An Analysis of Life History Data on the Purple Coneflower (Echinacea angustifolia) using the R Package Aster

Charles J. Geyer Ruth G. Shaw Stuart Wagenius
August 6, 2005

1 Preliminaries

Load aster and data.

> library(aster)
> data(echinacea)
> names(echinacea)

[1] "hdct02" "hdct03" "hdct04" "site" "ewloc" "nsloc"
[7] "ld02" "fl02" "ld03" "fl03" "ld04" "fl04"

the variables with numbers in the names are the columns of the response matrix of the aster model. The variables ld0x (where x is a digit) are the survival indicator variables for year 200x (one for alive, zero for dead). The variables fl0x are the flowering indicator variables (one for any flowers, zero for none). The variables hdct0x are the inflorescence (flower head) count variables (number of flower heads). The variables without numbers are other predictors. The variables ewloc and nsloc are spatial predictions (east-west and north-south location, respectively). The variable site is the site of origin of the plant, so plants with different values of site may be more genetically diverse than those with the same values of site.

Make graph (of the graphical model, specified by a function p given by an R vector pred).

> pred <- c(0, 1, 2, 1, 2, 3, 4, 5, 6)
> fam <- c(1, 1, 1, 1, 1, 3, 3, 3)

Reshape data.
> vars <- c("ld02", "ld03", "ld04", "fl02", "fl03",
+ "fl04", "hdct02", "hdct03", "hdct04")
> redata <- reshape(echinacea, varying = list(vars),
+ direction = "long", timevar = "varb", times = as.factor(vars),
+ v.names = "resp")
> redata <- data.frame(redata, root = 1)
> names(redata)

[1] "site" "ewloc" "nsloc" "varb" "resp" "id" "root"

2 Modeling

2.1 First Model

For our first model we try something simple (moderately simple). We have no site effects. We put in a mean and effect of north-south and east-west position for each of the nine variables. That gives us $3 \times 9 = 27$ parameters.

> out1 <- aster(resp ~ varb + varb:nsloc + varb:ewloc,
+ pred, fam, varb, id, root, data = redata)
> summary(out1, show.graph = TRUE)

Call:
aster.formula(formula = resp ~ varb + varb:nsloc + varb:ewloc,
 pred = pred, fam = fam, varvar = varb, idvar = id, root = root,
 data = redata)

Graphical Model:

<table>
<thead>
<tr>
<th>variable</th>
<th>predecessor</th>
<th>family</th>
</tr>
</thead>
<tbody>
<tr>
<td>ld02</td>
<td>root</td>
<td>bernoulli</td>
</tr>
<tr>
<td>ld03</td>
<td>ld02</td>
<td>bernoulli</td>
</tr>
<tr>
<td>ld04</td>
<td>ld03</td>
<td>bernoulli</td>
</tr>
<tr>
<td>fl02</td>
<td>ld02</td>
<td>bernoulli</td>
</tr>
<tr>
<td>fl03</td>
<td>ld03</td>
<td>bernoulli</td>
</tr>
<tr>
<td>fl04</td>
<td>ld04</td>
<td>bernoulli</td>
</tr>
<tr>
<td>hdct02</td>
<td>fl02</td>
<td>non.zero.poisson</td>
</tr>
<tr>
<td>hdct03</td>
<td>fl03</td>
<td>non.zero.poisson</td>
</tr>
<tr>
<td>hdct04</td>
<td>fl04</td>
<td>non.zero.poisson</td>
</tr>
</tbody>
</table>

Estimate Std. Error z value Pr(>|z|)

2
2.2 Second Model

So now we put in site.

> levels(echinacea$site)

[1] "AA" "Eriley" "Lf" "Nessman" "NWLF" "SPP" "Stevens"

Let us put site in only at the top level in this model (just to see what happens). In order to do that we have to add a predictor that “predicts” the top level.
> hdct <- grep("hdct", as.character(redata$varb))
> hdct <- is.element(seq(along = redata$varb), hdct)
> redata <- data.frame(redata, hdct = as.integer(hdct))
> names(redata)
[1] "site" "ewloc" "nsloc" "varb" "resp" "id" "root" [8] "hdct"

> out2 <- aster(resp ~ varb + varb:nsloc + varb:ewloc +
+ hdct * site - site, pred, fam, varb, id, root,
+ data = redata)
> summary(out2)

Call:
aster.formula(formula = resp ~ varb + varb:nsloc + varb:ewloc +
 hdct * site - site, pred = pred, fam = fam, varvar = varb,
 idvar = id, root = root, data = redata)

 Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.6259835 0.1925029 -8.447 < 2e-16 ***
 varbf103 -0.2591673 0.2953707 -0.877 0.38025
 varbf104 -0.3272159 0.2594037 -1.261 0.20716
 varhbhdct02 2.0516689 0.2751442 7.457 8.87e-14 ***
 varhbhdct03 2.0032366 0.2298569 8.715 < 2e-16 ***
 varhbhdct04 2.5544660 0.2751442 12.125 < 2e-16 ***
 varbld02 -0.9847880 0.3499238 -2.814 0.00489 **
 varbld03 1.0268923 0.4279181 2.400 0.01641 *
 varbld04 4.1086115 0.3467427 11.849 < 2e-16 ***
 varbf102:nsloc 0.0835490 0.0264359 3.160 0.00158 **
 varbf103:nsloc 0.0655031 0.0301469 2.173 0.02980 *
 varbf104:nsloc 0.0698326 0.0243307 2.870 0.00410 **
 varhbhdct02:nsloc -0.0184434 0.0116321 -1.586 0.11284
 varhbhdct03:nsloc -0.0004162 0.0138183 -0.030 0.97597
 varhbhdct04:nsloc -0.0038684 0.0073788 -0.524 0.60010
 varbld02:nsloc -0.0459235 0.0376414 -1.220 0.22245
 varbld03:nsloc 0.0295182 0.0527428 0.560 0.57571
 varbld04:nsloc 0.0339706 0.0405350 0.838 0.40200
 varbf102:ewloc 0.0462769 0.0267337 1.731 0.08345 .
 varbf103:ewloc -0.0054404 0.0289865 -0.188 0.85112
 varbf104:ewloc -0.0089080 0.0239051 -0.373 0.70942
Comment The last bit of the summary that the “original predictor” `hdct` was “dropped (aliased)” means just what it (tersely) says. The R formula mini-language as implemented in the R functions `model.frame` and `model.matrix` produces a model matrix that is not full rank. In order to estimate anything we must drop some dummy variable that it constructed. In this particular case the (dummy variable that is the indicator of) `hdct` is equal to the sum of the (dummy variables that are the indicators of) `varbhdct02`, `varbhdct03`, and `varbhdct04`. Thus we must drop one of these variables for the model to be identifiable. So `aster` does.

Comment The reason for the `- site` in the formula is not obvious. In fact, we originally did not write the formula this way and got the wrong
model (see “Tenth Model” in Section 2.10 below). It took some grovelling in various bits of R documentation to come up with this - site trick, but once you see it, the effect is clear.

We want site effects only at the “hdct” level. But the hdct * site crosses the hdct indicator variable, which has two values (zero and one) with the site variable, which has seven values (the seven sites), giving 14 parameters, one of which R drops (because it is aliased with the intercept). But that’s not what we want. We don’t want site effects at the “non-hdct” levels. The way the R formula mini-language allows us to specify that is - site which means to leave out the site main effects (7 fewer parameters, leaving 6) and we see that we do indeed have 6 degrees of freedom difference between models one and two.

2.3 Third Model

Let us now put site in at all levels in this model.

```r
> level <- gsub("[0-9]", ",", as.character(redata$varb))
> redata <- data.frame(redata, level = as.factor(level))
> out3 <- aster(resp ~ varb + varb:nsloc + varb:ewloc +
+ level * site, pred, fam, varb, id, root, data = redata)
> summary(out3)
```

Call:
aster.formula(formula = resp ~ varb + varb:nsloc + varb:ewloc +
level * site, pred = pred, fam = fam, varvar = varb, idvar = id,
root = root, data = redata)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.937453 0.423538 -4.574 4.77e-06 ***
varbfl03 -0.268508 0.293765 -0.914 0.36071
varbfl04 -0.303001 0.257928 -1.175 0.24009
varbhdct02 2.477882 0.546517 4.534 5.79e-06 ***
varbhdct03 2.433586 0.525941 4.627 3.71e-06 ***
varbhdct04 2.972531 0.516328 5.757 8.56e-09 ***
varbld02 -0.739801 0.582421 -1.270 0.20401
varbld03 1.256976 0.632563 1.987 0.06833 .
varbld04 4.322854 0.581362 7.436 1.04e-13 ***
siteEriley 0.807390 0.451694 1.787 0.07386 .
siteLf 0.877245 0.481248 1.823 0.06833 .
siteNessman -0.602180 0.681430 -0.884 0.37686 .
.siteNWLF -0.111507 0.434671 -0.257 0.79754
.siteSPP 0.541625 0.450808 1.201 0.22958
.siteStevens 0.112023 0.465345 0.241 0.80976
.varbf02:nsloc 0.083795 0.026329 3.183 0.00146 **
.varbf03:nsloc 0.066937 0.029982 2.233 0.02558 *
.varbf04:nsloc 0.070146 0.024162 2.903 0.00370 **
.varbhdc02:nsloc -0.018769 0.011491 -1.633 0.10240
.varbhdc03:nsloc -0.004397 0.007261 -0.606 0.54477
.varbhdc04:nsloc -0.044854 0.037640 -1.192 0.23340
.varbhdc03:ewloc 0.035972 0.026717 1.346 0.17817
.varbhdc04:ewloc 0.015152 0.028934 -0.524 0.60050
.varbf02:ewloc -0.018685 0.023867 -0.783 0.43371
.varbf02:ewloc 0.006926 0.012016 0.576 0.56435
.varbf02:ewloc 0.026914 0.013389 2.010 0.04441 *
.varbf02:ewloc 0.012554 0.007241 1.734 0.08298 .
.varbf02:ewloc 0.013009 0.035812 0.363 0.71641
.varbf02:ewloc -0.030830 0.051730 -0.596 0.55119
.varbf02:ewloc 0.002422 0.040976 0.059 0.95287
.levelhdct:siteEriley -1.341288 0.587473 -2.283 0.02242 *
.levelld:siteEriley -0.560351 0.553094 -1.013 0.31100
.levelhdct:siteLf -1.408221 0.631418 -2.230 0.02573 *
.levelld:siteLf -0.674658 0.588417 -1.147 0.25156
.levelhdct:siteStevens 0.418459 0.893928 0.468 0.63970
.levelld:siteStevens 0.922668 0.778683 1.185 0.23605
.levelhdct:siteNWLF 0.046822 0.553566 0.085 0.93259
.levelld:siteNWLF 0.140229 0.531548 0.264 0.79192
.levelhdct:siteSPP -0.702929 0.573865 -1.225 0.22061
.levelld:siteSPP -0.479659 0.561548 -0.854 0.39301
.levelhdct:siteStevens -0.215472 0.593594 -0.363 0.71661
.levelld:siteStevens -0.240029 0.569320 -0.422 0.67331

Signif. codes: 0 ^ a˘A¨Y***^ a˘A´Z 0.001 ^ a˘A¨Y**^ a˘A´Z 0.01 ^ a˘A¨Y*^ a˘A´Z 0.05 ^ a˘A¨Y 0.1 ^ a˘A¨Y ^ a˘A´Z 1

Original predictor variables dropped (aliased)
 levelhdct
 levelld
> anova(out1, out2, out3)

Analysis of Deviance Table

Model 1: resp ~ varb + varb:nsloc + varb:ewloc
Model 2: resp ~ varb + varb:nsloc + varb:ewloc + hdct * site - site
Model 3: resp ~ varb + varb:nsloc + varb:ewloc + level * site

| Model Df | Model Dev | Df | Deviance | P(>|Chi|) |
|----------|-----------|----|----------|----------|
| 1 | 27 | 2717.39 |
| 2 | 33 | 2701.26 | 6 | 16.13 | 0.01 |
| 3 | 45 | 2663.55 | 12 | 37.71 | 0.0001715|

Comment This would finish a sensible analysis, but we’re really not sure we have dealt with the “geometry” (the variables ewloc and nsloc) correctly.

2.4 Fourth Model, Less Geometry

Thus we experiment with different ways to put in the spatial effects. First we reduce the geometry to a product, either year or level.

> year <- gsub("[a-z]", ",", as.character(redata$varb))
> year <- paste("yr", year, sep = ")")
> redata <- data.frame(redata, year = as.factor(year))
> out4 <- aster(resp ~ varb + (level + year):(nsloc +
+ ewloc) + level * site, pred, fam, varb, id, root,
+ data = redata)
> summary(out4)

Call:
aster.formula(formula = resp ~ varb + (level + year):(nsloc +
+ ewloc) + level * site, pred = pred, fam = fam, varvar = varb,
+ idvar = id, root = root, data = redata)

 Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.875208 0.419723 -4.468 7.91e-06 ***
varbf103 -0.384991 0.268534 -1.434 0.15166
varbf104 -0.373643 0.244457 -1.528 0.12640
varbhdcst02 2.387001 0.541799 4.406 1.05e-05 ***
varbhdcst03 2.399402 0.522036 4.596 4.30e-06 ***
varbhdcst04 2.913906 0.513754 5.672 2.21e-08 ***
varbl02 -0.679149 0.562506 -1.207 0.22729

8
Analysis of Deviance Table

```
               Df  Deviance  logLik  test  Df Pr (>Chisq)
leveld:siteEriley 1 -1.344673  0.587258 1.275  0.02704  *
leveld:siteLf    1 -0.561644  0.552345 1.017  0.30923
leveld:siteNessman 1  0.046781  0.553089 0.855  0.39259
leveld:siteNWLF   1  0.140718  0.530656 0.265  0.64144
leveld:siteSPP    1 -0.701296  0.573572 -1.223  0.22145
leveld:siteStevens 1 -0.477678  0.560739 -0.852  0.39429
leveld:siteStevens 1 -0.213370  0.593238 -0.360  0.71909
leveld:siteStevens 1 -0.237795  0.568455 -0.418  0.67571
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Original predictor variables dropped (aliased)
  levelhdct
  levelld
```

> anova(out4, out3)

Analysis of Deviance Table
Model 1: resp ~ varb + (level + year):(nsloc + ewloc) + level * site
Model 2: resp ~ varb + varb:nsloc + varb:ewloc + level * site

| Model | Df | Model Dev | Df | Deviance | P(>|Chi|) |
|-------|----|-----------|----|----------|----------|
| 1 | 37 | 2668.39 | 2 | 4.83 | 0.78 |

So we have goodness of fit, and this can be our “big model”.

2.5 Fifth Model, Much Less Geometry

Now we reduce the geometry to just two predictors.

```r
> out5 <- aster(resp ~ varb + nsloc + ewloc + level * site, pred, fam, varb, id, root, data = redata)
> summary(out5)
```

Call:
aster.formula(formula = resp ~ varb + nsloc + ewloc + level * site, pred = pred, fam = fam, varvar = varb, idvar = id, root = root, data = redata)

| | Estimate | Std. Error | z value | Pr(>|z|) |
|------------------|----------|------------|---------|----------|
| (Intercept) | -1.740778| 0.415402 | -4.191 | 2.78e-05 *** |
| varbfl03 | -0.334899| 0.264510 | -1.266 | 0.205473 |
| varbfl04 | -0.328208| 0.240321 | -1.366 | 0.172032 |
| varbhdct02 | 2.190026 | 0.536935 | 4.079 | 4.53e-05 *** |
| varbhdct03 | 2.209167 | 0.516225 | 4.279 | 1.87e-05 *** |
| varbhdct04 | 2.712799 | 0.509537 | 5.324 | 1.01e-07 *** |
| varbld02 | -0.769927| 0.562247 | -1.369 | 0.170882 |
| varbld03 | 0.982700 | 0.611052 | 1.608 | 0.107789 |
| varbld04 | 4.110627 | 0.573689 | 7.165 | 7.76e-13 *** |
| nsloc | 0.013506 | 0.001725 | 7.828 | 4.97e-15 *** |
| ewloc | 0.005965 | 0.001722 | 3.465 | 0.000531 *** |
| siteEriley | 0.755567 | 0.448815 | 1.683 | 0.092284 |
| siteLf | 0.809411 | 0.478696 | 1.691 | 0.090862 |
| siteNessman | -0.721910| 0.677652 | -1.065 | 0.286735 |
| siteNWLF | -0.138061| 0.433020 | -0.319 | 0.749854 |
| siteSPP | 0.516341 | 0.448626 | 1.151 | 0.249757 |
| siteStevens | 0.080025 | 0.464014 | 0.172 | 0.863074 |
| levelhdct:siteEriley | -1.259136| 0.585222 | -2.152 | 0.031433 * |
| levelld:siteEriley| -0.548422| 0.554771 | -0.989 | 0.322881 |
Signif. codes: 0 ^ a ˘A¨Y***^ a˘A´Z 0.001 ^ a˘A¨Y**^ a˘A´Z 0.01 ^ a˘A¨Y*^ a˘A´Z 0.05 ^ a˘A¨Y.^ a˘A´Z 0.1 ^ a˘A¨Y ^ a˘A´Z 1

Original predictor variables dropped (aliased)
levelhdct
levelld

> anova(out5, out4, out3)

Analysis of Deviance Table

Model 1: resp ~ varb + nsloc + ewloc + level * site
Model 2: resp ~ varb + (level + year):(nsloc + ewloc) + level * site
Model 3: resp ~ varb + varb:nsloc + varb:ewloc + level * site

Model Df Model Dev Df Deviance P(>|Chi|)
1 29 2696.56
2 37 2668.39 8 28.18 0.0004416
3 45 2663.55 8 4.83 0.78

So we do not have goodness of fit, and this cannot be our “big model”.

2.6 Sixth Model, Intermediate Geometry, Levels

So we try again with the geometry.

> out6 <- aster(resp ~ varb + level:(nsloc + ewloc) +
+ level * site, pred, fam, varb, id, root, data = redata)
> summary(out6)

Call:
aster.formula(formula = resp ~ varb + level:(nsloc + ewloc) +
level * site, pred = pred, fam = fam, varvar = varb, idvar = id,
root = root, data = redata)

| | Estimate | Std. Error | z value | Pr(>|z|) |
|---------------------|-----------|-------------|---------|----------|
| (Intercept) | -1.907186 | 0.420138 | -4.539 | 5.64e-06 *** |
| varbf03 | -0.354186 | 0.266796 | -1.328 | 0.1843 |
| varbf04 | -0.319952 | 0.242895 | -1.317 | 0.1878 |
| varbhdc02 | 2.424075 | 0.542402 | 4.469 | 7.85e-06 *** |
| varbhdc03 | 2.447742 | 0.521950 | 4.690 | 2.74e-06 *** |
| varbhdc04 | 2.945476 | 0.514751 | 5.722 | 1.05e-08 *** |
| varbl02 | -0.626114 | 0.562017 | -1.114 | 0.2653 |
| varbl03 | 1.128493 | 0.611062 | 1.847 | 0.0648 |
| varbl04 | 4.254223 | 0.573494 | 7.418 | 1.19e-13 *** |
| siteEriley | 0.812524 | 0.451595 | 1.799 | 0.0720 |
| siteLf | 0.882088 | 0.481103 | 1.833 | 0.0667 |
| siteNessman | -0.593161 | 0.680863 | -0.871 | 0.3837 |
| siteNWLF | -0.110570 | 0.434822 | -0.254 | 0.7993 |
| siteSPP | 0.543515 | 0.450805 | 1.206 | 0.2280 |
| siteStevens | 0.114072 | 0.465336 | 0.245 | 0.8063 |
| levelfl:nsloc | 0.070763 | 0.014568 | 4.857 | 1.19e-06 *** |
| levelfd:nsloc | -0.006425 | 0.005465 | -1.176 | 0.2398 |
| levelld:nsloc | 0.008036 | 0.005924 | 1.356 | 0.1749 |
| levelfl:ewloc | 0.007768 | 0.014546 | 0.534 | 0.5933 |
| levelhdct:ewloc | 0.011689 | 0.005561 | 2.102 | 0.0356 |
| levelld:ewloc | -0.007240 | 0.006114 | -1.184 | 0.2363 |
| levelhdct:siteEriley| -1.350424 | 0.587897 | -2.297 | 0.0216 |
| levelld:siteEriley | -0.563945 | 0.552117 | -1.021 | 0.3071 |
| levelhdct:siteLf | -1.416802 | 0.631793 | -2.243 | 0.0249 |
| levelld:siteLf | -0.678297 | 0.587394 | -1.155 | 0.2482 |
| levelhdct:siteNessman| 0.405845 | 0.893667 | 0.454 | 0.6497 |
| levelld:siteNessman | 0.912760 | 0.777262 | 1.174 | 0.2403 |
| levelhdct:siteNWLF | 0.044673 | 0.554325 | 0.081 | 0.9358 |
| levelld:siteNWLF | 0.139453 | 0.530726 | 0.263 | 0.7927 |
| levelhdct:siteSPP | -0.705876 | 0.574445 | -1.229 | 0.2191 |
| levelld:siteSPP | -0.481472 | 0.560611 | -0.859 | 0.3904 |
| levelhdct:siteStevens| -0.218838 | 0.594180 | -0.368 | 0.7126 |
| levelld:siteStevens | -0.242044 | 0.568322 | -0.426 | 0.6702 |

Signif. codes: 0 ^ a®V***âÁŽ 0.001 ^ a®V**âÁŽ 0.01 ^ a®V*âÁŽ 0.05 ^ a®V.âÁŽ 0.1 ^ a®V 0.1 1

12
Original predictor variables dropped (aliased)

levelhdct
levelld

> anova(out5, out6, out4, out3)

Analysis of Deviance Table

| Model | Model Df | Model Dev | Df | Deviance | P(>|Chi|) |
|------------------------|----------|-----------|----|----------|---------|
| Model 1: resp ~ varb + nsloc + ewloc + level * site | 29 | 2696.56 | 4 | 21.87 | 0.000213|
| Model 2: resp ~ varb + level:(nsloc + ewloc) + level * site | 33 | 2674.70 | 4 | 6.31 | 0.18 |
| Model 3: resp ~ varb + (level + year):(nsloc + ewloc) + level * site | 37 | 2668.39 | 4 | 4.83 | 0.78 |
| Model 4: resp ~ varb + varb:nsloc + varb:ewloc + level * site | 45 | 2663.55 | 8 | | |

So we have goodness of fit, and this can be our “big model”. But why drop year rather than level?

2.7 Seventh Model, Intermediate Geometry, Years

So we try again with the geometry.

> out7 <- aster(resp ~ varb + year:(nsloc + ewloc) +
 + level * site, pred, fam, varb, id, root, data = redata)
> summary(out7)

Call:
aster.formula(formula = resp ~ varb + year:(nsloc + ewloc) +
 level * site, pred = pred, fam = fam, varvar = varb, idvar = id,
 root = root, data = redata)

 Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.737420 0.416050 -4.176 2.97e-05 ***
varbfl03 -0.316825 0.265066 -1.195 0.231981
varbfl04 -0.337380 0.241251 -1.398 0.161973
varbhdct02 2.193871 0.538051 4.077 4.55e-05 ***
varbhdct03 2.168558 0.517159 4.193 2.75e-05 ***
varbhdct04 2.713968 0.510169 5.320 1.04e-07 ***
<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Standard Error</th>
<th>z value</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>varbld02</td>
<td>-0.778587</td>
<td>0.562724</td>
<td>-1.384</td>
<td>0.166480</td>
</tr>
<tr>
<td>varbld03</td>
<td>0.992898</td>
<td>0.611831</td>
<td>1.623</td>
<td>0.104625</td>
</tr>
<tr>
<td>varbld04</td>
<td>4.099985</td>
<td>0.574053</td>
<td>7.142</td>
<td>9.19e-13 ***</td>
</tr>
<tr>
<td>siteEriley</td>
<td>0.741522</td>
<td>0.449483</td>
<td>1.650</td>
<td>0.099000 .</td>
</tr>
<tr>
<td>siteLf</td>
<td>0.799687</td>
<td>0.479291</td>
<td>1.668</td>
<td>0.095221 .</td>
</tr>
<tr>
<td>siteNessman</td>
<td>-0.727352</td>
<td>0.678773</td>
<td>-1.072</td>
<td>0.283914</td>
</tr>
<tr>
<td>siteNWLF</td>
<td>-0.128513</td>
<td>0.433273</td>
<td>-0.297</td>
<td>0.766765</td>
</tr>
<tr>
<td>siteSPP</td>
<td>0.507401</td>
<td>0.449178</td>
<td>1.130</td>
<td>0.258636</td>
</tr>
<tr>
<td>siteStevens</td>
<td>0.075879</td>
<td>0.464452</td>
<td>0.163</td>
<td>0.870225</td>
</tr>
<tr>
<td>yearyr02:nsloc</td>
<td>0.009909</td>
<td>0.004372</td>
<td>2.266</td>
<td>0.023441 *</td>
</tr>
<tr>
<td>yearyr03:nsloc</td>
<td>0.019664</td>
<td>0.004995</td>
<td>3.937</td>
<td>8.27e-05 ***</td>
</tr>
<tr>
<td>yearyr04:nsloc</td>
<td>0.012311</td>
<td>0.003276</td>
<td>3.758</td>
<td>0.000172 ***</td>
</tr>
<tr>
<td>yearyr02:ewloc</td>
<td>0.010774</td>
<td>0.004435</td>
<td>2.430</td>
<td>0.015116 *</td>
</tr>
<tr>
<td>yearyr03:ewloc</td>
<td>0.008521</td>
<td>0.004798</td>
<td>1.776</td>
<td>0.075742 .</td>
</tr>
<tr>
<td>yearyr04:ewloc</td>
<td>0.001578</td>
<td>0.003246</td>
<td>0.486</td>
<td>0.626836</td>
</tr>
<tr>
<td>levelhdct:siteEriley</td>
<td>-1.239189</td>
<td>0.585903</td>
<td>-2.115</td>
<td>0.034429 *</td>
</tr>
<tr>
<td>levelld:siteEriley</td>
<td>-0.532712</td>
<td>0.555127</td>
<td>-0.960</td>
<td>0.337246</td>
</tr>
<tr>
<td>levelhdct:siteLf</td>
<td>-1.294188</td>
<td>0.630147</td>
<td>-2.054</td>
<td>0.039996 *</td>
</tr>
<tr>
<td>levelld:siteLf</td>
<td>-0.624375</td>
<td>0.591157</td>
<td>-1.056</td>
<td>0.290881</td>
</tr>
<tr>
<td>levelhdct:siteNessman</td>
<td>0.587678</td>
<td>0.891330</td>
<td>0.659</td>
<td>0.509686</td>
</tr>
<tr>
<td>levelld:siteNessman</td>
<td>1.055395</td>
<td>0.779991</td>
<td>1.353</td>
<td>0.176028</td>
</tr>
<tr>
<td>levelhdct:siteNWLF</td>
<td>0.059302</td>
<td>0.552518</td>
<td>0.107</td>
<td>0.914526</td>
</tr>
<tr>
<td>levelld:siteNWLF</td>
<td>0.174231</td>
<td>0.534494</td>
<td>0.326</td>
<td>0.744444</td>
</tr>
<tr>
<td>levelhdct:siteSPP</td>
<td>-0.650145</td>
<td>0.572908</td>
<td>-1.135</td>
<td>0.256452</td>
</tr>
<tr>
<td>levelld:siteSPP</td>
<td>-0.463775</td>
<td>0.564970</td>
<td>-0.821</td>
<td>0.411712</td>
</tr>
<tr>
<td>levelhdct:siteStevens</td>
<td>-0.165745</td>
<td>0.593407</td>
<td>-0.279</td>
<td>0.760007</td>
</tr>
<tr>
<td>levelld:siteStevens</td>
<td>-0.211556</td>
<td>0.573114</td>
<td>-0.369</td>
<td>0.712028</td>
</tr>
</tbody>
</table>

Signif. codes: 0 ^ a ˘A¨Y***^ a˘A´Z 0.001 ^ a˘A¨Y**^ a˘A´Z 0.01 ^ a˘A¨Y*^ a˘A´Z 0.05 ^ a˘A¨Y ^ a˘A´Z 1

Original predictor variables dropped (aliased)
 levelhdct
 levelld

> anova(out5, out7, out4, out3)

Analysis of Deviance Table

Model 1: resp ~ varb + nsloc + ewloc + level * site
Model 2: resp ~ varb + year:(nsloc + ewloc) + level * site
Model 3: \(\text{resp} \sim \text{varb} + (\text{level} + \text{year}) : (\text{nsloc} + \text{ewloc}) + \text{level} \times \text{site} \)

Model 4: \(\text{resp} \sim \text{varb} + \text{varb:nsloc} + \text{varb:ewloc} + \text{level} \times \text{site} \)

| Model | Df | Model Dev | Df | Deviance | P(>|Chi|) |
|-------|----|-----------|----|----------|----------|
| 1 | 29 | 2696.56 | 0 | 0 | |
| 2 | 33 | 2691.95 | 4 | 4.61 | 0.33 |
| 3 | 37 | 2668.39 | 4 | 23.57 | 9.761e-05|
| 4 | 45 | 2663.55 | 8 | 4.83 | 0.78 |

And we do not have goodness of fit! So Model Six is our “big model” and we have been logical in our model selection. Note that it is not valid to compare Models Six and Seven because they are not nested, but both fit between Models Five and Four, so Six and Seven can each be compared to both Five and Four (and this tells us what we want to know).

2.8 Eighth Model, Like Models Two and Six

We need to make a model with the structure of Model Two with respect to variables and like Model Six with respect to geometry.

```r
> out8 <- aster(resp ~ varb + level:(nsloc + ewloc) +
>          hdct * site - site, pred, fam, varb, id, root,
>          data = redata)
> summary(out8)
```

Call:
aster.formula(formula = resp ~ varb + level:(nsloc + ewloc) +
hdct * site - site, pred = pred, fam = fam, varvar = varb,
idvar = id, root = root, data = redata)

| | Estimate | Std. Error | z value | Pr(>|z|) |
|------------------|----------|------------|---------|----------|
| (Intercept) | -1.591968| 0.184332 | -8.636 | <2e-16 ***|
| varbf103 | -0.349096| 0.267919 | -1.303 | 0.19258 |
| varbf104 | -0.344222| 0.243899 | -1.411 | 0.15815 |
| varbhdct02 | 1.991976 | 0.265192 | 7.511 | <2e-16 ***|
| varbhdct03 | 2.013936 | 0.219375 | 9.180 | <2e-16 ***|
| varbhdct04 | 2.521890 | 0.205048 | 12.299 | <2e-16 ***|
| varbld02 | -0.874272| 0.315703 | -2.769 | 0.00562 **|
| varbld03 | 0.895081 | 0.396189 | 2.259 | 0.02387 * |
| varbld04 | 4.036755 | 0.334266 | 12.076 | <2e-16 ***|
| levelfl:nsloc | 0.070102 | 0.014652 | 4.785 | 1.71e-06 ***|
| levelhdct:nsloc | -0.005804| 0.005550 | -1.046 | 0.29564 |
leve1ld:nsloc 0.007165 0.005867 1.221 0.22196
leve1fl:ewloc 0.017977 0.014413 1.247 0.21229
leve1hdct:ewloc 0.007606 0.005561 1.368 0.17138
leve1ld:ewloc -0.004787 0.005919 -0.809 0.41863
hdct:siteEriley -0.178799 0.089411 -2.000 0.04553 *
hdct:siteLf -0.162516 0.096116 -1.691 0.09087 .
hdct:siteNessman -0.315507 0.138823 -2.273 0.02304 *
hdct:siteNWLF -0.108209 0.083110 -1.302 0.19292
hdct:siteSPP 0.019942 0.086198 0.231 0.81704
hdct:siteStevens -0.129238 0.089129 -1.450 0.14706

Signif. codes: 0 ^ a^Y***a^Z 0.001 ^ a^Y**a^Z 0.01 ^ a^Y*a^Z 0.05 ^ a^Y.a^Z 0.1 ^ a^Y a^Z 1

Original predictor variables dropped (aliased)

dct

> anova(out8, out6)

Analysis of Deviance Table

Model 1: resp ~ varb + level:(nsloc + ewloc) + hdct * site - site
Model 2: resp ~ varb + level:(nsloc + ewloc) + level * site
 Model Df Model Dev Df Deviance P(>|Chi|)
1 21 2712.54
2 33 2674.70 12 37.84 0.0001632

2.9 Ninth Model, Like Models One and Eight

We need to make a model with the structure of Model Eight except no sites.

> out9 <- aster(resp ~ varb + level:(nsloc + ewloc),
+ pred, fam, varb, id, root, data = redata)
> summary(out9)

Call:
aster.formula(formula = resp ~ varb + level:(nsloc + ewloc),
 pred = pred, fam = fam, varvar = varb, idvar = id, root = root,
 data = redata)

 Estimate Std. Error z value Pr(>|z|)

> anova(out9, out8, out6)

Analysis of Deviance Table

Model 1: resp ~ varb + level:(nsloc + ewloc)
Model 2: resp ~ varb + level:(nsloc + ewloc) + hdct * site - site
Model 3: resp ~ varb + level:(nsloc + ewloc) + level * site

Model Df Model Dev Df Deviance P(>|Chi|)
1 15 2728.72
2 21 2712.54 6 16.18 0.01
3 33 2674.70 12 37.84 0.0001632

2.10 Tenth Model, Between Models Six and Eight

We accidentally created a new tenth model by not understanding the "minus site" stuff in the formulae for Models Two and Eight.

> out10 <- aster(resp ~ varb + level:(nsloc + ewloc) +
+ hdct * site, pred, fam, varb, id, root, data = redata)
> summary(out10)

Call:
aster.formula(formula = resp ~ varb + level:(nsloc + ewloc) +

hdct * site, pred = pred, fam = fam, varvar = varb, idvar = id,
root = root, data = redata)

| Estimate | Std. Error | z value | Pr(>|z|) |
|----------|------------|---------|----------|
| (Intercept) | -1.726122 | 0.223462 | -7.724 | 1.12e-14 *** |
| varbf103 | -0.349106 | 0.266693 | -1.309 | 0.19053 |
| varbf104 | -0.330903 | 0.242658 | -1.364 | 0.17268 |
| varbhdct02 | 2.203913 | 0.331242 | 6.653 | 2.86e-11 *** |
| varbhdct03 | 2.226234 | 0.296256 | 7.515 | 5.71e-14 *** |
| varbhdct04 | 2.732111 | 0.258514 | 9.559 | < 2e-16 *** |
| varbl02 | -0.861178 | 0.316060 | -2.725 | 0.00644 ** |
| varbl03 | 0.888715 | 0.396338 | -2.242 | 0.02496 * |
| varbl04 | 4.008350 | 0.334436 | 11.985 | < 2e-16 *** |
| siteEriley | 0.375414 | 0.154884 | 2.424 | 0.01536 * |
| siteLf | 0.355237 | 0.164870 | -2.155 | 0.03119 * |
| siteNessman | 0.231430 | 0.189693 | -1.220 | 0.22245 |
| siteNWLF | 0.012016 | 0.145094 | 0.083 | 0.93400 |
| siteSPP | 0.185498 | 0.158948 | -1.167 | 0.24319 |
| siteStevens | -0.069680 | 0.153063 | 0.455 | 0.64894 |
| levelfl:nsloc | 0.070918 | 0.014584 | 4.863 | 1.16e-06 *** |
| levelhdct:nsloc | -0.006532 | 0.005504 | 1.187 | 0.23528 |
| levelld:nsloc | 0.007901 | 0.005959 | 1.326 | 0.18488 |
| levelld:ewloc | 0.014308 | 0.014359 | 0.996 | 0.31904 |
| levelhdct:ewloc | 0.010083 | 0.005557 | 1.814 | 0.06961 . |
| levelld:ewloc | -0.009182 | 0.006100 | -1.505 | 0.13231 |
| hdct:siteEriley | -0.794844 | 0.264102 | -3.010 | 0.00262 ** |
| hdct:siteLf | -0.744006 | 0.282716 | -2.632 | 0.00850 ** |
| hdct:siteNessman | -0.705433 | 0.355627 | -1.984 | 0.04730 * |
| hdct:siteNWLF | -0.114923 | 0.245244 | -0.469 | 0.63935 |
| hdct:siteSPP | -0.270775 | 0.262750 | -1.031 | 0.30276 |
| hdct:siteStevens | 0.003604 | 0.260305 | 0.014 | 0.98895 |

Signif. codes: 0 '^' 0.001 '^' 0.01 '^' 0.05 '^' 0.1 ' ' 1

Original predictor variables dropped (aliased)
hdct

> anova(out9, out8, out10, out6)

Analysis of Deviance Table
Model 1: resp ~ varb + level:(nsloc + ewloc)
Model 2: resp ~ varb + level:(nsloc + ewloc) + hdct * site - site
Model 3: resp ~ varb + level:(nsloc + ewloc) + hdct * site
Model 4: resp ~ varb + level:(nsloc + ewloc) + level * site

| Model | Df | Model Dev | Df | Deviance | P(>|Chi|) |
|-------|----|-----------|----|----------|----------|
| 1 | 15 | 2728.72 | 2 | 2712.54 | 6 | 16.18 | 0.01 |
| 2 | 21 | 2684.86 | 6 | 27.67 | 0.0001083 |
| 3 | 27 | 2674.70 | 6 | 10.17 | 0.12 |

So this says that Model Ten (which only has 12 d. f. for “site”) can be the big model.

> save(redata, out6, out8, out9, out10, pred, fam, + file = "coneflr.RData")

3 Mean Value Parameters

3.1 Unconditional

As argued in Aster Models, canonical parameters are “meaningless.” Only mean value parameters have real world, scientific interpretability.

So in this section we compare predicted values for a typical individual (say zero-zero geometry) in each site under both Models Six and Eight. The functional of mean value parameters we want is total head count, since this has the biological interpretation of the component of fitness measured in this data set. A biologist (at least an evolutionary biologist) is interested in the “predecessor variables” of head count only insofar as they contribute to head count. Two sets of parameter values that “predict” the same expected total head count (over the three years the data were collected) have the same contribution to fitness. So that is the “prediction” (really functional of mean value parameters) we “predict.”

To do this we must construct “newdata” for these hypothetical individuals.

> newdata <- data.frame(site = levels(echinacea$site))
> for (v in vars) newdata[[v]] <- 1
> newdata$root <- 1
> newdata$ewloc <- 0
> newdata$nsloc <- 0
> renewdata <- reshape(newdata, varying = list(vars),
We are using bogus data $x_{ij} = 1$ for all i and j because unconditional mean value parameters do not depend on x. We have to have an x argument because that’s the way the aster package functions work (ultimately due to limitations of the R formula mini-language). So it doesn’t matter what we make it. In the following section, the predictions will depend on x, but then (as we shall argue), this is the x we want.

> nind <- nrow(newdata)
> nnode <- length(vars)
> amat <- array(0, c(nind, nnode, nind))
> for (i in 1:nind) amat[i, grep("hdct", vars), i] <- 1
> pout6 <- predict(out6, varvar = varb, idvar = id, root = root, newdata = renewdata, se.fit = TRUE, amat = amat)
> pout8 <- predict(out8, varvar = varb, idvar = id, root = root, newdata = renewdata, se.fit = TRUE, amat = amat)

Figure 1 is produced by the following code
> conf.level <- 0.95
> crit <- qnorm((1 + conf.level)/2)

> sitenames <- as.character(newdata$site)
> fit8 <- pout8$fit
> i <- seq(along = sitenames)
> ytop <- fit8 + crit * pout8$se.fit
> ybot <- fit8 - crit * pout8$se.fit
> plot(c(i, i), c(ytop, ybot), type = "n", axes = FALSE,
+ xlab = "", ylab = "")
> segments(i, ybot, i, ytop)
> foo <- 0.1
> segments(i - foo, ybot, i + foo, ybot)
> segments(i - foo, ytop, i + foo, ytop)
> segments(i - foo, fit8, i + foo, fit8)
> axis(side = 2)
> title(ylab = "unconditional mean value parameter")
> axis(side = 1, at = i, labels = sitenames)
> title(xlab = "site")

and appears on p. 22.

Figure 2 is produced by the following code

> fit6 <- pout6$fit
> i <- seq(along = sitenames)
> foo <- 0.1
> y8top <- fit8 + crit * pout8$se.fit
> y8bot <- fit8 - crit * pout8$se.fit
> y6top <- fit6 + crit * pout6$se.fit
> y6bot <- fit6 - crit * pout6$se.fit
> plot(c(i - 1.5 * foo, i - 1.5 * foo, i + 1.5 * foo,
+ i + 1.5 * foo), c(y8top, y8bot, y6top, y6bot),
+ type = "n", axes = FALSE, xlab = "", ylab = "")
> segments(i - 1.5 * foo, y8bot, i - 1.5 * foo, y8top)
> segments(i - 2.5 * foo, y8bot, i - 0.5 * foo, y8bot)
> segments(i - 2.5 * foo, y8top, i - 0.5 * foo, y8top)
> segments(i - 2.5 * foo, fit8, i - 0.5 * foo, fit8)
> segments(i + 1.5 * foo, y6bot, i + 1.5 * foo, y6top,
+ lty = 2)
> segments(i + 2.5 * foo, y6bot, i + 0.5 * foo, y6bot)
> segments(i + 2.5 * foo, y6top, i + 0.5 * foo, y6top)
Figure 1: 95% confidence intervals for unconditional mean value parameter for fitness (sum of head count for all years) at each site for a “typical” individual having position zero-zero and having the parameterization of Model Eight. Tick marks in the middle of the bars are the center (the MLE).
3.2 Conditional

This section is very incomplete. We don’t redo everything using conditional models. That’s not the point. We only want to show that conditional models and conditional mean value parameters just don’t do the same thing as unconditional models (which is obvious, but some people like examples, and in any case, this gives us an opportunity to show some options of aster model fitting).

3.2.1 Conditional Models

Let us redo Figure 2 based on conditional models with the same model matrices (a dumb idea, since the meaning of the models is entirely different despite the similarity in algebra, but we want to hammer the point home).

```r
> cout6 <- aster(resp ~ varb + level:(nsloc + ewloc) +
+       level * site, pred, fam, varb, id, root, data = redata,
+       type = "conditional")
> cout8 <- aster(resp ~ varb + level:(nsloc + ewloc) +
+      hdct * site - site, pred, fam, varb, id, root,
+      data = redata, type = "conditional")
> pcout6 <- predict(cout6, varvar = varb, idvar = id,
+       root = root, newdata = renewdata, se.fit = TRUE,
+       amat = amat)
> pcout8 <- predict(cout8, varvar = varb, idvar = id,
+       root = root, newdata = renewdata, se.fit = TRUE,
+       amat = amat)
```

Note that these are exactly like the analogous statements making the analogous objects without the “c” in their names except for the type = "conditional" arguments in the two aster function calls. Then we make Figure 3 just like Figure 2 except for using pcout6 and pcout8 instead of pout6 and pout8. It appears on p. 25.
Figure 2: 95% confidence intervals for unconditional mean value parameter for fitness (sum of head count for all years) at each site for a “typical” individual having position zero-zero and having the parameterization of Model Eight (solid bar) or Model Six (dashed bar). Tick marks in the middle of the bars are the center (the MLE).
Figure 3: 95% confidence intervals for unconditional mean value parameter for fitness (sum of head count for all years) at each site for a “typical” individual having position zero-zero and having the parameterization of Model Eight (solid bar) or Model Six (dashed bar). Tick marks in the middle of the bars are the center (the MLE). The difference between this figure and Figure 2 is that the models fitted are conditional rather than unconditional.
Note the huge difference between Figure 2 and Figure 3. The same model matrices are used in both cases. The linear predictor satisfies $\eta = \mathbf{M}\beta$, but in one case (Figure 2) the linear predictor is the unconditional canonical parameter ($\eta = \phi$) and in the other case (Figure 3) the linear predictor is the conditional canonical parameter ($\eta = \theta$). In one case (Figure 2) the predictions of a linear functional of the unconditional mean value parameter (τ) are nearly the same for the two models and in the other case (Figure 3) the predictions of the same linear functional of τ are wildly different.

Conclusion: conditional models and unconditional models are different. That’s the whole point. That’s why unconditional models were invented, because conditional models can’t be made to do the same thing.

3.2.2 Conditional Parameter

Let us redo Figure 2 now not changing the model (we still use the fits `out6` and `out8`) but changing the thingummy we “predict”. In Figure 2 we “predict” a linear functional $\mathbf{A}'\tau$ of the unconditional mean value parameter (the sum of three components of τ, those for flower head count). In Figure 4 we predict the same linear functional $\mathbf{A}'\xi$ of the *conditional* mean value parameter ξ.

```r
> pxout6 <- predict(out6, varvar = varb, idvar = id,
+                  root = root, newdata = renewdata, se.fit = TRUE,
+                  amat = amat, model.type = "conditional")
> pxout8 <- predict(out8, varvar = varb, idvar = id,
+                  root = root, newdata = renewdata, se.fit = TRUE,
+                  amat = amat, model.type = "conditional")
```

Note that these are exactly like the analogous statements making the analogous objects without the “x” in their names except for the `model.type = "conditional"` arguments in the two `predict` function calls. Then we make Figure 4 just like Figure 2 except for using `pxout6` and `pxout8` instead of `pout6` and `pout8`. It appears on p. 27.

Note the huge difference between Figure 2 and Figure 4. The same models are used in both cases but in one case (Figure 2) we “predict” a linear functional $\mathbf{A}'\tau$ of the unconditional mean value parameter (τ) and in the other case (Figure 4) we “predict” the *same* linear functional $\mathbf{A}'\xi$ of the conditional mean value parameter (ξ).

Conclusion: conditional expectations and unconditional expectations are different. (Duh!) The two sorts of predictions can’t be made to do the same thing.
Figure 4: 95% confidence intervals for conditional mean value parameter for fitness (sum of head count for all years) at each site for a “typical” individual having position zero-zero and having the parameterization of Model Eight (solid bar) or Model Six (dashed bar). Tick marks in the middle of the bars are the center (the MLE). The difference between this figure and Figure 2 is that the parameters “predicted” are *conditional* rather than *unconditional*.
A Plot for the Paper

We redo Figure 2 changing the models compared to Model 8 and Model 10 (fits in out8 and out10).

> pout10 <- predict(out10, varvar = varb, idvar = id,
+ root = root, newdata = renewdata, se.fit = TRUE,
+ amat = amat)

It appears on p. 29.
Figure 5: 95% confidence intervals for unconditional mean value parameter for fitness (sum of head count for all years) at each site for a “typical” individual having position zero-zero and having the parameterization of Model Eight (solid bar) or Model Ten (dashed bar). Tick marks in the middle of the bars are the center (the MLE).