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Abstract

Binary Support Vector Machines (SVM) have proven effec-

tive in classification. However, problems remain with respect

to feature selection in multi-class classification. This article

proposes a novel multi-class SVM, which performs classifica-

tion and feature selection simultaneously via L1-norm penal-

ized sparse representations. The proposed methodology, to-

gether with our developed regularization solution path, per-

mits feature selection within the framework of classification.

The operational characteristics of the proposed methodol-

ogy is examined via both simulated and benchmark exam-

ples, and is compared to some competitors in terms of the

accuracy of prediction and feature selection. The numeri-

cal results suggest that the proposed methodology is highly

competitive.

1 Introduction

Binary support vector machines (SVM, Boser, Guyon
and Vapnik, 1992; Cortes and Vapnik, 1995), as a pow-
erful classification tool, have proven effective in achiev-
ing the state-of-the-art performance in various appli-
cations. For feature selection in classification, Bradley
and Mangasarian (1998) introduced a SVM with a L1-
norm penalty. Challenges remain with regard to multi-
class classification, particularly for high-dimensional
problems as well as for understanding feature selection
within the framework of classification. In this article,
we develop a novel L1-norm multi-class SVM and inves-
tigate its feasibility in feature selection.

In multi-class classification, a common treatment
is “one-versus-all” approach (OVA), which trains a se-
quence of binary classifiers to distinguish one class from
the remaining classes. Based on OVA, Shawe-Taylor,
Saunders and Hardoon (2004) generalizes the result of
Bradley and Mangasarian (1998). While OVA deliv-
ers good empirical performances, it has three poten-
tial drawbacks. First, with respect to training, OVA
trains binary decision classifiers sequentially. When the

∗Research is supported in part by NSF Grant IIS-0328802.
†School of Statistics, The University of Minnesota, Minneapo-

lis MN 55455. Email: iamwlf@stat.umn.edu
‡School of Statistics, The University of Minnesota, Minneapo-

lis MN 55455. Email: xshen@stat.umn.edu
§Department of Electrical and Computer Engineering, The

Ohio State University, Columbus, OH 43210.

number of classes becomes large, each binary classifi-
cation becomes highly unbalanced, with a small frac-
tion of instances in one class. In the case of nonsepara-
ble classes, the class with smaller fraction of instances
tends to be ignored, leading to degraded performances.
Second, with respect to feature selection in OVA, one
feature is relevant for all classes if it is selected in one
binary classification. For a sparse problem in presence
of many irrelevant features, this usually results in more
than necessary features and has an adverse effect on
classification, because these redundant features have not
eliminated. Further investigation is needed to under-
stand feature selection in classification. Third, with re-
spect to fisher consistency, it is unclear if OVA targets
the Bayes rule for a given class of candidate decision
functions. Although it is well known that the binary
SVM estimates Bayes rule, the combined classifier in
multi-class case may not target Bayes rule in absence of
dominating class, in view of the results of Lee, Lin and
Wahba (2004).

This article proposes an L1-norm MSVM
(L1MSVM), which attempts to attack feature se-
lection by treating multiple classes jointly, as opposed
to “one-versus-all”, in multi-class classification.
L1MSVM overcomes the aforementioned difficulties of
OVA, in addition to generalizing the concepts of mar-
gin. It has the ability of performing feature selection
and classification simultaneously, while retaining the
margin interpretability of its L2-norm counterpart.
Moreover, dimension reduction is built into classifica-
tion, bypassing the requirement of an ad hoc step of
dimension reduction to attack a large problem that is
beyond the capability of conventional techniques. This
is the case in cancer genomic classification, where gene
pre-screening is required, e.g., Dudoit, Fridlyand and
Speed (2002), and Guyon and Elisseeff (2003).

Key to the performance of L1MSVM is data-
adaptive tuning. In practice, tuning usually requires
solving L1MSVM repeatedly at each value of tuning
parameter, which is computationally expensive, partic-
ularly for high-dimensional problems. To reduce the
computational cost, we develop an efficient algorithm
to solve an entire solution path as a function of the
tuning parameter with a complexity of the same order
as solving a single L1MSVM, which facilitates adaptive



selection of the tuning parameter.
L1MSVM, together with our developed regulariza-

tion path, leads to efficient computation for large prob-
lems. Our numerical result indicates that L1MSVM is
highly competitive against OVA.

This article is organized as follows. Section 2 briefly
introduces the methodology and the algorithm. Some
numerical results on both simulated and real examples
are presented in Section 3, followed by a summary in
Section 4.

2 Methodology

In classification, a training sample zi = (xi, yi); i =
1, . . . , n is given, which is sampled from an unknown
distribution P (x, y), with input xi ∈ Rp a vector of
p predictors, and output yi indicating the class la-
bel. In k-class classification, y is usually coded as
{1, 2, . . . , k}, in addition to a decision function vector
f = (f1, . . . , fk), with fc representing class c; c =
1, . . . , k. To avoid redundancy in f , a zero-sum con-
straint

∑k

c=1 fc = 0 is enforced. Given f , a classifica-
tion rule is Φf (x) = argmax

c
fc(x), which assigns a new

input vector x to class c having the highest value fc(x).
Our goal is to seek f that minimizes the generalization
error (GE), defined as Err(f) = E(I[Y 6= Φf (x)]), based
on zi = (xi, yi); i = 1 . . . n.

For motivation, we first discuss the L1-norm binary
SVM (L1SVM) with k = 2 and y ∈ {−1, +1}.

2.1 Motivation: binary classification. For moti-
vation, we begin our discussion with the binary L1-norm
SVM (L1SVM) with Y ∈ {−1, +1}. In this case, SVM
uses an p-dimensional hyperplane f(x) = w

T
x + b as a

decision function, with the corresponding decision rule
Φ(x) = sign(f(x)). Bradley et al. (1998) proposed
L1SVM in the form of

min
w,b

V (yif(xi)) + λ‖w‖1,(2.1)

where V (z) = [1 − z]+ is the hinge loss (c.f., Wahba
1999), and ‖w‖1 =

∑p

j=1 |wj | is the L1-norm of w.
In the linear separable case, (2.1) can be thought
of as maximizing the geometric margin 2

‖w‖1
, which

is the L∞-distance between two hyperplanes w
T
x +

b = ±1, defined as infx,x′{‖x − x
′‖∞ : w

T
x + b =

1, wT
x
′ + b = −1} with ‖x‖∞ = max1≤j≤p |xj | the

L∞-norm. Figure 1 illustrates the subtle difference
between L1SVM and SVM with respect to the choice
of metric in the linear separable case. In contrast
to the standard SVM having a representation with
sparse support vectors, L1SVM have sparse features in
that the number of non-zero coefficients of w is small,
which enables L1SVM to perform feature selection and

classification simultaneously.
To extend (2.1) to the multi-class case, we need to

generalize the hinge loss as well as the L1-penalty in the
binary case. In the literature, several generalizations of
the binary hinge loss exist in the different context. Vap-
nik (1998), Weston and Watkins (1998), Bredensteiner
and Bennett (1999), and Guermuer (2002) used a gen-
eralized hinge loss in the form of

V (f, zi) =
∑

c 6=yi

[1 − (fyi
(xi) − fc(xi))]+.(2.2)

Liu and Shen (2005) suggested

V (f, zi) = [1 − min
c

(fyi
(xi) − fc(xi))]+.(2.3)

Lee et al. (2004) proposed

V (f, zi) =
∑

c 6=yi

[fc(xi) + 1]+,(2.4)

which seems to have a global Fisher consistency prop-
erty for MSVM with the L2-norm. However, it remains
unclear if it leads to sharp generalization in our case.

In this article, we propose a novel L1-norm MSVM
via (2.4), although our framework is readily applicable
to other formulations straightforwardly.

2.2 L1MSVM. We use linear decision functions
fc(x) = wT

c x + bc; c = 1, . . . , k are linear, with
wc = (wc,1, . . . , wc,p) ∈ Rp and bc ∈ R1 subject to

zero-sum constraints
∑k

c=1 wc = ~0 and
∑k

c=1 bc = 0.
In nonlinear classification, decision functions fc(x) =∑q

j=1 wc,jhj(x) + bc; c = 1, . . . , k have flexible repre-

sentations on a basis {hj(x)}q
j=1, with H = (hj(xi))n×q

being a design matrix. For the purpose of feature se-
lection, we use linear representations and proposed L1-
norm MSVM (L1MSVM):

min
wc,bc;c=1,...,k

n∑

i=1

V (f, zi),

subject to

k∑

c=1

‖wc‖1 ≤ s

and
∑

c

wc = ~0;
∑

c

bc = 0,

(2.5)

where
∑k

c=1 ‖wc‖1 =
∑k

c=1

∑p

j=1 |wc,j | is an L1-norm
penalty, s is a tuning parameter, and V (f, zi) is the
generalized hinge loss in (2.4).

For any given value of s, (2.5) can be treated via
linear programming by solving
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Figure 1: Illustration of L1SVM and SVM in the linear separable case. Left: L1SVM maximizes the L∞-margin;
Right: SVM maximizes the L2-margin.

min
w+

c,j
,w−

c,j
,b+c ,b−c ,ξl

n(k−1)∑

l=1

ξl

subject to∑

j

(w+
c,j − w−

c,j)xij + (b+
c − b−c ) + 1 ≤ ξl;

∑

c,j

(w+
c,j + w−

c,j) ≤ s,

∑

c

(w+
c,j − w−

c,j) = 0; ∀j,

∑

c

(b+
c − b−c ) = 0.

w+
c,j , w

−
c,j , b

+
c , b−c , ξl ≥ 0,

(2.6)

which can be computed by a standard package such as
“lpsolve” in R. The solution of (2.5) ŵc,j and b̂c can

be obtained by ŵc,j = ŵ+
c,j − ŵ−

c,j and b̂c = b̂+
c − b̂−c ;

c = 1, . . . , k, j = 1, . . . , p, where ŵ+
c,j, ŵ

−
c,j , b̂

+
c ,and

b̂−c are the solutions of (2.6). This yields f̂(x) =

(ŵT
1 x+ b̂1, . . . , ŵ

T
k x+ b̂k) and the corresponding Φ(x) =

argmax
c

(ŵcx + b̂c).

L1MSVM can be cast into the framework of regu-
larization as follows:

min
wc,bc;c=1,...,k

n∑

i=1

V (f, zi) + λ

k∑

c=1

‖wc‖1,

s.t.
∑

c

wc = ~0;
∑

c

bc = 0,

(2.7)

where λ is a regularization parameter, ‖wc‖1 can be
interpreted as the reciprocal of the geometric margin
mc = inf{‖x − y‖∞ : fc(x) = 0, fc(y) + 1 = 0}, defined
as the L∞-distance between two hyperplanes fc = 0 and
fc +1 = 0. Here mc measures separation of class c from
the remaining classes.

The L1-penalty shrinks the estimated coefficients
and coerces some small coefficients to be exactly zero.
Therefore, for sufficiently large λ, or sufficiently small
s, many estimated coefficients ŵc,j become exactly zero,
which enables the L1MSVM to perform feature selection
within the framework of classification.

The feature selection aspect of L1MSVM is particu-
larly useful to data with the number of features p greatly
exceeding that of observations n. Although the solution
of (2.5) may not be unique when p exceeds n, Theorem
2.1 shows that the solution ŵ is unique for sufficiently
small s and can be uniquely defined when s is large.

Theorem 2.1. Let ls(w, b) =
∑n

i=1 V (f(xi), yi) and

t∗ = inf{
∑k

c=1 ‖w
∗
c‖1 : l(w∗, b∗) = 0}. Then, the

solution of (2.5) is unique with probability 1 when s <

t∗, provided that the distribution of x ∈ Rp is absolutely
continuous in the Lebesgue Measure.

For s > t∗, ŵ(s) is defined as ŵ(t∗), when
minw,b ls(w, b) first reaches 0, yielding a well defined
ŵ(s) for all s. The following lemma shows that ŵ(s)
is sparse in non-zero coefficients, implying that the
number of features selected by L1MSVM never exceeds
n(k − 1).

Theorem 2.2. The number of non-zero coefficients in
ŵ(s) is no more than 2n(k − 1).



2.3 Tuning and computation. Key to the perfor-
mance of L1MSVM is the choice of tuning parameter s,
which controls the tradeoff between training and gen-
eralization, in addition that it determines the number
of features used in classification. Adaptive selection of
s is necessary to maximize the generalization perfor-
mance of L1MSVM. In application, selection is usually
performed based on cross-validation, which is applied to
different values of s to seek the optimal s yielding the
best performance. In this process, (2.6) is solved repeat-
edly with respect to s. This is computational intensive,
particularly in a high-dimensional problem.

The memory required for computation is also of
concern. For any fixed s, L1MSVM solves (2.6), which
is a linear program of dimension 2(p + 1)k + n(k − 1).
When p is in the order of thousands, a standard package,
such as ”lpsolve” in R, may fail to allocate memory
required for computing. Therefore, L1MSVM is not
feasible to handle large problems without an efficient
algorithm.

Motivated by Zhu et al. (2003) and Hastie et
al. (2004), we develop an efficient algorithm that
constructs the entire path of solutions ŵc,j(s) of (2.5)
for all possible values of s simultaneously. The basic
idea is to locate breakpoints of ŵc,j, and to determine
the corresponding right derivative of ŵc,j(s), denoted
as dc,j(s), at each joint. Let sl be the l-th breakpoint.
Once ŵc,j(sl) and dc,j(sl) are determined, ŵc,j(s) can
be obtained by ŵc,j(s) = ŵc,j(sl)+dc,j(sl)(s−sl) for all
sl < s < sl+1, due to the property of piecewise linearity.
This greatly reduces the computational cost: there is
no need to solve (2.6) at each s, as long as we can
compute ŵc,j(sl) and dc,j(sl). We briefly describes the
algorithm in analogy to parametric linear programming.

Algorithm:

Step 1: Start with the optimal solution at the first
breakpoint s1 = 0 where wc,j = 0.

Step 2: Increase s from lth break point sl, find the
next breakpoints sl+1, where either a ŵc,j(s) becomes
zero or a

∑p

j=0 wc,j(s)xij + 1 becomes zero.
Step 3: At s = sl+1, let either a ŵc,j(s) become

nonzero or a
∑p

j=0 wc,j(s)xij + 1 become nonzero, and
compute the right derivative at sl+1

Step 4: Repeat step 2 and 3, until the solution can
not be improved.

Our algorithm permits rapid computation of adap-
tive selection of s. It effectively reduces the memory re-
quirement and makes computation of high-dimensional
problems feasible, since L1MSVM selects no more than
n(k−1) features, and at most nk variables are required
to be stored in computing.

3 Numerical studies

3.1 Simulation. This section examines the perfor-
mance of L1MSVM with respect to its generalization
accuracy and feature selection in both simulated and
benchmark examples. We compare it against OVA.

A four category classification problem is considered.
First, (ui,1, . . . , ui,20) is sampled from N(0, I100×100);
i = 1, . . . , 80. Second, 80 instances are randomly
assigned to the four classes, with 20 instances in each
class. Third, a linear transformation is performed:
xi,j = ui,j + aj ; j = 1, 2 and xi,j = ui,j; j = 3, . . . , 100,
with (a1, a2) = (d, 0), (0, d), (−d, 0), (0,−d) for classes
1-4, respectively, where three values d = 1, 2, 3 are
examined. In this example, only two features xj ; j =
1, 2 are relevant to classification, whereas the remaining
98 features are redundant.

For both L1MSVM and OVA, the tuning parameter
is optimized over a discrete set in [10−3, 103] with
respect to the test error over an independent test
sample of size 20,000, which well approximates the
generalization error. Their optimal test errors, as well
as the number of selected features, are averaged over
100 replications, and are summarized in Table 1. Here,
the smaller number of selected features tends to indicate
better selection.

Table 1: Average test errors and the standard errors
(in parenthesis) as well as average number of features
selected and its standard errors (in parenthesis), over
100 simulation replications for L1MSVM and OVA.

Distance Test error # Feature
d = 1 OVA 56.87(0.25) % 67.17(1.93)

L1MSVM 42.20(0.09) % 2.20(0.05)
d = 2 OVA 16.21(0.09) % 5.72(0.38)

L1MSVM 15.18(0.04) % 2.06(0.02)
d = 3 OVA 3.50 (0.02) % 2.51(0.13)

L1MSVM 3.35 (0.02) % 2.02(0.01)

With regard to prediction, L1MSVM performs
much better than OVA when d = 1, 2, and slightly
better when d = 3, in view of their standard errors.
This may be explained by presence/absence of the dom-
inating class. When d is small, the four classes overlap
largely. In this situation, OVA may suffer from the dif-
ficulty of lack of the dominating class. With respect
to feature selection, L1MSVM outperforms OVA with
respect to feature selection in that it removes more re-
dundant features, and surprisingly, it selects nearly the
true model even in a difficult situation with largely over-
lapping classes. In contrast, OVA selects more redun-



dant features, which seems to agree with our discussion
regarding the difficulties of OVA in the Introduction.

3.2 Benchmark example. We now examine the
performance of L1MSVM on four benchmark examples:
Wine Recognition, Glass Identification, Multi-feature
Digit Recognition and Satellite Image, and compare it
to OVA.

The first three examples are available from the UCI
Machine Learning Repository at www.ics.uci.edu/
˜mlearn/MLSummary.html, whereas the last one can be
found at www.liacc.up.pt/ML/statlog/datasets/
satimage/satimage.doc.html.

The Wine Recognition example comprises three
classes of 178 instances with 13 features. The Glass
Identification example has six classes of 214 instances
with 9 features. Here, the two-degree polynomial deci-
sion functions fc(x) =

∑13
j=1 wjxj +

∑
1≤i<j≤13 wijxixj

are used, involving 90 features, instead of linear repre-
sentations. The Multi-feature Digit Recognition exam-
ple consists of ten classes of 2000 instances with 76 fea-
tures. Each class corresponds to a digit from 0, . . . , 9.
In this example, we choose samples corresponding to
digits 3, 5 and 8, which yields a three-class problem.
The Satellite Image example comprises of seven classes
of 6435 instances with 36 features. Samples are cho-
sen from classes 1, 2, 3, and 4, which yields a four-class
problem.

For the Wine Recognition and Glass Identification
examples, instances are divided randomly into two parts
of roughly equal size in each class, for training and
testing. For the Multi-feature Digit and Satellite Image
data, 50 instances are randomly selected from each class
for training, with the rest for testing. In all cases, the
tuning parameter is optimized with respect to the test
error over a set of pre-specified values according to the
best performance, and the smallest test error and the
corresponding number of selected features are recorded.
The test error of each method is averaged over 100
randomly sampled sets of training and testing samples
for each example. The averaged smallest test errors are
reported in Table 2, as well as the average number of
selected features. Also displayed are the test errors in
Figure 2.

With regard to prediction, L1MSVM is superior to
OVA in the Wine, Digit and Image examples, but is
slightly worse in the Glass example. With regard to
feature selection, L1MSVM selects less features in the
Wine and Digit examples, while selecting more features
in the Glass and Image examples. Here, unlike the
simulated example, the effect of feature selection can
not be examined in absence of the truth. For instance,
in the Image example, L1MSVM achieves the better

Table 2: Average test errors in percentage as well as
the numbers of selected features, and their standard
errors (in parenthesis) over 100 replications for OVA
and L1MSVM.

Data Test error # Feature
Class×Dim

Wine OVA 1.55(0.13)% 9.53(0.17)
3×13 L1MSVM 1.36(0.13)% 9.24(0.22)
Glass OVA 30.71(0.35)% 30.50(0.44)
6×90 L1MSVM 31.64(0.43)% 42.86(0.87)
Digit OVA 7.30(0.23)% 29.65(0.86)
3×76 L1MSVM 6.23(0.20)% 28.80(1.21)
Image OVA 8.07(0.06)% 24.08(0.39)
4×36 L1MSVM 7.64(0.05)% 28.56(0.23)

performance with more features than OVA, while in
the Wine and Digit examples, the better performance
is realized with a smaller number of features.

4 Discussion

This article proposes a novel L1MSVM. In contrast to
OVA, the proposed methodology uses a “single ma-
chine” treatment as opposed to a sequence of machines,
and overcomes the difficulties of OVA as discussed ear-
lier. An algorithm has been developed to compute an
entire solution path, as well as to reduce the computa-
tional cost of the selection of tuning parameter s. This
makes the L1MSVM more efficient for high-dimensional
problems. In both simulation and benchmark examples,
L1MSVM can effectively performs classification and fea-
ture selection simultaneously.
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