# names here are odd, these are the model matrix and response vector
# for the data that are free in the LCM
modmat.lcm <- as.matrix(lout$x[lout$lcm.support, ])
y.lcm <- y[lout$lcm.support]
modmat.lcm

## (Intercept) x
## 5 1 50
## 10 1 50
y.lcm

## [1] 0 1
logl.lcm <- logl.factory(modmat.lcm, y.lcm)

logl.lcm.gradient <- logl.gradient.factory(modmat.lcm, y.lcm)

beta.hat.lcm <- c(0, 0)

crit2 <- crit
crit1 <- qchisq(level1, df = sum(! is.na(lout$coefficients))) / 2
crit1

## [1] 2.500914
crit2

## [1] 3.676138
# now constraint function for optimization has both constraints

hin <- function(beta) c(logl(beta) + crit2,
logl.lcm(beta) - logl.lcm(beta.hat.lcm) + crit1)

hin.jac <- function(beta)
rbind(logl.gradient(beta), - logl.lcm.gradient(beta))

i <- sample(which(is.up), 1)
beta.both[i, ]; hin(beta.both[i, ]); hin.jac(beta.both[i, ])

## [1] -939.40964 18.86511

## [1] 3.6761383471 -0.0009793215

## (Intercept) x

40



## [1,] -5.494406e-81 -2.197260e-79
## [2,] 9.581598e-01 4.790799e+01
jacobian(hin, beta.both[i, ])

## [,1] [,2]
## [1,] 0.0000000 0.00000
## [2,] -0.9581598 -47.90799
a.little.up <- c(0, 1e-4)
a.little.dn <- c(0, -1e-4)
hin(beta.both[i, ] + a.little.up); hin(beta.both[i, ] + a.little.dn)

## [1] 3.676138347 -0.005770632

## [1] 3.676138347 0.003810965

It seems a bit odd that the constraint values returned by R function hin are neither zero and the closest is
−9.793215 × 10−4, but that is what inexact computer arithmetic and the default convergence tolerances for

R function auglag do.

If we take that number to correspond to a zero using infinite precision arithmetic, then this is what we
expect. We are on the pink boundary where the second constraint is zero. Oh. The inexactness here might
be where the pink lines are drawn which might be the fault of R function confint.glm in R package MASS.
We won’t sort out who is to blame, because we will now be using R function hin so say when we are in the

confidence region for 𝛽. We won’t use the pink lines any more.

The last two lines show that if we go a little up, then we are outside the confidence region (one component
of constraint function negative), whereas if we go a little down, then we are inside (both components

positive).
i <- sample(which(is.dn), 1)
beta.both[i, ]; hin(beta.both[i, ]); hin.jac(beta.both[i, ])

## [1] -83.93439 1.60177

## [1] 3.6761331704 -0.0009793215

## (Intercept) x
## [1,] 5.171976e-06 3.103658e-04
## [2,] -9.581598e-01 -4.790799e+01
jacobian(hin, beta.both[i, ])

## [,1] [,2]
## [1,] 5.171976e-06 3.103658e-04
## [2,] 9.581598e-01 4.790799e+01
hin(beta.both[i, ] + a.little.up); hin(beta.both[i, ] + a.little.dn)

## [1] 3.676133201 0.003810965

## [1] 3.676133139 -0.005770632

Again, looks OK, except for inexactness of something or other. Now a little up is inside and a little down is
outside.

i <- sample(which((! is.dn) & (! is.up)), 1)
beta.both[i, ]; hin(beta.both[i, ]); hin.jac(beta.both[i, ])

## [1] -4.1528532 0.1576143

## [1] 5.955298e-10 1.118252e-01

41



## (Intercept) x
## [1,] -1.8691306 -60.72811
## [2,] 0.9530408 47.65204
jacobian(hin, beta.both[i, ])

## [,1] [,2]
## [1,] -1.8691306 -60.72811
## [2,] -0.9530408 -47.65204

Now this is a point on the blue curve, and here the first constraint is nearly zero, and the jacobian looks
OK here too. So it looks like our constraint functions and their gradients are OK.

do.theta.intervals <- function(x) {
foo <- cbind(1, x) %*% t(beta.both)
gdor <- lout$gdor

lower <- rep(-Inf, length(x))
upper <- rep(+Inf, length(x))

zapsmall <- function(x) if (abs(x) < sqrt(.Machine$double.eps)) 0 else x

for (i in seq(along = x)) {
eta <- sum(c(1, x[i]) * gdor)
eta <- zapsmall(eta)
if (eta <= 0) {

# need upper bound
idx <- which(foo[i, ] == max(foo[i, ]))
idx <- idx[1] # just in case of ties
beta.start <- beta.both[idx, ]
aout <- auglag(beta.start,

fn = function(beta) sum(c(1, x[i]) * beta),
gr = function(beta) c(1, x[i]),
hin = hin,
hin.jac = hin.jac,
control.outer = list(trace = FALSE),
control.optim = list(fnscale = -1))

# looks like we have to accept 9, which is
# Convergence due to lack of progress in parameter updates
stopifnot(aout$convergence %in% c(0, 9))
upper[i] <- aout$value

}
if (eta >= 0) {

# need lower bound
idx <- which(foo[i, ] == min(foo[i, ]))
idx <- idx[1] # just in case of ties
beta.start <- beta.both[idx, ]
aout <- auglag(beta.start,

fn = function(beta) sum(c(1, x[i]) * beta),
gr = function(beta) c(1, x[i]),
hin = hin,
hin.jac = hin.jac,
control.outer = list(trace = FALSE))

# looks like we have to accept 9, which is
# Convergence due to lack of progress in parameter updates
stopifnot(aout$convergence %in% c(0, 9))

42



lower[i] <- aout$value
}

}
cbind(lower, upper)

}

theta <- do.theta.intervals(sort(unique(x)))
rownames(theta) <- sort(unique(x))
theta

## lower upper
## 10 -Inf -0.42316007
## 20 -Inf -0.02918282
## 30 -Inf 0.64116395
## 40 -Inf 2.18817937
## 50 -3.84590355 3.84590355
## 60 -2.20143915 Inf
## 70 -0.64116375 Inf
## 80 0.02918285 Inf
## 90 0.42315998 Inf

13.6 Intervals for Mu
And we can map these to the mean value parameter.

mu <- 1 / (1 + exp(- theta))
mu

## lower upper
## 10 0.00000000 0.3957608
## 20 0.00000000 0.4927048
## 30 0.00000000 0.6550165
## 40 0.00000000 0.8991830
## 50 0.02092009 0.9790799
## 60 0.09962133 1.0000000
## 70 0.34498352 1.0000000
## 80 0.50729519 1.0000000
## 90 0.60423916 1.0000000

And plot them.
errbar(sort(unique(x)), as.numeric(sort(unique(x)) > 50), mu[ , 2], mu[ , 1],

xlab = "x", ylab = "probability")
# add the other data point for x = 50
points(50, 1)

13.7 Submodel Canonical Statistic
This is like Section 10.10 except for the difference in the data.

yy <- matrix(0:1, nrow = 2, ncol = length(x))
colnames(yy) <- paste0("y", seq(along = x))
yy <- expand.grid(as.data.frame(yy))

head(yy)

## y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

43



20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

pr
ob

ab
ili

ty

Figure 12: Confidence intervals for Mean Value Parameters. Hollow circles are MLE.

44



## 1 0 0 0 0 0 0 0 0 0 0
## 2 1 0 0 0 0 0 0 0 0 0
## 3 0 1 0 0 0 0 0 0 0 0
## 4 1 1 0 0 0 0 0 0 0 0
## 5 0 0 1 0 0 0 0 0 0 0
## 6 1 0 1 0 0 0 0 0 0 0
dim(yy)

## [1] 1024 10

Get distinct possible values of the submodel canonical statistic and the observed values.
m <- cbind(1, x)
mtyy <- t(m) %*% t(yy)
t1 <- mtyy[1, ]
t2 <- mtyy[2, ]
t1.obs <- sum(y)
t2.obs <- sum(x * y)

And make the plot.
t.key <- paste(t1, t2, sep = ":")
t.idx <- match(unique(t.key), t.key)
t1.uniq <- t1[t.idx]
t2.uniq <- t2[t.idx]

par(mar = c(5, 5, 1, 0) + 0.1)
plot(t1.uniq, t2.uniq, xlab = expression(t[1] == sum(y)),

ylab = expression(t[2] == sum(x * y)))
points(t1.obs, t2.obs, pch = 19)

# add H
gdor <- lout$gdor
# rotate 90 degrees to convert normal vector to tangent vector
tanv <- rev(gdor) * c(-1, 1)
tanv

## x (Intercept)
## -0.025 -1.250
# now convert to slope and intercept of line
slope <- tanv[2] / tanv[1]
intercept <- t2.obs - t1.obs * slope
abline(intercept, slope)

This differs from Figure 6 in that now the support of the LCM, the points that lie on the hyperplane 𝐻,
which is the line in the figure, has three points rather than one. Hence the LCM is not completely

degenerate (concentrated at one point) but rather only partially degenerate.

But otherwise the picture is much the same. The MLE does not exist in the OM because the observed data
(for the submodel canonical sufficient statistic) is on the boundary of the convex hull of the set of its

possible values.

13.8 Region for Tau
This is like Section 10.12 except for the difference in data.

45



0 2 4 6 8 10

0
10

0
20

0
30

0
40

0
50

0

t1 = ∑y

t 2
=

∑
xy

Figure 13: Possible values of the submodel canonical statistic vector 𝑀𝑇 𝑦 for the data shown in Figure
reffig:agresti-quasi-data-plot. Solid dot is the observed value. Line is hyperplane
eqrefeq:h determined by the GDOR.

46



theta <- tcrossprod(modmat, beta.both)
mu <- 1 / (1 + exp(- theta))
tau <- crossprod(modmat, mu)
# add observed value to these points
tau <- cbind(c(t1.obs, t2.obs), tau)

par(mar = c(5, 6, 1, 0) + 0.1)
plot(t1.uniq, t2.uniq, xlab = expression(t[1] == sum(y)),

ylab = expression(t[2] == sum(x * y)), type = "n")
polygon(tau[1, ], tau[2, ], border = NA, col = "gray")
points(t1.uniq, t2.uniq)
points(t1.obs, t2.obs, pch = 19)
abline(intercept, slope)
mtext(expression(tau[1]), side = 1, line = 4)
mtext(expression(tau[2]), side = 2, line = 5)

\begin{figure}

{

0 2 4 6 8 10

0
10

0
20

0
30

0
40

0
50

0

t1 = ∑y

t 2
=

∑
xy

τ1

τ 2

}

\caption{Same as Figure 13 Except Gray Region is 95% Confidence Region for Submodel Mean Value
Parameter} \end{figure}

13.9 Quasi-Complete Separation
This is like Section 10.11 except for the difference in data.

47



dim(modmat)

## [1] 10 2
plot(modmat[ , 1], modmat[ , 2],

xlab = colnames(modmat)[1], ylab = colnames(modmat)[2])
intercept <- 50 - 1 * slope
abline(intercept, slope)
points(modmat[y == 1, 1], modmat[y == 1, 2], pch = 19)
points(modmat[x == 50, 1], modmat[x == 50, 2], pch = 19, col = "gray")

0.6 0.8 1.0 1.2 1.4

20
40

60
80

(Intercept)

x

Figure 14: Quasi-Complete Separation of Successes and Failures. Black dots successes. White dots failures.
Gray dot, one success and one failure. Black line separating hyperplane

13.10 Confidence Intervals for Hypothetical Individuals
This is like Section 10.14 except for the difference in data.

xx <- seq(0, 100, 0.1)
# be especially careful at jump
xx <- c(xx, 49.99, 50.01)
xx <- sort(xx)
theta <- do.theta.intervals(xx)
mu <- 1 / (1 + exp(- theta))
# have to do by hand since optimization isn't good enough
mu[xx < 50, 1] <- 0

48



mu[xx > 50, 2] <- 1

plot(x, y, type = "n",
xlab = expression(x), ylab = expression(mu(x)))

xxx <- c(xx, rev(xx))
yyy <- c(mu[ , 1], rev(mu[ , 2]))
length(xxx); length(yyy)

## [1] 2006

## [1] 2006
polygon(xxx, yyy, border = NA, col = "gray")
points(x, y)

20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

µ(
x)

Figure 15: Like Figurereffig:agresti-quasi-mu-plot Except with Confidence Intervals for Every 𝑥 value

That finishes our work on this toy problem.

14 Theory of Hypothesis Tests
The theory of hypothesis tests propounded in Geyer (2009) is very simple, once you understand it. Geyer

(2009) attributes it to Stephen Fienberg (who outlined this theory in answer to a question from your
humble author asked in the questions after a talk Fienberg was giving).

The main point is that in the theory of hypothesis testing, the distribution of the data used for calculations
is the distribution under the null hypothesis. (This ignores power calculations.) Thus the LCM for the

49



alternative hypothesis is irrelevant. (And it would be irrelevant even if we were doing power calculations,
because those only involve alternatives near the null hypothesis.)

The next most important point is that the MLE distribution under the null hypothesis is a conditional
distribution (if you include conditioning on nothing, which is the same as not conditioning, in case no

GDOR exists and the MLE is in the OM). Thus we have to fit the null and alternative hypotheses using
the same conditioning for each.

Everything else is straightforward. It is just the usual theory of hypothesis tests associated with maximum
likelihood estimation (Wilks, Rao, Wald) applied to this conditional model. Actually, since Wald tests only
use the MLE for the alternative hypothesis, they would only tell us about LCM for the alternative, so they

don’t make much sense except in the output of R function summary.

It follows that we do not even need the MLE calculated by R function llmdr for the alternative hypothesis
(for Wilks or Rao). But we can use the deviance it calculates.

It follows that we have to refit the alternative hypothesis using the conditioning for the null hypothesis. The
method of R generic function anova for objects of class llmdr does this. The appropriate degrees of

freedom for the alternative hypothesis will be the degrees of freedom of this refitted model. And these
degrees of freedom will not be either of the degrees of freedom in the object returned by R function llmdr

when it calculates the MLE for the alternative hypothesis.

Thus a model has many possible degrees of freedom

• One is the number of identifiable parameters of the OM. This is the degrees of freedom one should use
for AIC and BIC (maybe, for a counterargument, see the section about this below).

• Another is the number of identifiable parameters of the LCM.

• Yet another is the number of identifiable parameters of the model when considered as an alternative
hypothesis. This depends on what the null hypothesis is. In general, it can be anything between the
two degrees of freedom listed above.

In summary, our theory of hypothesis testing is fairly conventional. The test statistic (Wilks, Rao, or
Wald) still has an asymptotic chi-square distribution. But, unless the MLE for the null hypothesis in in its

OM, the degrees of freedom are different from conventional.

So we just have to remember that the degrees of freedom for the alternative hypothesis are different from
conventional and depend on what the null hypothesis is.

15 Categorical Data Example of Geyer
This is the example in Section 2.3 of Geyer (2009). It is a seven-dimensional contingency table, each
dimension having two values, so the number of cells of the table is 27 = 128. These data are found in

dataset catrec in R package llmdr
data(catrec)
class(catrec)

## [1] "data.frame"
dim(catrec)

## [1] 128 8
names(catrec)

## [1] "v1" "v2" "v3" "v4" "v5" "v6" "v7" "y"

The response (vector of cell counts) is y. The other variables are the indicators for each dimension.

Geyer (2009) fits the model with all possible three-way interactions and no higher interactions

50



lout <- llmdr(y ~ (v1 + v2 + v3 + v4 + v5 + v6 + v7)^3,
family = "poisson", data = catrec, proofs = 2)

length(lout$coefficients)

## [1] 64
sum(is.na(lout$coefficients))

## [1] 1

We don’t print out the summary, because it is too long and is about meaningless parameters anyway.

We notice that the dimension of the LCM is one less than the dimension of the OM, which means the
GDOR points in a unique direction (every GDOR for this problem points in the same direction).

This GDOR has nonnegative components
# did proofs = 2 above to get GDOR with exactly correct zeros
cbind(lout$gdor[lout$gdor != 0])

## [,1]
## (Intercept) -1
## v1 1
## v2 1
## v3 1
## v5 1
## v1:v2 -1
## v1:v3 -1
## v1:v5 -1
## v2:v3 -1
## v2:v5 -1
## v3:v5 -1
## v1:v2:v3 1
## v1:v3:v5 1
## v2:v3:v5 1

This agrees with Table 1 in Geyer (2009).

Geyer (2009) considers the following hypothesis tests.
lout0 <- llmdr(y ~ (v1 + v2 + v3 + v4 + v5 + v6 + v7)^2,

family = "poisson", data = catrec)
lout2 <- llmdr(y ~ (v1 + v2 + v3 + v4 + v5 + v6 + v7)^4,

family = "poisson", data = catrec)
anova(lout0, lout, lout2)

## Analysis of Deviance Table
##
## Model 1: y ~ (v1 + v2 + v3 + v4 + v5 + v6 + v7)^2
## Model 2: y ~ (v1 + v2 + v3 + v4 + v5 + v6 + v7)^3
## Model 3: y ~ (v1 + v2 + v3 + v4 + v5 + v6 + v7)^4
## Df as Null Df as Alt Deviance Df for test LRT P-value
## 1 29 0 191.629
## 2 63 64 31.291 35 160.338 0.00000
## 3 94 94 16.067 31 15.224 0.99212

This says the model with all three-way interactions and no higher-order interactions, which has
OM ≠ LCM, fits the data much better than the model with only two-way interactions. And this model fits

just as well as the model with all four-way interactions.

51

expfam.html#alice


Note that in line two of the printout, the degrees of freedom are different for the three-way interactions
model, depending on whether is has the role of null hypothesis or alternative hypothesis.

There are, of course, many, many more models to consider. But, as this is being written, R function glmbb
in R package glmbb (Geyer, 2020) uses up all memory the computer has and then crashes when applied to
this problem, and R functions add1, drop1, and step do have not have methods for objects returned by R

function llmdr.

So we could do whatever hypothesis tests we can think of, but we will have to wait until R package llmdr
is more complete or R package glmbb is fixed to use less memory in order to search among the very many

models for these data.

16 Multinomial and Product Multinomial Sampling
Unlike R function glm the new function llmdr also does multinomial and product multinomial sampling.

Let’s see how that works.

This is a competitor for “response” in scare quotes, which we discussed in the notes accompanying Agresti,
Chapter 8.

16.1 Alligators
Let’s redo an example previously done in those notes.

data(table_8.1)
alligator <- transform(table_8.1,

lake = factor(lake,
labels = c("Hancock", "Oklawaha", "Trafford", "George")),

gender = factor(gender, labels = c("Male", "Female")),
size = factor(size, labels = c("<=2.3", ">2.3")),
food = factor(food,

labels = c("Fish", "Invertebrate", "Reptile", "Bird", "Other")))
names(alligator)

## [1] "lake" "gender" "size" "food" "count"
lout <- llmdr(count ~ food * (size + gender + lake),

strata = ~ size * lake * gender,
family = "multinomial", data = alligator)

summary(lout)

##
## Call:
## llmdr(formula = count ~ food * (size + gender + lake), family = "multinomial",
## data = alligator, strata = ~size * lake * gender)
##
## Estimate Std. Error z value Pr(>|z|)
## foodInvertebrate -2.0745 0.6117 -3.392 0.000695 ***
## foodReptile -2.9141 0.8856 -3.290 0.001000 **
## foodBird -2.4633 0.7739 -3.183 0.001458 **
## foodOther -0.9167 0.4782 -1.917 0.055217 .
## foodInvertebrate:size>2.3 -1.3363 0.4112 -3.250 0.001155 **
## foodReptile:size>2.3 0.5570 0.6466 0.861 0.388977
## foodBird:size>2.3 0.7302 0.6523 1.120 0.262919
## foodOther:size>2.3 -0.2906 0.4599 -0.632 0.527515
## foodInvertebrate:genderFemale 0.4630 0.3955 1.171 0.241796

52

ch8.html
ch8.html
ch8.html#multinomial-response


## foodReptile:genderFemale 0.6276 0.6853 0.916 0.359785
## foodBird:genderFemale 0.6064 0.6888 0.880 0.378668
## foodOther:genderFemale 0.2526 0.4663 0.542 0.588100
## foodInvertebrate:lakeOklawaha 2.6937 0.6693 4.025 5.70e-05 ***
## foodReptile:lakeOklawaha 1.4008 0.8105 1.728 0.083926 .
## foodBird:lakeOklawaha -1.1256 1.1924 -0.944 0.345159
## foodOther:lakeOklawaha -0.7405 0.7422 -0.998 0.318377
## foodInvertebrate:lakeTrafford 2.9363 0.6874 4.272 1.94e-05 ***
## foodReptile:lakeTrafford 1.9316 0.8253 2.340 0.019263 *
## foodBird:lakeTrafford 0.6617 0.8461 0.782 0.434146
## foodOther:lakeTrafford 0.7912 0.5879 1.346 0.178400
## foodInvertebrate:lakeGeorge 1.7805 0.6232 2.857 0.004277 **
## foodReptile:lakeGeorge -1.1295 1.1928 -0.947 0.343689
## foodBird:lakeGeorge -0.5753 0.7952 -0.723 0.469429
## foodOther:lakeGeorge -0.7666 0.5686 -1.348 0.177563
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This is the Right Thing. It does not show any coefficients for regressors in strata but does condition on
them. The estimates and their standard errors are those for product multinomial sampling.

But this doesn’t have anything to do with the subject of these notes except that we have proved that the
MLE exists in the OM (something R function glm cannot do).

But when we ran R function glmbb on this, we had warnings.
gout <- glmbb(big = count ~ lake * gender * size * food,

little = ~ lake * gender * size + food,
family = poisson, data = alligator)

## Warning: glm.fit: fitted rates numerically 0 occurred

## Warning: glm.fit: fitted rates numerically 0 occurred

What were the models for which it should have given warnings?
foo <-gout$envir
rm(min.crit, envir = foo)
bar <- eapply(foo, function(x) x$formula)
lout <- lapply(bar, function(x) llmdr(x, family = "poisson", data = alligator))
is.lcm <- sapply(lout, function(x) x$is.lcm)
sum(is.lcm)

## [1] 9

(we use family = "poisson" here to match the formulas glmbb uses, and then we don’t need argument
strata).

R function glm should have given 9 warnings rather than two! So this is proof that its idea of warnings is
completely inadequate. It gives lots of false negatives. It can also give false positives, but we haven’t shown

an example of that yet.

Here are the models with LCM
sapply(bar[is.lcm], tidy.formula.hierarchical)

## sha1.e4402d800c21a9abb0762161d5e1c6e35e4ebde7
## "count ~ lake*gender*size + lake*gender*food + lake*size*food + gender*size*food"
## sha1.fff51edf16f5ff2e1b31d3ce343bc7009bf43bba
## "count ~ gender*food + lake*gender*size + lake*size*food"

53



## sha1.853e5b67c6699b1672c371fe92acc7892e98ec9e
## "count ~ lake*gender*size + lake*size*food + gender*size*food"
## sha1.ae5b3169d85068f271a8d6c4d7d381d889be7c41
## "count ~ lake*gender*size + lake*gender*food + gender*size*food"
## sha1.b3b8ef68c4353ba55356e3c8e41ec64317f43fac
## "count ~ lake*gender*size + lake*gender*food + lake*size*food"
## sha1.9324271d9e5c822e27dffeb511f9eea66344692c
## "count ~ size*food + lake*gender*size + lake*gender*food"
## sha1.e9b7454a669e0deeda786851802e9e69b2daf4a8
## "count ~ lake*gender*size + lake*size*food"
## sha1.858c44481b5873e02770b9e6c003b7246ecd25ab
## "count ~ lake*gender*size + lake*gender*food"
## sha1.fa8295479e78aa560f7648cbed1ab34bcb7511cc
## "count ~ lake*gender*size*food"

Eventually we need to make R package glmbb use R function llmdr to fit models rather than R function
glm. But that is not done yet.

16.2 A Digression about AIC and BIC and LCM
16.2.1 AIC

To understand the issues here we need to do a little bit of theory. The mathematical argument that leads
to AIC assumes the “usual asymptotics of maximum likelihood”. MLE at infinity (for canonical parameters,

on the boundary for mean value parameters) mean those assumptions are wrong.

On the other hand, those “usual asymptotics of maximum likelihood” may apply to the LCM if the
conditioning that produces the LCM leaves enough components of the response vector random so the

sample size can be considered “large” so the parameter estimates in the LCM are approximately normal.
When the LCM is completely degenerate, so it has no parameters to estimate, the asymptotic argument

does still apply if we consider the chi-square distribution on zero degrees of freedom to be the distribution
of the constant random variable always equal to zero (which R does)

pchisq(0, df = 0)

## [1] 0
pchisq(1e-16, df = 0)

## [1] 1

It follows that the correct 𝑝 to use in the definition

AIC = deviance + 2𝑝

is what R function llmdr calls the degrees of freedom for the LCM, component df of the result it returns.

There really cannot be any argument about this if you follow the theory. AIC is trying to be an unbiased
estimate of Kullback-Leibler information (times two). On or near the boundary of the mean value

parameter space the Kullback-Leibler information function is flat or nearly flat in the same directions as
the log likelihood function; there are only df dimensions in which it is strongly curved and can be

overestimated.

For an explicit example where this is clearly correct, let us redo the complete separation example of Agresti
just doing AIC.

Recall this analysis of deviance table
save.complete$anova

54



## Analysis of Deviance Table
##
## Model 1: y ~ 1
## Model 2: y ~ x
## Df as Null Df as Alt Deviance Df for test LRT P-value
## 1 1 0 11.09
## 2 0 2 0.00 1 11.09 0.00086778

Now we want AIC. We claim that the correct AIC are
with(save.complete$null, deviance + 2 * df)

## [1] 13.09035
with(save.complete$alternative, deviance + 2 * df)

## [1] 0

This is not what R function glm and friends (methods for generic functions that handle objects of class
"glm") calculates

with(save.complete, AIC(glm(null$formula, family = "binomial", data = data)))

## [1] 13.09035
with(save.complete, AIC(glm(alternative$formula, family = "binomial", data = data)))

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## [1] 4

Of course either calculation says the model with formula y ~ x is best, but that’s not the point. The point
is that we have issues with how to calculate AIC. This section recommends one thing. R function glm and

friends do another.

There is no question that R function glm and friends are theoretically incorrect. The AIC argument says
that it is a bias-corrected estimate of Kullback-Leibler information (times two). It corrects for overfitting.

But the model with formula y ~ x cannot overfit. All randomness is gone in a completely degenerate LCM.

But I can imagine the counterarguments. Those arguments ignore the math behind AIC and only pay
attention to the way it is usually used. Sparsity fans will argue that we are really looking for sparsity and

AIC is a penalty that rewards sparsity, and if we redefine AIC the way we recommend here, that won’t any
longer be rewarding sparsity. And that was what was always good about AIC (never mind what theory

says).

So I understand that a lot of people might not like what this section says (mathematically correct or no).
They will continue to use their grandfather’s version of AIC.

16.2.2 BIC

16.2.2.1 n

BIC has the same issue as AIC, in the definition

BIC = deviance + log(𝑛) ⋅ 𝑝

𝑝 has to be the dimension of the LCM to make the mathematical argument behind BIC correct (with the
same caveat that there has to be enough data left in the LCM for estimates in the LCM to be

approximately normally distributed, except when the LCM is completely degenerate and has no data).

BIC also has the other issue about 𝑛, which is discussed in the help page for R function glmbb which we
quote

55



It is unclear what the sample size, the 𝑛 in the BIC penalty 𝑛 log(𝑝) should be. Before version
0.4 of this package the BIC was taken to be the result of applying R generic function BIC to the
fitted object produced by R function glm. This is generally wrong whenever we think we are
doing categorical data analysis (Kass and Raftery, 1995; Raftery, 1986). Whether we consider the
sampling scheme to be Poisson, multinomial, or product multinomial (and binomial is a special
case of product multinomial) the sample size is the total number of individuals classified and
is the only thing that is considered as going to infinity in the usual asymptotics for categorical
data analysis. Thus the option BIC.option = "sum" should always be used for categorical data
analysis.

In more detail, if you are doing purely categorical data analysis (categorical response, all predictors
categorical too, so the data can be reformatted as a contingency table) then you are not imagining the

number of cells of the contingency table length(y) to be going to infinity, you are imagining the number
of individuals classified sum(y) to be going to infinity. Thus sum(y) is the only choice for 𝑛 in the BIC

formula that makes sense. So the cited literature says.

Once we start thinking along these lines, it is unclear that length(y) which is what R function glm and
friends do (with no option) ever makes sense. BIC was originally defined (Schwarz, 1978) for independent
and identically distributed (IID) data. For that, it is clear what 𝑛 means: it is the number of IID random

variables in the data. For categorical data analysis, that is the number of individuals classified (the
individuals are IID if they are a random sample).

BIC can be extended to non-IID data. Cavanaugh and Neath (1999) give all the gory details. But they
introduce 𝑛 in a completely artificial way in their assumptions. They imagine a sequence of statistical

models with log likelihoods 𝑙𝑛 all having the same parameter 𝜃. Then they assume

1
𝑛𝑙𝑛(𝜃)

converges (for all 𝜃, this is their assumption (5)).

So how does that make sense for regression if we are assuming the dimension of the response vector is going
to infinity, so the dimension of the predictor vectors must be going to infinity to match?

That convergence assumption implies a very restrictive condition on model matrices of the models in the
sequence of models. It is not clear that this story ever makes sense. This is the reason why your humble

author wrote a paper (Geyer, 2013) that does asymptotics without 𝑛. But if you take the 𝑛 out of
asymptotics, then BIC actually makes no sense because there is no 𝑛 to go into the formula.

In summary, it is very unclear what 𝑛 should be in the BIC formula when we do not have IID data. In
particular, it is not clear that what R function glm and friends do (in particular, R generic function BIC

does when applied to R objects of class "glm", using length(y) rather than sum(y) as 𝑛) ever makes sense.

16.2.2.2 p

The case is even worse for 𝑝. The derivation of BIC (Neath and Cavanaugh, 2012) can use many different
priors, but one possibility is flat within-model priors (as an approximation to Bayes factors, it does not

depend on between model priors). And we know from our notes on priors for exponential families that the
posterior (and hence the Bayes factor) does not exist when the MLE does not exist (in the conventional

sense) and a flat prior is used.

Thus Bayes factors make no sense when one model being compared has solutions at infinity (the subject of
this document). Or we might say that any model with solutions at infinity is infinitely bad when flat priors
are used. But such priors are improper and make no philosophical sense. So this is not a problem with the

models but rather with the whole idea of BIC.

56

prior.html


16.3 AIC for Alligators
So back to alligators. We now think R is calculating AIC wrong for those models that have LCM. R does

not use the same definitions of AIC and BIC that we do. It adds a constant to our definitions, that is,

AIC = deviance + constant + 2𝑝

and similarly for BIC. The constant doesn’t matter. It drops out of comparisons and calculation of weights.
But we will use the same constant so we don’t have to change all of the AIC values we already have.

So we recalculate AIC for these models. Because we used different formulas for R function llmdr we need
to change these AIC values by hand (eventually this should be automated).

The whole issue is that we have different degrees of freedom output by R functions glm and llmdr and the
latter are correct (so we say). Here are those degrees of freedom.

df.glm <- unlist(eapply(foo, function(x) x$rank))
df.llmdr <- sapply(lout, function(x) x$df)
identical(names(df.glm), names(df.llmdr))

## [1] TRUE
aic.glm <- unlist(eapply(foo, AIC))
aic.llmdr <- aic.glm + 2 * (df.llmdr - df.glm)

So now we have a problem that what models are within cutoff (10, the default) of the minimum are different
for the two definitions, so we need a different summary for each, but we only have a function to do one.

min(aic.glm)

## [1] 287.9638
min(aic.llmdr)

## [1] 275.4261

We see that since the new minimum AIC is more than the cutoff below the old minimum AIC, that none of
the models that were supposedly best under the old criterion are even on our new list.

Because we did not use R function llmdr as the model fitting function for R function glmbb we do not
know that we didn’t miss some models that have low AIC under the correct definition. So we don’t bother

to make a new table. That will have to wait until we fix R function glmbb.

It should come as a shock to fans of the old AIC that what is considered the best model changes, so it
would change the model selection done by AIC.

Of course, model selection is a mug’s game, but, even if we do model averaging, the weights change, and
not just a little bit but a whole lot.

16.4 Other Ways to Specify Multinomial Data
R function multinom in R package nnet specifies multinomial response data in a different way. It has the

response vector actually be a matrix or a factor. Then it doesn’t need a strata argument. R function
llmdr allows this too. We will illustrate the response being a factor in the next section. Here we show the

response as a matrix.
head(alligator$food)

## [1] Fish Invertebrate Reptile Bird Other
## [6] Fish
## Levels: Fish Invertebrate Reptile Bird Other

57

https://www.merriam-webster.com/dictionary/mug%27s%20game


It looks like in these data food varies fastest, so we can reshape it into a matrix as follows,
food <- alligator$count
food <- matrix(food, byrow = TRUE, ncol = nlevels(alligator$food))
colnames(food) <- levels(alligator$food)
head(food)

## Fish Invertebrate Reptile Bird Other
## [1,] 7 1 0 0 5
## [2,] 4 0 0 1 2
## [3,] 16 3 2 2 3
## [4,] 3 0 1 2 3
## [5,] 2 2 0 0 1
## [6,] 13 7 6 0 0

But we have to check that this is actually right, that the other variables agree for each level of this new
response matrix.

alligator.predictors <- alligator
alligator.predictors$count <- NULL
alligator.predictors$food <- NULL
names(alligator.predictors)

## [1] "lake" "gender" "size"
for (i in levels(alligator$food)) {

foob <- subset(alligator.predictors, alligator$food == "Bird")
fooi <- subset(alligator.predictors, alligator$food == i)
rownames(foob) <- NULL
rownames(fooi) <- NULL
print(identical(foob, fooi))

}

## [1] TRUE
## [1] TRUE
## [1] TRUE
## [1] TRUE
## [1] TRUE
alligator.predictors <-

subset(alligator.predictors, alligator$food == "Bird")

Great! We now have the data we need.
lout <- llmdr(food ~ lake * size, family = "multinomial",

data = alligator.predictors)
summary(lout)

##
## Call:
## llmdr(formula = food ~ lake * size, family = "multinomial", data = alligator.predictors)
##
## Estimate GDOR Std. Error z value Pr(>|z|)
## Fish 1.0561 0.0000 0.4105 2.573 0.01009 *
## lakeOklawaha:Fish -0.5452 0.0000 0.8377 -0.651 0.51516
## lakeTrafford:Fish -1.0561 0.0000 0.7540 -1.401 0.16132
## lakeGeorge:Fish 0.6179 0.0000 0.7512 0.823 0.41075
## size>2.3:Fish -0.7196 0.0000 0.7151 -1.006 0.31427

58



## lakeOklawaha:size>2.3:Fish 2.2629 1.0000 1.5016 1.507 0.13183
## lakeTrafford:size>2.3:Fish 1.1896 0.0000 1.1119 1.070 0.28468
## lakeGeorge:size>2.3:Fish 0.7802 0.0000 1.1399 0.684 0.49368
## Invertebrate -0.6931 0.0000 0.6124 -1.132 0.25767
## lakeOklawaha:Invertebrate 1.9924 0.0000 0.8940 2.229 0.02584 *
## lakeTrafford:Invertebrate 1.4816 0.0000 0.8160 1.816 0.06943 .
## lakeGeorge:Invertebrate 2.5390 0.0000 0.8723 2.911 0.00361 **
## size>2.3:Invertebrate -2.9444 -1.0000 1.3112 -2.246 0.02473 *
## lakeOklawaha:size>2.3:Invertebrate 3.2138 2.0000 1.9498 1.648 0.09931 .
## lakeTrafford:size>2.3:Invertebrate 2.4925 1.0000 1.5340 1.625 0.10420
## lakeGeorge:size>2.3:Invertebrate NA 1.0000 NA NA NA
## Reptile -1.3863 0.0000 0.7906 -1.754 0.07951 .
## lakeOklawaha:Reptile 0.2877 0.0000 1.3994 0.206 0.83712
## lakeTrafford:Reptile 0.4700 0.0000 1.1511 0.408 0.68304
## lakeGeorge:Reptile 0.2877 0.0000 1.3994 0.206 0.83712
## size>2.3:Reptile -0.2231 0.0000 1.3509 -0.165 0.86880
## lakeOklawaha:size>2.3:Reptile 2.6027 1.0000 2.1115 1.233 0.21771
## lakeTrafford:size>2.3:Reptile 1.3218 0.0000 1.7005 0.777 0.43699
## lakeGeorge:size>2.3:Reptile NA -1.0000 NA NA NA
## Bird -1.3863 0.0000 0.7906 -1.754 0.07951 .
## lakeOklawaha:Bird NA -1.0000 NA NA NA
## lakeTrafford:Bird -0.2231 0.0000 1.3509 -0.165 0.86880
## lakeGeorge:Bird 0.9808 0.0000 1.2076 0.812 0.41667
## size>2.3:Bird 0.8755 0.0000 1.0763 0.813 0.41597
## lakeOklawaha:size>2.3:Bird NA 2.0000 NA NA NA
## lakeTrafford:size>2.3:Bird 0.2231 0.0000 1.7005 0.131 0.89560
## lakeGeorge:size>2.3:Bird -1.5686 0.0000 1.8235 -0.860 0.38966
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Maximum likelihood distribution is the limit of distributions
## with parameter vectors Estimate + s * GDOR as s goes to infinity
## (NA in the Estimate column should be read as zero).

When you get the data in the right format, the analysis is a lot simpler, but getting the data in the right
format can be a bit of a struggle.

16.5 A Simple Multinomial Model with Completely Degenerate LCM

x <- seq(10, 90, 10)
y <- rep(c("red", "green", "blue"), each = 3)
y <- factor(y, levels = c("red", "green", "blue"))
data.frame(x, y)

## x y
## 1 10 red
## 2 20 red
## 3 30 red
## 4 40 green
## 5 50 green
## 6 60 green
## 7 70 blue
## 8 80 blue
## 9 90 blue

59



We fit these data as follows.
lout <- llmdr(y ~ x, family = "multinomial")
summary(lout)

##
## Call:
## llmdr(formula = y ~ x, family = "multinomial")
##
## Estimate GDOR Std. Error z value Pr(>|z|)
## yred NA 10.2500 NA NA NA
## x:yred NA -0.2250 NA NA NA
## ygreen NA 6.5833 NA NA NA
## x:ygreen NA -0.1083 NA NA NA
##
## Maximum likelihood distribution is the limit of distributions
## with parameter vectors Estimate + s * GDOR as s goes to infinity
## (NA in the Estimate column should be read as zero).

As usual, it is hard to make sense of canonical parameters, but from the fact that the Estimates column is
all NA we see the LCM is completely degenerate. As usual, mean value parameters make more sense.

cbind(x, estimates(lout, type = "mu"))

## x red green blue
## [1,] 10 1 0 0
## [2,] 20 1 0 0
## [3,] 30 1 0 0
## [4,] 40 0 1 0
## [5,] 50 0 1 0
## [6,] 60 0 1 0
## [7,] 70 0 0 1
## [8,] 80 0 0 1
## [9,] 90 0 0 1

The low values of x are all red, the middle values all green, and the high values all blue. So the model can
perfectly predict these data.

16.6 A Simple Multinomial Model with Partially Degenerate LCM
We change the data a little bit.

y[6] <- "blue"
y[7] <- "green"
y <- factor(y, levels = c("red", "green", "blue"))
data.frame(x, y)

## x y
## 1 10 red
## 2 20 red
## 3 30 red
## 4 40 green
## 5 50 green
## 6 60 blue
## 7 70 green
## 8 80 blue
## 9 90 blue

60

expfam.html#alice


And refit
lout <- llmdr(y ~ x, family = "multinomial")
summary(lout)

##
## Call:
## llmdr(formula = y ~ x, family = "multinomial")
##
## Estimate GDOR Std. Error z value Pr(>|z|)
## yred NA 3.800e+00 NA NA NA
## x:yred NA -1.200e-01 NA NA NA
## ygreen 7.891e+00 -4.163e-17 6.038e+00 1.307 0.191
## x:ygreen -1.214e-01 4.626e-19 9.126e-02 -1.330 0.183
##
## Maximum likelihood distribution is the limit of distributions
## with parameter vectors Estimate + s * GDOR as s goes to infinity
## (NA in the Estimate column should be read as zero).
cbind(x, estimates(lout, type = "mu"))

## x red green blue
## [1,] 10 1 0.00000000 0.00000000
## [2,] 20 1 0.00000000 0.00000000
## [3,] 30 1 0.00000000 0.00000000
## [4,] 40 0 0.95413352 0.04586648
## [5,] 50 0 0.86069104 0.13930896
## [6,] 60 0 0.64725931 0.35274069
## [7,] 70 0 0.35274069 0.64725931
## [8,] 80 0 0.13930896 0.86069104
## [9,] 90 0 0.04586648 0.95413352

Now we see that the LCM is only partially degenerate because the Estimate column is not all NA but the
actual numbers in the Estimate and GDOR columns don’t make much sense.

But from the mean values it is clear what is going on. Now x fails to perfectly predict green and blue but
still perfectly predicts red. The probability of green decreases with x and the probability of blue increases.

Of course, it looks like with such a small amount of data that the parameters of the LCM are not
statistically significant, either of them. But to make a conclusion about dropping two parameters we

should actually fit both models and compare.

But there doesn’t seem to be any way to do that with the data in this form. It wants to use the same
model matrix for each stratum, so we cannot keep red and x:red as predictors while dropping the rest.

We can do that if we put the data into data frame form and use explicit strata.
xx <- rep(x, times = 3)
color <- rep(levels(y), each = length(x))
yy <- double(length(xx))
for (i in 1:length(x))

yy[xx == x[i] & color == y[i]] <- 1
data.frame(x = xx, color, y = yy)

## x color y
## 1 10 red 1
## 2 20 red 1
## 3 30 red 1
## 4 40 red 0

61



## 5 50 red 0
## 6 60 red 0
## 7 70 red 0
## 8 80 red 0
## 9 90 red 0
## 10 10 green 0
## 11 20 green 0
## 12 30 green 0
## 13 40 green 1
## 14 50 green 1
## 15 60 green 0
## 16 70 green 1
## 17 80 green 0
## 18 90 green 0
## 19 10 blue 0
## 20 20 blue 0
## 21 30 blue 0
## 22 40 blue 0
## 23 50 blue 0
## 24 60 blue 1
## 25 70 blue 0
## 26 80 blue 1
## 27 90 blue 1

Now the models we want to compare are
lout.alternative <- llmdr(yy ~ xx * color, family = "multinomial",

strata = as.factor(xx))
summary(lout.alternative)

##
## Call:
## llmdr(formula = yy ~ xx * color, family = "multinomial", strata = as.factor(xx))
##
## Estimate GDOR Std. Error z value Pr(>|z|)
## colorgreen 7.891e+00 -4.163e-17 6.038e+00 1.307 0.191
## colorred NA 3.800e+00 NA NA NA
## xx:colorgreen -1.214e-01 4.626e-19 9.126e-02 -1.330 0.183
## xx:colorred NA -1.200e-01 NA NA NA
##
## Maximum likelihood distribution is the limit of distributions
## with parameter vectors Estimate + s * GDOR as s goes to infinity
## (NA in the Estimate column should be read as zero).
data.frame(x = xx, color, y = yy, mu = estimates(lout.alternative, "mu"))

## x color y mu
## 1 10 red 1 1.00000000
## 2 20 red 1 1.00000000
## 3 30 red 1 1.00000000
## 4 40 red 0 0.00000000
## 5 50 red 0 0.00000000
## 6 60 red 0 0.00000000
## 7 70 red 0 0.00000000
## 8 80 red 0 0.00000000
## 9 90 red 0 0.00000000

62



## 10 10 green 0 0.00000000
## 11 20 green 0 0.00000000
## 12 30 green 0 0.00000000
## 13 40 green 1 0.95413352
## 14 50 green 1 0.86069104
## 15 60 green 0 0.64725931
## 16 70 green 1 0.35274069
## 17 80 green 0 0.13930896
## 18 90 green 0 0.04586648
## 19 10 blue 0 0.00000000
## 20 20 blue 0 0.00000000
## 21 30 blue 0 0.00000000
## 22 40 blue 0 0.04586648
## 23 50 blue 0 0.13930896
## 24 60 blue 1 0.35274069
## 25 70 blue 0 0.64725931
## 26 80 blue 1 0.86069104
## 27 90 blue 1 0.95413352

Same mean values, so same model, just expressed differently.

Now for the null model, which does have red, but not the other colors.
red <- as.numeric(color == "red")
lout.null <- llmdr(yy ~ xx * red, family = "multinomial",

strata = as.factor(xx))
summary(lout.null)

##
## Call:
## llmdr(formula = yy ~ xx * red, family = "multinomial", strata = as.factor(xx))
##
## Estimate GDOR Std. Error z value Pr(>|z|)
## red NA 3.80 NA NA NA
## xx:red NA -0.12 NA NA NA
##
## Maximum likelihood distribution is the limit of distributions
## with parameter vectors Estimate + s * GDOR as s goes to infinity
## (NA in the Estimate column should be read as zero).
data.frame(x = xx, color, y = yy, mu = estimates(lout.null, "mu"))

## x color y mu
## 1 10 red 1 1.0
## 2 20 red 1 1.0
## 3 30 red 1 1.0
## 4 40 red 0 0.0
## 5 50 red 0 0.0
## 6 60 red 0 0.0
## 7 70 red 0 0.0
## 8 80 red 0 0.0
## 9 90 red 0 0.0
## 10 10 green 0 0.0
## 11 20 green 0 0.0
## 12 30 green 0 0.0
## 13 40 green 1 0.5

63



## 14 50 green 1 0.5
## 15 60 green 0 0.5
## 16 70 green 1 0.5
## 17 80 green 0 0.5
## 18 90 green 0 0.5
## 19 10 blue 0 0.0
## 20 20 blue 0 0.0
## 21 30 blue 0 0.0
## 22 40 blue 0 0.5
## 23 50 blue 0 0.5
## 24 60 blue 1 0.5
## 25 70 blue 0 0.5
## 26 80 blue 1 0.5
## 27 90 blue 1 0.5

Right. Predicts red perfectly, says nothing about blue or green, where “says nothing” means zero on the
logit scale, or 1/2 on the probability scale, and this really does not say anything about blue or green, they

are 50-50 given 𝑥 ≥ 40.

And then we have the really, really null hypothesis
lout.null.null <- llmdr(yy ~ red, family = "multinomial",

strata = as.factor(xx))
summary(lout.null.null)

##
## Call:
## llmdr(formula = yy ~ red, family = "multinomial", strata = as.factor(xx))
##
## Estimate Std. Error z value Pr(>|z|)
## red -1.570e-16 7.071e-01 0 1
data.frame(x = xx, color, y = yy, mu = estimates(lout.null.null, "mu"))

## x color y mu
## 1 10 red 1 0.3333333
## 2 20 red 1 0.3333333
## 3 30 red 1 0.3333333
## 4 40 red 0 0.3333333
## 5 50 red 0 0.3333333
## 6 60 red 0 0.3333333
## 7 70 red 0 0.3333333
## 8 80 red 0 0.3333333
## 9 90 red 0 0.3333333
## 10 10 green 0 0.3333333
## 11 20 green 0 0.3333333
## 12 30 green 0 0.3333333
## 13 40 green 1 0.3333333
## 14 50 green 1 0.3333333
## 15 60 green 0 0.3333333
## 16 70 green 1 0.3333333
## 17 80 green 0 0.3333333
## 18 90 green 0 0.3333333
## 19 10 blue 0 0.3333333
## 20 20 blue 0 0.3333333
## 21 30 blue 0 0.3333333

64



## 22 40 blue 0 0.3333333
## 23 50 blue 0 0.3333333
## 24 60 blue 1 0.3333333
## 25 70 blue 0 0.3333333
## 26 80 blue 1 0.3333333
## 27 90 blue 1 0.3333333

So finally the test.
anova(lout.null.null, lout.null, lout.alternative)

## Analysis of Deviance Table
##
## Model 1: yy ~ red
## Model 2: yy ~ xx * red
## Model 3: yy ~ xx * color
## Df as Null Df as Alt Deviance Df for test LRT P-value
## 1 1 0 19.7750
## 2 0 2 8.3178 1 11.4573 0.000712
## 3 2 2 4.9560 2 3.3618 0.186207

These data really don’t say anything about blue and green other than red versus non-red is predicted
perfectly. And we cannot drop 𝑥 entirely.

16.7 On the Baseline-Category Logit Parameterization
R function multinom in R package nnet uses the baseline-category logit parameterization

mout <- multinom(y ~ x)

## # weights: 9 (4 variable)
## initial value 9.887511
## iter 10 value 3.153012
## iter 20 value 2.873144
## iter 30 value 2.770911
## iter 40 value 2.528968
## iter 50 value 2.522779
## iter 60 value 2.514706
## iter 70 value 2.513843
## iter 80 value 2.513066
## iter 90 value 2.512268
## iter 100 value 2.511493
## final value 2.511493
## stopped after 100 iterations
summary(mout)

## Call:
## multinom(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## green -28.42054 0.8148895
## blue -36.33078 0.9367271
##
## Std. Errors:
## (Intercept) x

65



## green 38.71981 1.115024
## blue 39.21355 1.119270
##
## Residual Deviance: 5.022985
## AIC: 13.02299
round(predict(mout, type = "probs"), 7)

## red green blue
## 1 1.0000000 0.0000000 0.0000000
## 2 0.9999945 0.0000054 0.0000000
## 3 0.9812891 0.0184491 0.0002618
## 4 0.0144584 0.9404105 0.0451312
## 5 0.0000038 0.8603669 0.1396293
## 6 0.0000000 0.6456545 0.3543455
## 7 0.0000000 0.3501492 0.6498508
## 8 0.0000000 0.1374351 0.8625649
## 9 0.0000000 0.0449963 0.9550037
estimates(lout, type = "mu")

## red green blue
## [1,] 1 0.00000000 0.00000000
## [2,] 1 0.00000000 0.00000000
## [3,] 1 0.00000000 0.00000000
## [4,] 0 0.95413352 0.04586648
## [5,] 0 0.86069104 0.13930896
## [6,] 0 0.64725931 0.35274069
## [7,] 0 0.35274069 0.64725931
## [8,] 0 0.13930896 0.86069104
## [9,] 0 0.04586648 0.95413352

Not too different. The differences are that R function multinom does not understand generic directions of
recession, so can’t do the right thing, and isn’t even trying to do maximum likelihood, but rather what

some neural net thinks is somewhat optimal. If you make allowances for extreme sloppiness, then it has the
right answer, at least for the probabilities.

But what we wanted to talk about is what Agresti (2013), first page of Chapter 8, calls the
baseline-category logit parameterization of the multinomial. In this example, it makes the canonical

parameters

log 𝜋color(𝑥)
𝜋red(𝑥)

which makes the canonical parameters for anything red zero, hence they are dropped, which is why
summary(mout) above does not mention red.

This is what the exponential families notes call the try II parameterization.

But R function llmdr does not use this parameterization. Instead it uses the symmetric parameterization,
what the exponential families notes call the try III parameterization. Unlike baseline-category logit, this
parameterization does not constrain any canonical parameters to be zero. Thus it is not identifiable. It is

the parameterization you get when you start with Poisson sampling, and condition to get product
multinomial sampling without changing the canonical parameters.

Why? The baseline-category logit parameterization seems easy enough to understand, and is identifiable.
There is the issue of arbitrariness of which category is chosen to be “baseline”, but we ignore that.

But in hindsight, considered in light of directions of recession, that parameterization seems to be a really
dumb idea.

66

expfam.html#try-ii
expfam.html#try-iii


• It amounts to constraining equal to zero parameters that need to go to infinity to maximize the
likelihood.

• Moreover, even if we move directions of recession to the baseline-category logit parameterization, that
parameterization need not make the LCM identifiable.

We see the latter in our toy problem. R function nnet chooses red to be “baseline” for arbitrary reasons.
But in the LCM we see that red has been conditioned out of the LCM. The LCM only has data for blue or

green and 𝑥 ≥ 40. Now trying to say that red is “baseline” seems almost maximally stupid.

So OK. We cannot choose a baseline category until the LCM has already been determined. But we can
then, right? No.

It is possible to construct models having LCM in which no choice of multinomial response category to be
“baseline” will make the LCM identifiable.

So why this “baseline” category stuff anyway? R functions lm and glm and llmdr (which calls glm.fit to
fit LCM) have no trouble figuring out which coefficients to “drop” to get an identifiable model. They don’t
need to be given an identifiable parameterization. So why fuss about a particular one that will only lead to

insoluble problems in some instances?

Other issues with the baseline-category logit parameterization are illustrated in the next section.

16.8 Mapping Canonical to Mean Value Parameters
For product multinomial data with response vector 𝑦 and strata 𝒜, this means the subvectors 𝑦𝐴 for
𝐴 ∈ 𝒜 are the independent multinomial parts of 𝑦, the saturated model usual parameters are given in

terms of the canonical parameters by

𝜋𝑖 = 𝑒𝜃𝑖

∑𝑗∈𝐴 𝑒𝜃𝑗
, 𝑖 ∈ 𝐴 ∈ 𝒜

(and there is always exactly one 𝐴 satisfying the condition of this equation because 𝒜 partitions the index
set of 𝑦). Then the mean value parameters are

𝜇𝑖 = 𝑛𝐴𝜋𝑖, 𝑖 ∈ 𝐴 ∈ 𝒜.

So to keep track of what is going on with the various parameterizations, we have to keep this
non-identifiability of 𝛽 and 𝜃 in mind.

theta <- estimates(lout, "theta")
theta

## red green blue
## [1,] 0 -Inf -Inf
## [2,] 0 -Inf -Inf
## [3,] 0 -Inf -Inf
## [4,] -Inf 3.0350690 0
## [5,] -Inf 1.8210414 0
## [6,] -Inf 0.6070138 0
## [7,] -Inf -0.6070138 0
## [8,] -Inf -1.8210414 0
## [9,] -Inf -3.0350690 0

If we really, really wanted red to be the baseline category, then we could do that. Then we would have zero
for the whole red column. And the blue column would be Inf for 𝑥 ≥ 40. And then the green column

would have to be Inf + 3.035069, Inf + 1.8210414, and so forth for 𝑥 ≥ 40. What does that mean? It

67



means these parameters go off to infinity at the same rate, in lockstep, keeping a constant difference,

𝜃40 green = 𝜃40 blue + 3.035069
𝜃50 green = 𝜃50 blue + 1.8210414
𝜃60 green = 𝜃60 blue + 0.6070138
𝜃70 green = 𝜃70 blue − 0.6070138

and so forth. See what I mean when I say that the baseline-category logit parameterization causes far more
pain than enlightenment?

But if we keep to the symmetric parameterization that R function llmdr is using, then we have to know
how to use it. We go from 𝜃 to 𝜋 in two steps.

foo <- exp(theta)
foo

## red green blue
## [1,] 1 0.00000000 0
## [2,] 1 0.00000000 0
## [3,] 1 0.00000000 0
## [4,] 0 20.80241248 1
## [5,] 0 6.17828904 1
## [6,] 0 1.83494369 1
## [7,] 0 0.54497585 1
## [8,] 0 0.16185711 1
## [9,] 0 0.04807135 1

Then we have to make the probabilities in each stratum sum to one. Here the strata are the rows of the
matrix.

bar <- rowSums(foo)
mu <- sweep(foo, 1, bar, "/")
mu

## red green blue
## [1,] 1 0.00000000 0.00000000
## [2,] 1 0.00000000 0.00000000
## [3,] 1 0.00000000 0.00000000
## [4,] 0 0.95413352 0.04586648
## [5,] 0 0.86069104 0.13930896
## [6,] 0 0.64725931 0.35274069
## [7,] 0 0.35274069 0.64725931
## [8,] 0 0.13930896 0.86069104
## [9,] 0 0.04586648 0.95413352

Of course, R function estimates does this for us, so we don’t have to understand this to get the numbers,
but this is what it is doing to get them.

estimates(lout, "pi")

## red green blue
## [1,] 1 0.00000000 0.00000000
## [2,] 1 0.00000000 0.00000000
## [3,] 1 0.00000000 0.00000000
## [4,] 0 0.95413352 0.04586648
## [5,] 0 0.86069104 0.13930896
## [6,] 0 0.64725931 0.35274069
## [7,] 0 0.35274069 0.64725931

68



## [8,] 0 0.13930896 0.86069104
## [9,] 0 0.04586648 0.95413352

16.9 DOR, DOC, and GDOR for Multinomial
Usually family = "multinomial" means product multinomial, so we first need to start with the

symmetric parameterization for product multinomial sampling described above.

We use a theorem described in Section 3.17 of Geyer (2009), which says, if you can find DOR or GDOR for
Poisson sampling, then they also work for multinomial or product multinomial sampling (actually Geyer
(2009) leaves the product multinomial case as an exercise for the reader, but it is fully worked out in the
design document for R package llmdr (Geyer, 2022), which is found in every installation of the package).

This theorem needs one idea. The indicator vectors for strata are vectors 𝑢 having coordinates

𝑢𝑖 = {1, 𝑖 ∈ 𝐴
0, 𝑖 ∉ 𝐴

where 𝐴 ∈ 𝒜 are the sets of indices for strata, as in the section on multinomial parameterization above.

Then the exact statement of the theorem is that the model matrix for Poisson sampling has to have all the
columns of the model matrix for product multinomial sampling plus all the indicator vectors for

multinomial strata as columns. Then every MLE for the Poisson model is also an MLE for the product
multinomial model (when both use the same parameterization, that is, the product multinomial is using

the symmetric parameterization) and every DOR for the Poisson model is a DOR for the product
multinomial model.

The only difference is that the parameterization for Poisson sampling is (usually) identifiable, and the
parameterization for product multinomial sampling is never identifiable. Its directions of constancy are

exactly the indicator vectors for strata described above.

Thus we can immediately drop all components of the Poisson parameter vector that correspond to
indicator vectors of strata, and similarly for components of DOR. They are not identifiable. This leaves us

with MLE for 𝛽 and GDOR for product multinomial sampling.

Thus we only know how to solve multinomial problems indirectly, by converting them to Poisson problems,
and then converting back at the end.

A much more complete characterization of product multinomial DOR, DOC, and GDOR is found in the
design document for R package llmdr cited above.

Bibliography
Agresti, A. (2013) Categorical Data Analysis. Hoboken, NJ: John Wiley & Sons.

Allaire, J. J., Xie, Y., McPherson, J., et al. (2021) R Package rmarkdown: Dynamic Documents for R,
Version 2.11. Available at: https://rmarkdown.rstudio.com.

Barndorff-Nielsen, O. E. (1978) Information and Exponential Families. Chichester, England: Wiley.

Brown, L. D. (1986) Fundamentals of Statistical Exponential Families with Applications in Statistical
Decision Theory. Hayward, CA: Institute of Mathematical Statistics.

Cavanaugh, J. E. and Neath, A. A. (1999) Generalizing the derivation of the Schwarz information criterion.
Communications in Statistics — Theory and Methods, 28, 49–66. DOI: 10.1080/03610929908832282.

Eck, D. J. and Geyer, C. J. (2021) Computationally efficient likelihood inference in exponential families
when the maximum likelihood estimator does not exist. Electronic Journal of Statistics, 15, 2105–2156.

DOI: 10.1214/21-EJS1815.

69

https://rmarkdown.rstudio.com
https://doi.org/10.1080/03610929908832282
https://doi.org/10.1214/21-EJS1815


Gelius-Dietrich, G. (2021) R Package glpkAPI: R Interface to c Api of Glpk, Version 1.3.3. Available at:
https://CRAN.R-project.org/package=glpkAPI.

Geyer, C. J. (1990) Likelihood and exponential families. PhD thesis. University of Washington. Available
at: http://purl.umn.edu/56330.

Geyer, C. J. (2009) Likelihood inference in exponential families and directions of recession. Electronic
Journal of Statistics, 3, 259–289. DOI: 10.1214/08-EJS349.

Geyer, C. J. (2013) Asymptotics of maximum likelihood without the LLN or CLT or sample size going to
infinity. In Advances in Modern Statistical Theory and Applications: A Festschrift in Honor of Morris L.
Eaton (eds G. L. Jones and X. Shen), pp. 1–24. Hayward, CA: Institute of Mathematical Statistics. DOI:

10.1214/12-IMSCOLL1001.

Geyer, C. J. (2020) R Package glmbb: All Hierarchical or Graphical Models for Generalized Linear Model,
Version 0.5-1. Available at: http://cran.r-project.org/package=glmbb.

Geyer, C. J. (2022) R Package llmdr: Log-Linear Models Done Right, Version 0.1. Available at:
http://github.com/cjgeyer/llmdr/.

Geyer, C. J. and Thompson, E. A. (1992) Constrained Monte Carlo maximum likelihood for dependent
data (with discussion). Journal of the Royal Statistical Society, Series B, 54, 657–699. DOI:

10.1111/j.2517-6161.1992.tb01443.x.

Geyer, C. J., Meeden, G. D. and Fukuda, K. (2021) R Package rcdd: Computational Geometry, Version
1.4. Available at: http://cran.r-project.org/package=rcdd.

Gilbert, P. and Varadhan, R. (2019) R Package numDeriv: Accurate Numerical Derivatives, Version
2016.8-1.1. Available at: https://CRAN.R-project.org/package=numDeriv.

Kass, R. E. and Raftery, A. E. (1995) Bayes factors. Journal of the American Statistical Association, 90,
773–795. DOI: 10.1080/01621459.1995.10476572.

Lucas, A., Scholz, I., Boehme, R., et al. (2021) R Package gmp: Multiple Precision Arithmetic, Version
0.6-2.1. Available at: https://CRAN.R-project.org/package=gmp.

Maechler, M. (2021) R Package sfsmisc: Utilities from ’Seminar Fuer Statistik’ ETH Zurich, Version
1.1-12. Available at: https://CRAN.R-project.org/package=sfsmisc.

Neath, A. A. and Cavanaugh, J. E. (2012) The Bayesian information criterion: Background, derivation,
and applications. WIREs Computational Statistics, 4, 199–203.

Raftery, A. E. (1986) A note on bayes factors for log-linear contingency table models with vague prior
information. Journal of the Royal Statistical Society, Series B, 48, 249–250. DOI:

10.1111/j.2517-6161.1986.tb01408.x.

Schwarz, G. (1978) Estimating the dimension of a model. Annals of Statistics, 6, 461–464. DOI:
10.1214/aos/1176344136.

Varadhan, R. (2015) R Package alabama: Constrained Nonlinear Optimization, Version 2015.3-1.
Available at: https://CRAN.R-project.org/package=alabama.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth. New York: Springer.
Available at: https://www.stats.ox.ac.uk/pub/MASS4/.

Venables, W. N. and Ripley, B. D. (2021a) R Package MASS: Support Functions and Datasets for Venables
and Ripley’s MASS, Version 7.3-54. Available at: https://CRAN.R-project.org/package=MASS.

Venables, W. N. and Ripley, B. D. (2021b) R Package nnet: Feed-Forward Neural Networks and
Multinomial Log-Linear Models, Version 7.3-16. Available at: https://CRAN.R-project.org/package=nnet.

Xie, Y., Allaire, J. J. and Grolemund, G. (2018) R Markdown: The Definitive Guide. Chapman; Hall/CRC.
Available at: https://bookdown.org/yihui/rmarkdown.

70

https://CRAN.R-project.org/package=glpkAPI
http://purl.umn.edu/56330
https://doi.org/10.1214/08-EJS349
https://doi.org/10.1214/12-IMSCOLL1001
http://cran.r-project.org/package=glmbb
http://github.com/cjgeyer/llmdr/
https://doi.org/10.1111/j.2517-6161.1992.tb01443.x
http://cran.r-project.org/package=rcdd
https://CRAN.R-project.org/package=numDeriv
https://doi.org/10.1080/01621459.1995.10476572
https://CRAN.R-project.org/package=gmp
https://CRAN.R-project.org/package=sfsmisc
https://doi.org/10.1111/j.2517-6161.1986.tb01408.x
https://doi.org/10.1214/aos/1176344136
https://CRAN.R-project.org/package=alabama
https://www.stats.ox.ac.uk/pub/MASS4/
https://CRAN.R-project.org/package=MASS
https://CRAN.R-project.org/package=nnet
https://bookdown.org/yihui/rmarkdown


Xie, Y., Dervieux, C. and Riederer, E. (2020) R Markdown Cookbook. Chapman; Hall/CRC. Available at:
https://bookdown.org/yihui/rmarkdown-cookbook.

71

https://bookdown.org/yihui/rmarkdown-cookbook

	License
	R
	History of Theory
	Directions in the Canonical Parameter Space
	Limits
	History of Computing
	The Binomial Family of Distributions
	Canonical Affine Submodels
	Separation versus Degeneracy
	Complete Separation Example of Agresti
	Data
	Attempt to Fit Model
	Log-Linear Models Done Right
	So Now What?
	Valid Region for Beta
	GDOR Need Not Be Unique
	Mathematical Proofs
	Intervals for Beta
	Intervals for Theta and Mu
	Submodel Canonical Statistic
	Complete Separation
	Region for Tau
	Confidence Interval for Closeness to the Boundary
	Confidence Intervals for Hypothetical Individuals

	A Clinical Trial Example of Agresti
	Theory of Confidence Intervals
	Confidence Intervals for OM when there is a GDOR
	Confidence Intervals for LCM when it is Not Completely Degenerate
	The Combination of the Two
	Confidence Regions to Confidence Intervals

	Quasi-Complete Separation Example of Agresti
	Data
	Fit Model
	Valid Region for Beta
	Intervals for Beta
	Intervals for Theta
	Intervals for Mu
	Submodel Canonical Statistic
	Region for Tau
	Quasi-Complete Separation
	Confidence Intervals for Hypothetical Individuals

	Theory of Hypothesis Tests
	Categorical Data Example of Geyer
	Multinomial and Product Multinomial Sampling
	Alligators
	A Digression about AIC and BIC and LCM
	AIC for Alligators
	Other Ways to Specify Multinomial Data
	A Simple Multinomial Model with Completely Degenerate LCM
	A Simple Multinomial Model with Partially Degenerate LCM
	On the Baseline-Category Logit Parameterization
	Mapping Canonical to Mean Value Parameters
	DOR, DOC, and GDOR for Multinomial

	Bibliography

