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A Simple Approach to Simulation Using MacAnova

There are many situations when you can use simulation to get an approximate P-value of a
test, or to find approximate critical values of a test statistic.

To do this in MacAnova you need to be able to accomplish two tasks.

(1) Generate a matrix of artificial data which (a) matches the assumptions of your analysis
and (b) for which the null hypothesis is true.

(2) Compute the value testval of the test statistic from the data.

Assume generate() represents commands that generate y and compute(y) represents
commands that computes testval from y.  Then, if M is the number of simulations you use,
a general way to do the simulations in MacAnova is as follows:

Cmd> values <- rep(0,M) # set up vector for simulated values

Cmd> for(i,1,M){ # loop M times with i going from 1 to M
y <- generate() # generate data matrix
testval <- compute(y) # compute test statistic
values[i] <- testval;; # save test statistic

 }

You can now use the results in values to estimate a P-value or find a critical value.

Suppose, your actual data is matrix y_observed and the observed value of the test statistic is
testval_obs computed by

Cmd> testval_obs     <- compute(y_observed)

After the simulation, assuming the test is "reject for large values of testval", you can
estimate the P-value by

Cmd> p_value     <- sum(values >= testval_obs)/M

Here sum(values >= testval_obs) counts how many simulated values are at least as large
as the observed value.  Dividing by M gives the relative frequency of such values and this
estimates P-value = P(testval ≥ testval_obs | H0).

The critical value corresponding, say, to α = .05, is the 100(1 – α) percent point of the test

statistic.  This can be estimated as the 100(1 – α) percent point of the sample of simulated
values.  For an upper 5% point you might do the following:

Cmd> values <- sort(values) # put test values in increasing order

Cmd> J <- round(.95*M) # index of approximate 95% point

Cmd> critval <- values[J]

Sometimes the most difficult part of this process is knowing how to generate data which
satisfy the null hypothesis.  Here you may need some mathematical results to succeed. 

For example, the null distributions of most tests used in ANOVA, including F-tests and t-

tests, do not depend on the value of the variance σ2 so you can use any convenient value such

as σ2 = 1.  Moreover, as long as H0 is true, the distributions don’t depend on any mean values,
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so you can use µ = 0.

For many multivariate tests assuming normal data or normal residuals with constant

variance matrix ΣΣΣΣ, the null distribution does not depend on ΣΣΣΣ so you can use any convenient

ΣΣΣΣ, say ΣΣΣΣ = Ip, that is, the p responses are independent with variance 1.  Similarly, often the null

distributions don’t depend on mean values so you can use µµµµ = 0....        Note, however, the joint

distribution of univariate test statistics such as F-statistics do depend on ΣΣΣΣ, so you can’t use ΣΣΣΣ =

Ip, even though the marginal distributions do not depend on ΣΣΣΣ....

In MacAnova, you can generate a data matrix x containing a random sample of n Np(0, Ip)

vectors by x <- matrix(rnorm(n*p), n).

Here is a MANOVA example based on the analysis of data on crude oil in Table 11.7, 9. 661.
See problem 11.30, p. 660 J&W for a description of the data.

Cmd> data <- read("","t11_07") # read from JWData5.txt
T11_07    56    6 format
) Data from Table 11.7 p. 661 in
) Applied Mulivariate Statistical Analysis, 5th Edition
) by Richard A. Johnson and Dean W. Wichern, Prentice Hall, 2002
) These data were edited from file T11-7.DAT on disk from book
) Group identification was moved from last column to first and
) made numeric
) Crude oil data
) Col. 1: Zone (1 = Wilhelm, 2 = sub-Mulinia, 3 = Upper
) Col. 2: X1 = vanadium (percent ash)
) Col. 3: X2 = iron (percent ash)
) Col. 4: X3 = beryllium (percent ash)
) Col. 5: X4 = saturated hydrocarbons (percent area)
) Col. 6: X5 = aromatic hydrocarbons (percent area)
Read from file "TP1:Stat5401:Data:JWData5.txt"

Cmd> zone <- factor(data[,1]); y <- data[,-1]

When you use byvar:T on a manova() command, the output is in the form of p univariate
analyses of variance, one for each response.  However, the usual side-effect variables are
computed.
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Cmd> manova("y = zone", byvar:T, fstat:T)
Model used is y = zone
WARNING: summaries are sequential
                            Variable 1
                DF          SS          MS           F     P-value
CONSTANT         1        2139        2139   604.38757     < 1e-08
zone             2      135.67      67.837    19.16745  5.4505e-07
ERROR1          53      187.58      3.5392
                            Variable 2
                DF          SS          MS           F     P-value
CONSTANT         1       40965       40965   514.34216     < 1e-08
zone             2      3186.7      1593.3    20.00566   3.366e-07
ERROR1          53      4221.2      79.644
                            Variable 3
                DF          SS          MS           F     P-value
CONSTANT         1      6.5281      6.5281    78.00184     < 1e-08
zone             2     0.98442     0.49221     5.88122   0.0049345
ERROR1          53      4.4357    0.083692
                            Variable 4
                DF          SS          MS           F     P-value
CONSTANT         1      1572.5      1572.5  1461.12200     < 1e-08
zone             2      48.803      24.402    22.67323  7.6772e-08
ERROR1          53       57.04      1.0762
                            Variable 5
                DF          SS          MS           F     P-value
CONSTANT         1      2317.9      2317.9   363.43106     < 1e-08
zone             2      209.29      104.65    16.40805  2.8427e-06
ERROR1          53      338.02      6.3778

Cmd> list(SS,DF) # side-effect variables have been computed
DF              REAL   3    
SS              REAL   3     5     5    

Cmd> h <- matrix(SS[2,,]); e <- matrix(SS[3,,])# hyp & error matrices

Cmd> fh <- DF[2]; fe <- DF[3]; vector(fh,fe)# hyp & error d.f.  
        zone      ERROR1
           2          53

Cmd> eigvals <- releigenvals(h,e); eigvals #obs. relative eigenvalues
(1)      4.1784     0.66601  2.0476e-16  3.7444e-18 -2.9572e-17

Cmd> N <- nrows(y); p <- ncols(y); vector(N,p)
(1)          56           5

Cmd> m1 <- fe - (p - fh + 1)/2; m2 <- fe - p - 1; m3 <- fh + fe  

Cmd> vector(m1, m2, m3) # multipliers for test statistics
(1)          51          47          55

Cmd> wilks_obs <- m1*sum(log(1 + eigvals)) # observed Wilks'

Cmd> hot_obs <- m2*sum(eigvals) # observed Hotelling's

Cmd> pillai_obs <- m3*sum(eigvals/(1 + eigvals)) # observed Pillai's

Cmd> roy_obs <- eigvals[1] # observed Roy's (maximum root)

Cmd> vector(wilks_obs,hot_obs,pillai_obs,roy_obs)
(1)       109.9      227.69      66.366      4.1784
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Cmd> wilks_obs <- m1*sum(log(1 + eigvals)) # observed Wilks'

Cmd> hot_obs <- m2*sum(eigvals) # observed Hotelling's

Cmd> pillai_obs <- m3*sum(eigvals/(1 + eigvals)) # observed Pillai's

Cmd> roy_obs <- eigvals[1] # observed Roy's (maximum root)

Cmd> vector(wilks_obs,hot_obs,pillai_obs,roy_obs)
(1)       109.9      227.69      66.366      4.1784

wilks_obs, hot_obs, pillai_obs, and roy_obs are the observed values Wilks’s Λ,
Hotelling’s trace statistic, Pillai’s trace statistic, and Roy’s maximum root statistic, all standard

MANOVA test statistics of the hypothesis H0: µµµµ1 = µµµµ2 = µµµµ3 = µµµµ.

Now do 5000 simulations with H0 true.    Since the null distributions don't depend on µµµµ or ΣΣΣΣ,

I use µµµµ = 0 and ΣΣΣΣ = I5.  This means that each data matrix can consist of N×p independent

standard normals.

Cmd> M <- 5000;hot <- wilks <- pillai <- roy <- rep(0,M)#for values

Cmd> for(i,1,M){
# do the generate() step
ytmp <- matrix(rnorm(N*p),N) # simulated data matrix
# do the compute() step, but compute 4 statistics at once
manova("ytmp = zone", silent:T) # silently do MANOVA
eigtmp <- releigenvals(SS[2,,],SS[3,,]) #relative eigenvalues
wilks[i] <- m1*sum(log(1 + eigtmp))
hot[i] <-  m2*sum(eigtmp)
pillai[i] <- m3*sum(eigtmp/(1 + eigtmp))
roy[i] <- eigtmp[1]
;;

}

Vectors wilks, hot, pillai and roy contain samples of the 4 statistics.  They need to be put in
increasing order before finding 10%, 5%, 2.5% and 1% critical values.

Cmd> wilks <- sort(wilks); hot <- sort(hot)

Cmd> pillai <- sort(pillai); roy <- sort(roy)

Cmd> alpha <- vector(.1,.05,.025,.01) # 10%, 5%, 2.5%, 1%

Cmd> J <- round((1 - alpha)*M); J # indices of probability points
(1)        4500        4750        4875        4950

Cmd> wilks[J] # critical values for Wilk's test
(1)      15.897      18.191      20.181       22.25

Cmd> hot[J] # critical values for Hotelling's test
(1)      16.242       18.93       21.28      24.002

Cmd> pillai[J] # critical values for Pillai's test
(1)      15.481      17.521      19.183      20.738

In large samples, the null distribution of each of these is approximately χ2 on fhp d.f.  Here p =

5, fh = 2 and the asymptotic χ10
2 critical values are computed as follows:

Cmd> invchi(alpha,p*fh,upper:T) # chi-squared critical values
(1)      15.987      18.307      20.483      23.209
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Estimate the actual α’s if you use these large sample critical values with the tests.

Cmd> sum(wilks > invchi(alpha,p*fh,upper:T)')/M #estimated alphas
(1,1)      0.0978      0.0492       0.022      0.0072

Cmd> sum(hot > invchi(alpha,p*fh),upper:T)')/M #estimated alphas
(1,1)      0.1064      0.0594      0.0324      0.0128

Cmd> sum(pillai > invchi(alpha,p*fh),upper:T)')/M #estimated alphas
(1,1)      0.0856      0.0354       0.012      0.0028

All the α's appear to be in the right ballpark, except possibly for Pillai's statistic.
Of course, these are just estimates.  Using standard binomial theory, here are 95% margins of
error for them.

Cmd> 1.96*sqrt(alpha*(1 - alpha)/M) # 95% margins of error
(1)   0.0083156   0.0060411   0.0043276    0.002758

In fact, only the α's for the Wilks' statistic are consistently not significantly different from the

intended α's.

Here are estimated critical values for Roy's maximum root test, both in terms of   λ̂1 and

  
ˆ ˆ /( ˆ )θ λ λ1 1 11= + .
Cmd> roy[J] # maximum root critical values
(1)     0.27729     0.32476     0.37476     0.43584

Cmd> (roy/(1 + roy))[J] # critical values for theta
(1)     0.21709     0.24515      0.2726     0.30354

Cmd> vector(min(p,fh), (abs(fh - p) - 1)/2, (fe - p - 1)/2) # s, m, n
(1)           2           1        23.5

These are the values you use with charts or tables of the null distribution.

Since the null hypothesis is so strongly rejected in the ANOVA F-tests, we should expect the
P-values to be small.  In fact, for each statistic, the observed value is greater than any
simulated value so the P-values are all estimated to be 0.

Cmd> sum(wilks >= wilks_obs)/M # P-value for Wilks'
(1)           0

Cmd> sum(hot >= hot_obs)/M # P-value for Hotelling's
(1)           0

Cmd> sum(pillai >= pillai_obs)/M # P-value for Pillai's
(1)           0

Cmd> sum(roy >= roy_obs)/M # P-value for Roy's
(1)           0

Thus, even in the absence of tables or charts, you could conclude with high confidence that
the null hypothesis of equal means was false.
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