A GLM Example

Charles J. Geyer Ruth G. Shaw Stuart Wagenius

November 3, 2003

As part of a research program to assess the evolutionary consequences of extreme population fragmentation, Stuart Wagenius has conducted a field experiment to study seedling recruitment in *Echinacea angustifolia* (purple coneflower). The experiment was designed to test the effect of different vegetation types and burn treatments on recruitment. Interactions between these factors were also of interest.

Approximately 100 seeds were sown into each plot. In order to establish the viability of each seed lot, germination trials were conducted in the lab on randomly chosen lots of a known number of seeds (also around 100). It was of interest to take into account the results of the germination trials in the analysis of the data from the field experiment.

The experiment was conducted for three years, with new lots of seeds sown into a separate set of plots in the fall of each year and seedling establishment monitored in the spring.

The data for the year 2003 can be read into R and inspected by

```r
> mydata <- read.table("seeds.txt")
> summary(mydata)

vegtype   burn01  burn02  burn03  totalseeds
lab        15      15      15      15  Min. : 96.0
oldfieldcool:72 no :102 no :114 no :126 1st Qu.:100.0
oldfieldwarm:18 yes: 60 yes: 48 yes: 36 Median :100.0
plantcool :36                     Mean :100.2
plantwarm :36                     3rd Qu.:100.0
                       Max. :111.0

seedlings
Min. : 0.000
1st Qu.: 0.000
Median : 1.000
Mean : 3.475
3rd Qu.: 4.000
Max. :29.000
```

from which we see there are six variables in the data set *vegtype, burn01, burn02, burn03, totalseeds*, and *seedlings*.
Working backwards from the end, seedlings is the number of seedlings that sprouted. In regression thinking, this is the response and is assumed to be \(\text{Poisson}(n\lambda) \), where \(n \) is the number of seeds sown.

We fit such a model as a Poisson regression. If we use the canonical log link, then the linear predictor is the same as the canonical parameter

\[
\eta = \log(n) + \log(\lambda)
\]

thus we see that \(\log(n) \) is just a known constant additive term in the linear predictor. The way R handles such a term in the linear predictor that does not contain an unknown parameter to fit is as an “offset”. Since the variable \(n \) in the math formula is the variable totalseeds in R, the “offset” is \(\text{offset}(\log(\text{totalseeds})) \).

The rest of the variables in the data set (vegtype and the three burn variables) are predictor variables. The \(\log(\lambda) \) in the linear predictor is a linear function of the regression coefficients and an arbitrary function of the predictor variables.

The variable vegtype indicates the type of field. The oldfield part of a value (in both oldfieldcool and oldfieldwarm) indicates that the field was once used for agriculture. The warm part of a value (in both oldfieldwarm and plantwarm) indicates warm weather grasses were growing in the field and the cool part of a value indicates cool weather grasses. The value lab for this variable indicates plants grown in the lab, in which case the other properties are irrelevant (the lab has no wild grasses growing nor other relevant previous uses).

The value yes for the variables burn01, burn02, and burn03 indicates that a field was burned in 2001, 2002, or 2003, respectively. The value lab for the variables again indicates plants grown in the lab, in which case the other properties are irrelevant (the lab was not burned).

Owing to a mistake in the experimental design burn03 is completely confounded with vegtype and hence has been omitted from the analysis (this isn’t right, but it is not clear what else to do).

1 Fitting Poisson Regression Models

The way R fits a model like this is, for example,

```r
> out <- glm(seedlings ~ vegtype + burn01 + burn02 + offset(log(totalseeds)), +   data = mydata, family = poisson)
> summary(out)
```

Call:
```
glm(formula = seedlings ~ vegtype + burn01 + burn02 + offset(log(totalseeds)),
    family = poisson, data = mydata)
```

Deviance Residuals:
Min 1Q Median 3Q Max
-2.7099 -1.7682 -0.7277 0.7292 4.7376

Coefficients: (2 not defined because of singularities)

| | Estimate | Std. Error | z value | Pr(>|z|) |
|---------------------|----------|------------|---------|----------|
| (Intercept) | -1.63528 | 0.05793 | -28.229 | < 2e-16 *** |
| vegtypeoldfieldcool | -1.11844 | 0.19266 | -5.805 | 6.43e-09 *** |
| vegtypeoldfieldwarm | -0.98491 | 0.22438 | -4.390 | 1.14e-05 *** |
| vegtypeplantcool | -2.53154 | 0.27442 | -9.225 | < 2e-16 *** |
| vegtypeplantwarm | -1.72796 | 0.22884 | -7.551 | 4.32e-14 *** |
| burn01no | -0.68432 | 0.15289 | -4.476 | 7.61e-06 *** |
| burn01yes | NA | NA | NA | |
| burn02no | -0.72038 | 0.15623 | -4.611 | 4.01e-06 *** |
| burn02yes | NA | NA | NA | |

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1268.00 on 176 degrees of freedom
Residual deviance: 501.15 on 170 degrees of freedom
AIC: 834.22

Number of Fisher Scoring iterations: 6

The reason why there are two undefined regression coefficients is because the three lab dummy variables are all the same

> attach(mydata)
> identical(vegtype == "lab", burn01 == "lab")

[1] TRUE

> identical(vegtype == "lab", burn02 == "lab")

[1] TRUE

Thus there is really only one “lab” dummy variable rather than three (one for each predictor). Hence this model is rank deficient with rank two less than full.

Generally, R always does the right thing about dummy variables. It creates all the dummy variables and then drops variables until it gets down to a linearly independent set (but see Section 1.2 below where it messes this up).

An alternative way to deal with the “offset” is to use the offset optional argument to the glm function, rather than using the offset function in the formula

> out.too <- glm(seedlings ~ vegtype + burn01 + burn02, offset = log(totalseeds), + data = mydata, family = poisson)
> all.equal(coefficients(out), coefficients(out.too))
1.1 More Model Fitting

We fit some more models and compare them.

```r
> out.noveg <- glm(seedlings ~ burn02 + burn01 + offset(log(totalseeds)),
+     data = mydata, family = poisson)
> summary(out.noveg)

Call:
  glm(formula = seedlings ~ burn02 + burn01 + offset(log(totalseeds)),
     family = poisson, data = mydata)

Deviance Residuals:
  Min       1Q   Median       3Q      Max
-2.2267  -1.5275  -1.0689   0.4755   5.7121

Coefficients: (1 not defined because of singularities)
                Estimate Std. Error z value Pr(>|z|)
(Intercept)  -1.63528    0.05793  -28.229   < 2e-16 ***
burn02no    -2.15896    0.10375  -20.810   < 2e-16 ***
burn02yes   -1.40519    0.18719   -7.507  6.06e-14 ***
burn01no    -0.65678    0.15258   -4.305   1.67e-05 ***
burn01yes     NA         NA         NA         NA
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

  Null deviance: 1268.0 on 176 degrees of freedom
  Residual deviance: 573.4 on 173 degrees of freedom
  AIC: 900.47

Number of Fisher Scoring iterations: 6

> anova(out.noveg, out, test = "Chisq")

Analysis of Deviance Table

Model 1: seedlings ~ burn02 + burn01 + offset(log(totalseeds))
Model 2: seedlings ~ vegtype + burn01 + burn02 + offset(log(totalseeds))

  Resid. Df Resid. Dev  Df Deviance P(>|Chi|)
1   173    573.40
2   170    501.15   3   72.25  1.409e-15

From the analysis of deviance test (also called, likelihood ratio test) we cannot drop vegtype.
Similar analyses (not shown) show that we cannot drop burn01 or burn02 either. In each case, the fit of the model

\[
\text{seedlings} \sim \text{vegtype} + \text{burn01} + \text{burn02} + \text{offset}(\log(\text{totalseeds}))
\]

is highly statistically significantly better than the model obtained by dropping one of the predictors (the \(P\)-value being less than \(3.749442\times10^{-6}\) in each of the three tests).

### 1.2 R Messes Up

So how about some bigger models? With interaction terms? The first one the scientists analyzing the data tried was

```r
> out.fubar <- glm(seedlings ~ burn01 + vegtype * burn02 + offset(log(totalseeds)),
+ data = mydata, family = poisson)
> summary(out.fubar)
```

Call:

```r
glm(formula = seedlings ~ burn01 + vegtype * burn02 + offset(log(totalseeds)),
 family = poisson, data = mydata)
```

Deviance Residuals:

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>1Q</th>
<th>Median</th>
<th>3Q</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-2.7099</td>
<td>-1.7682</td>
<td>-0.7804</td>
<td>0.7292</td>
<td>4.7376</td>
</tr>
</tbody>
</table>

Coefficients: (2 not defined because of singularities)

|                  | Estimate | Std. Error | z value | Pr(>|z|) |
|------------------|----------|------------|---------|----------|
| (Intercept)      | -6.6586  | 7.3144     | -0.910  | 0.362640 |
| burn01no         | -2.3900  | 0.1813     | -13.182 | < 2e-16  ***
| burn01yes        | -1.7057  | 0.2313     | -7.375  | 1.65e-13 ***
| vegtypeoldfieldcool | 0.6095 | 0.1599     | 3.812   | 0.000138 ***
| vegtypeoldfieldwarm | 0.7431 | 0.1969     | 3.773   | 0.000161 ***
| vegtypeplantcool | -0.8036  | 0.2525     | -3.183  | 0.001459 **
| vegtypeplantwarm | NA       | NA         | NA      | NA      |
| burn02no         | -0.7204  | 0.1562     | -4.611  | 4.01e-06 ***
| burn02yes        | NA       | NA         | NA      | NA      |
| offset(log(totalseeds)) | 1.0860  | 1.5810  | 0.687   | 0.492143 |

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1268.00 on 176 degrees of freedom
Residual deviance: 500.69 on 169 degrees of freedom
AIC: 835.75

Number of Fisher Scoring iterations: 6
but the scientists, on looking at the regression coefficients, thought there was something funny about them. There are two things funny.

- no interaction dummy variables, and
- a regression coefficient that goes with the offset.

So they asked the statistician, and after a great deal of groveling in source code and experimenting to see what R does to different inputs found that the following code does the right thing.

```r
> out.ok <- glm(seedlings ~ vegtype * burn02 + burn01, offset = log(totalseeds),
+ data = mydata, family = poisson)
> summary(out.ok)

Call:
glm(formula = seedlings ~ vegtype * burn02 + burn01, family = poisson,
 data = mydata, offset = log(totalseeds))

Deviance Residuals:
 Min 1Q Median 3Q Max
-3.1623 -1.6490 -0.6597 0.7224 4.2569

Coefficients: (7 not defined because of singularities)
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.63528 0.05793 -28.229 < 2e-16 ***
vegtypeoldfieldcool -1.18018 0.20074 -5.879 4.12e-09 ***
vegtypeoldfieldwarm -0.69675 0.24519 -2.842 0.00449 **
vegtypeplantcool -2.08304 0.30570 -6.814 9.48e-12 ***
vegtypeplantwarm -17.60877 520.82436 -0.034 0.97303
burn02no NA NA NA NA
burn01yes NA NA NA NA
burn01no -0.66371 0.15306 -4.336 1.45e-05 ***
burn01yes NA NA NA NA
vegtypeoldfieldcool:burn02no -16.02342 520.82437 -0.031 0.97546
vegtypeoldfieldwarm:burn02no -16.68743 520.82442 -0.032 0.97444
vegtypeplantcool:burn02no -17.09290 520.82454 -0.033 0.97382
vegtypeplantwarm:burn02no NA NA NA NA
vegtypeoldfieldcool:burn02yes NA NA NA NA
vegtypeoldfieldwarm:burn02yes NA NA NA NA
vegtypeplantcool:burn02yes NA NA NA NA
vegtypeplantwarm:burn02yes NA NA NA NA

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1268.00 on 176 degrees of freedom
Residual deviance: 467.14 on 167 degrees of freedom
AIC: 806.2

Number of Fisher Scoring iterations: 13

Because of our complaints, we need to be specific about the the version of R used here

> R.version.string

[1] "R version 1.8.0, 2003-10-08"

1.3 Checking by Hand

Let us check that the models we think are accurate are actually accurate. First we get the design matrices.

> out <- glm(seedlings ~ vegtype + burn01 + burn02, offset = log(totalseeds), + data = mydata, family = poisson, x = TRUE)
> out.ok <- glm(seedlings ~ vegtype * burn02 + burn01, offset = log(totalseeds), + data = mydata, family = poisson, x = TRUE)
> dimnames(out$x)[[2]]

[1] "(Intercept)" "vegtypeoldfieldcool" "vegtypeoldfieldwarm"
[4] "vegtypeplantcool" "vegtypeplantwarm" "burn01no"
[7] "burn01yes" "burn02no" "burn02yes"

> dimnames(out.ok$x)[[2]]

[1] "(Intercept)" "vegtypeoldfieldcool"
[3] "vegtypeoldfieldwarm" "vegtypeplantcool"
[5] "vegtypeplantwarm" "burn02no"
[7] "burn02yes" "burn01no"
[9] "burn01yes" "vegtypeoldfieldcool:burn02no"
[11] "vegtypeoldfieldwarm:burn02no" "vegtypeplantcool:burn02no"
[13] "vegtypeplantwarm:burn02no" "vegtypeoldfieldcool:burn02yes"
[15] "vegtypeoldfieldwarm:burn02yes" "vegtypeplantcool:burn02yes"
[17] "vegtypeplantwarm:burn02yes"

> beta <- coefficients(out)
> beta[is.na(beta)] <- 0
> eta <- as.numeric(out$x %*% beta + log(mydata$totalseeds))
> all.equal(eta, predict(out))

[1] TRUE

> mu <- exp(eta)
> all.equal(mu, predict(out, type = "response"))
> score <- t(mydata$seedlings - mu) %*% out$x
> max(abs(score))
[1] 8.738219e-10

Now redo for out.ok

> beta <- coefficients(out.ok)
> beta[is.na(beta)] <- 0
> eta <- as.numeric(out.ok$x %*% beta + log(mydata$totalseeds))
> all.equal(eta, predict(out.ok))
[1] TRUE

> mu <- exp(eta)
> all.equal(mu, predict(out.ok, type = "response"))
[1] TRUE

> score <- t(mydata$seedlings - mu) %*% out.ok$x
> max(abs(score))
[1] 1.356198e-06

Looks o.k.

Oops! Still have to check design matrix

> print(all(out$x[, "(Intercept)" == 1])
[1] TRUE

> n1 <- dimnames(out$x)[[2]]
> v1 <- names(attr(out$x, "contrasts"))
> for (v in v1) {
+ i <- grep(v, n1)
+ u <- sub(v, "", n1[i])
+ for (j in seq(along = i)) print(all(out$x[, n1[i][j]] ==
+ (mydata[[v]] == u[j])))
+ }
[1] TRUE

8
> n2 <- dimnames(out.ok$x)[[2]]
> v2 <- names(attr(out.ok$x, "contrasts"))
> inter <- grep(":\", n2)
> x.inter <- out.ok$x[, inter]
> x.noint <- out.ok$x[, -inter]
> n.inter <- n2[inter]
> n.noint <- n2[-inter]
> print(all(x.noint[, "(Intercept)"] == 1))
[1] TRUE
> for (v in v2) {
+ i <- grep(v, n.noint)
+ u <- sub(v, "", n.noint[i])
+ for (j in seq(along = i)) print(all(x.noint[, n.noint[i[j]]] ==
+ (mydata[[v]] == u[j])))
+ }
[1] TRUE
> boom <- strsplit(n.inter, ":")
> hoom <- function(st) {
+ s1 <- st[1]
+ s2 <- st[2]
+ s3 <- paste(s1, s2, sep = ":")
+ all(x.inter[, s3] == x.noint[, s1] * x.noint[, s2])
+ }
> sapply(boom, hoom)
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
That looks o. k. too.