THE UNIVERSITY OF MINNESOTA

Statistics 5401/8401
October 18, 2005

Solutions to Sample Midterm Examination

The exhibits that were in a separate booklet are included here. Instead of tables of Bonferronized F-probability points, MacAnova output is used.
Exhibit 1 (for problem 1)

```
Cmd> dogteeth <- read("","dogteeth") # read from file
Dogteeth 35 6 labels
) Tooth measurements on Golden retrievers (dogs) from kennels in
) England, France, United States, and Canada
) Col. 1: Country, 1=England, 2 = France, 3 = USA, 4=Canada
) Col. 2: X1=length of mandible
) Col. 3: X2=breadth of mandible below 1st molar
) Col. 4: X3=breadth of articular condyle
) Col. 5: X4=height of mandlible below 1st molar
) Col. 6: X5=length of 1st molar
Read from file "TP1:Stat5401:Exams:DogData.txt"
Cmd> country <- factor(dogteeth[,1]); list(country)
country REAL 35 1 FACTOR with 4 levels (labels)
Cmd> y <- dogteeth[,-1] # 35 by 5 data matrix without factor
Cmd> means <- tabs(y,country,means:T); means # rows are group means
(1,1) 127.2 10.138 21.087 21.85 20.225
```



```
(3,1) 126.68 9.9444 19.956 19. 21.533 
(4,1) 131.86 10.612 22.387 22.675 20.838
                    x1 X2 X3 X4 X5
Cmd> n <- tabs(,country); n # sample sizes from the 4 countries
Cmd> manova("y=country")
Model used is y=country
WARNING: summaries are sequential
NOTE: SS/SP matrices suppressed because of size; use 'manova(,sssp:T)'
                                    SS and SP Matrices
    DF
CONSTANT 1
    Type 'SS[1,,]' to see SS/SP matrix
country
    3
    Type 'SS[2,,]' to see SS/SP matrix
ERROR1
3 1
    Type 'SS[3,,]' to see SS/SP matrix
Cmd> h <- matrix(SS[2,,])
Cmd> fh <- DF[2]
Cmd> e <- matrix(SS[3,,])
Cmd> fe <- DF[3]
Cmd> p <- ncols(y)
```

Exhibit 1 (continued)

Cmd> h \# hypothesis matrix					
	MandLnth	MandBrdth	CndyleBrdth	MandHt	MolarLnth
MandLnth	574.46	52.4	208.14	75.056	78.248
MandBrdth	52.4	4.9881	19.685	7.3223	7.3637
CndyleBrdth	208.14	19.685	79.304	28.507	29.323
MandHt	75.056	7.3223	28.507	10.946	10.701
MolarLnth	78.248	7.3637	29.323	10.701	10.933

Cmd> e \# error matrix					
	MandLnth	MandBrdth CndyleBrdth	MandHt	MolarLnth	
MandLnth	1686.5	108.29	438.69	234.21	70.768
MandBrdth	108.29	13.031	36.175	17.569	4.0754
CndyleBrdth	438.69	36.175	202.94	77.266	11.66
MandHt	234.21	17.569	77.266	61.3	1.0675
MolarLnth	70.768	4.0754	11.66	1.0675	20.994

Cmd> s <- e/fe ; s \# pooled variance matrix

MandLnth	54.404	3.4931	14.151	7.5553	2.2828
MandBrdth	3.4931	0.42035	1.1669	0.56675	0.13147
CndyleBrdth	14.151	1.1669	6.5466	2.4924	0.37612
MandHt	7.5553	0.56675	2.4924	1.9774	0.034435
MolarLnth	2.2828	0.13147	0.37612	0.034435	0.67722

Cmd> \# Compute $T^{\wedge} 2$ for all pairs of means

```
Cmd> names <- vector("England","France","USA","Canada")
```

Cmd> tsq <- matrix(dmat $(4,0), l a b e l s: s t r u c t u r e(n a m e s, n a m e s)) ~ \# E M P T Y$
Cmd> for(i,run(4))\{for(j,run(4)) \{ \# Fill matrix tsq
dij <- vector (means[i,]-means[j,]) \# difference of mean vectors
vhatij <- (1/n[i]+1/n[j])*s
tsq[i,j] <- dij' \%*응 solve(vhatij) \% \% \% dij\};;\}

Cmd> tsq

	England	France	USA	Canada
England	0	9.4974	2.7166	4.0353
France	9.4974	0	4.9819	24.137
USA	2.7166	4.9819	0	11.069
Canada	4.0353	24.137	11.069	0

Cmd> releigenvals (h,e) \# relative eigenvalues
(1)
0.827450 .069417
$0.0238532 .5498 \mathrm{e}-16$
$-3.432 e-16$

1. In Exhibit 1 are analyses on 5 measurements on the teeth of Golden retriever dogs from breeders in 4 countries, England, France, United States and Canada. Tables 1a, 1b, and 1c on p. 5, 6 and 7 of the exhibit booklet are tables of Bonferronized F probability points, that is $F_{f_{1}, f_{2}}(\alpha / k)$, for Bonferronizing factor $k=1,2,3,4,5,6$, denominator degrees of freedom $f_{2}=$ $26,27, \ldots, 35$, and numerator degrees of freedom $f_{1}=3,4$ and 5 , respectively.
(a) (15) Use Bonferronized F-tests to test the null hypothesis that the expected tooth measurements are the same in all four Countries. State the null and alternative hypotheses using $\boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2}, \boldsymbol{\mu}_{3}$, and $\boldsymbol{\mu}_{4}$ as notation for the four 5 dimensional mean vectors. Hypothesis and error matrices on on p. 2 of the exhibit booklet.

Solution

The null hypothesis is $\boldsymbol{\mu}_{1}=\boldsymbol{\mu}_{2}=\boldsymbol{\mu}_{3}=\boldsymbol{\mu}_{4}$. The alternative hypothesis is $\mathrm{H}_{1}: \boldsymbol{\mu}_{i} \neq \boldsymbol{\mu}_{j}$ some $i \neq$ j.

The F statistic for variable j is $\mathrm{F}_{\mathrm{j}}=\left(h_{j j} / f_{h}\right) /\left(e_{j j} / f_{e}\right)=\left(f_{e} / f_{h}\right) \times h_{j j} / e_{j j}=(31 / 3) h_{j j} / e_{j j}$. From the output
$\mathrm{F}_{1}=(31 / 3) 574.46 / 1686.5=3.520$
$\mathrm{F}_{2}=(31 / 3) 4.988 / 13.031=3.955$
$\mathrm{F}_{3}=(31 / 3) 79.304 / 202.94=4.038$
$\mathrm{F}_{4}=(31 / 3) 10.946 / 61.3=1.845$
$\mathrm{F}_{5}=(31 / 3) 10.933 / 20.994=5.381$
Since $p=5$, you Bonferronize by 5 .
Cmd> invF(.05/5,3,31,upper:T) \# or see table la
(1) 4.4837 Bonferronized critical value

Since $\mathrm{F}_{5}=5.381>4.4837$, you can reject H_{0}.
(b) (15) Use Bonferronized Hotelling's T^{2} to test the same hypothesis as in (a). Values of T^{2} are computed on p. 2 of the Exhibit booklet.

Solution

The MacAnova output provides six T^{2} statistics, each of which tests one of the hypothesis $\boldsymbol{\mu}_{i}=$ $\boldsymbol{\mu}_{j}$. The largest of these is $\mathrm{T}_{2,3}{ }^{2}=24.137$ testing whether France and Canada have the same means. Recalling that $\left(f_{e}-p+1\right) \mathrm{T}^{2} /\left(f_{e} p\right)=\mathrm{F}_{p, f_{e}-p+1},(27 / 155) \mathrm{T}^{2}=\mathrm{F}_{5,27}$. Since there are six $\mathrm{T}_{i j}{ }^{2}$ tests, you Bonferronize by 6 :

Cmd> invF(.05/6,5,27, upper:T) \# or see table 1c
(1) 3.9287

Since $(27 / 155) 24.137=4.2045>3.9287$, again you can reject H_{0} at the 5% level. Moreover you can conclude that France and Canada have significantly different mean vectors.
(c) (15) Use a test involving the eigenvalues of \mathbf{H} relative to \mathbf{E} to test the same null hypothesis as in (a). Relative eigenvalues are on p. 2 of the exhibit booklet.

Solution

Roy's maximum root test statistic is $\hat{\theta}_{\max }=\frac{\hat{\lambda}_{\max }}{1+\hat{\lambda}_{\max }}=0.82745 / 1.82745=0.45279 . s=\min \left(p, f_{h}\right)$ $=\min (5,3)=3, m=\left(\left|p-f_{h}\right|-1\right) / 2=(2-1) / 2=1 / 2, n=\left(f_{e}-p-1\right) / 2=(31-5-1) / 2=12.5$. From the 5% chart for $s=3$, the critical value is about .45 so it's borderline significant. [simulation with 10,000 replicates shows the P-value is about .0445 and the critical value is about $0.445<0.453$.]
Wilks likelihood ratio is $\Lambda^{*}=\frac{1}{\prod_{i=1}^{s}\left(1+\hat{\lambda}_{i}\right)}$ and approximately $-m_{1} \log \left(\Lambda^{*}\right)=m_{1} \sum_{i=1}^{s} \log \left(1+\hat{\lambda}_{i}\right), m_{1}$
$=f_{e}-\left(p-f_{h}+1\right) / 2=31-(5-3+1) / 2=29.5$
Cmd> lambdahat <- releigen(h,e); 29.5*sum(log(1 + lambdahat))
(1)

The upper 5% of $\chi_{15}{ }^{2}$ is 25.00 , so Wilks test does not provide significant evidence the means differ. Using MacAnova I found that the $\chi_{15}{ }^{2}$ P-value is 0.15494 and using macro cumwilks (), the exact P -value is 0.15716 , both greater than $\alpha=.05$.
Hotelling's trace statistic is $\sum_{i=1}^{s} \hat{\lambda}_{i}=.82745+.069417+.023853=0.9207 . m_{2} \sum_{i=1}^{s} \hat{\lambda}_{i}$ is approximately $\chi_{15}{ }^{2}$ where $m_{2}=f_{e}-p-1=31-5-1=25.25 \times 0.9207=23.017<25.00$ so Hotelling's test doesn't reach significance. The P-value from cumtrace () is $0.10864>.05$.

Pillai's trace statistic is $\left(f_{e}+f_{h}\right) \sum_{i=1}^{s} \frac{\hat{\lambda}_{i}}{1+\hat{\lambda}_{i}}=(31+3) \times(.82745 / 1.82745+.069417 / 1.069417+$ $.023853 / 1.023853)=34 \times .54100=18.394<25.00$, so Pillai's, too, is non-significant. The P-value from cumpillai() is 0.22822 .
2. \boldsymbol{X} is a 50 by 4 data matrix whose rows are a random sample from a population with mean $\boldsymbol{\mu}$ $=\left[\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}\right]^{\prime}$ and variance matrix $\boldsymbol{\Sigma}=\left[\sigma_{i j}\right]$. The sample variance matrix is $S=\left[s_{i j}\right]$ and sample mean is $\overline{\mathbf{x}}=\left[\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}, \bar{x}_{4}\right]^{\prime}$.
Give the dimensions of each of the following matrices and describe what they represent statistically (for example, "sample regression coefficients in the regression of the last column of X on the first 3 columns" or "variance of $\left.\bar{x}_{3} "\right)$. No justification is necessary.
(a) (10)
$(1 / 50) 1_{50}{ }^{\prime} \boldsymbol{X}$

Solution

This is a particular case of $(1 / n) \mathbf{1}_{\mathrm{n}}{ }^{\prime} \boldsymbol{X}=(1 / n) \sum \mathbf{x}_{\mathrm{i}}{ }^{\prime}=\overline{\mathbf{x}}^{\prime}=$ sample mean. Dimensions are 1 by 4.
(b) (10)

$$
\frac{1}{50}\left[\begin{array}{llll}
1 & 1 & -1 & -1
\end{array}\right] \mathbf{S}\left[\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right]
$$

Solution

This is a particular case of $(1 / n) \mathbf{c}^{\prime} \mathbf{S c}$ where $\mathbf{c}=\left[\begin{array}{llll}1 & 1 & -1 & -1\end{array}\right]^{\prime}$ is a contrast vector and $n=50$ is the sample size. Hence \mathbf{c} 'Sc is the sample variance of $y=\mathbf{c}^{\prime} \mathbf{x}=x_{1}+x_{2}-x_{3}-x_{4}$ and $(1 / n) \mathbf{c}^{\prime} \mathbf{S c}$ is the estimated variance of $\overline{\mathbf{y}}=\mathbf{c}^{\prime} \overline{\mathbf{x}}=\bar{x}_{1}+\bar{x}_{2}-\bar{x}_{3}-\bar{x}_{4}$. Dimensions are 1 by 1 .
(c) (10)

$$
\left[\begin{array}{cccc}
1 / \sqrt{\sigma_{11}} & 0 & 0 & 0 \\
0 & 1 / \sqrt{\sigma_{22}} & 0 & 0 \\
0 & 0 & 1 / \sqrt{\sigma_{33}} & 0 \\
0 & 0 & 0 & 1 / \sqrt{\sigma_{44}}
\end{array}\right] \sum\left[\begin{array}{cccc}
1 / \sqrt{\sigma_{11}} & 0 & 0 & 0 \\
0 & 1 / \sqrt{\sigma_{22}} & 0 & 0 \\
0 & 0 & 1 / \sqrt{\sigma_{33}} & 0 \\
0 & 0 & 0 & 1 / \sqrt{\sigma_{44}}
\end{array}\right]
$$

This is the 4 by 4 population correlation matrix

Statistics 5401/8401 Sample Midterm Examination Solutions

$$
R=\left[\begin{array}{cccc}
\frac{\sigma_{11}}{\sqrt{\sigma_{11}^{2}}} & \frac{\sigma_{12}}{\sqrt{\sigma_{11} \sigma_{22}}} & \frac{\sigma_{13}}{\sqrt{\sigma_{11} \sigma_{33}}} & \frac{\sigma_{14}}{\sqrt{\sigma_{11} \sigma_{44}}} \\
\frac{\sigma_{12}}{\sqrt{\sigma_{11} \sigma_{22}}} & \frac{\sigma_{22}}{\sqrt{\sigma_{22}^{2}}} & \frac{\sigma_{23}}{\sqrt{\sigma_{22} \sigma_{33}}} & \frac{\sigma_{24}}{\sqrt{\sigma_{22} \sigma_{44}}} \\
\frac{\sigma_{13}}{\sqrt{\sigma_{11} \sigma_{33}}} & \frac{\sigma_{23}}{\sqrt{\sigma_{22} \sigma_{33}}} & \frac{\sigma_{33}}{\sqrt{\sigma_{33}^{2}}} & \frac{\sigma_{34}}{\sqrt{\sigma_{33} \sigma_{44}}} \\
\frac{\sigma_{14}}{\sqrt{\sigma_{11} \sigma_{44}}} & \frac{\sigma_{24}}{\sqrt{\sigma_{22} \sigma_{44}}} & \frac{\sigma_{34}}{\sqrt{\sigma_{33} \sigma_{44}}} & \frac{\sigma_{44}}{\sqrt{\sigma_{44}^{2}}}
\end{array}\right]=\left[\begin{array}{cccc}
1 & \rho_{12} & \rho_{13} & \rho_{14} \\
\rho_{12} & 1 & \rho_{23} & \rho_{24} \\
\rho_{13} & \rho_{23} & 1 & \rho_{34} \\
\rho_{14} & \rho_{24} & \rho_{34} & 1
\end{array}\right]
$$

Exhibit 3 (for problem 3)

```
Cmd> data <- read("","t04_03")
T04_03 30 4 format
) Data from Table 4.3 p. }187\mathrm{ in
) Applied Mulivariate Statistical Analysis, 5th Edition
) by Richard A. Johnson and Dean W. Wichern, Prentice Hall, }200
) These data were edited from file T4-3.DAT on disk from book
) Omitted was the last column (d^2) as this can be computed directly
) using distcomp(T04_03)
) Four measurements of stiffness
) Col. 1: x1 (from shock wave down board)
) Col. 2: x2 (from vibrating board)
) Col. 3: x3 (from static test)
) Col. 4: x4 (from static test)
Read from file "TP1:Stat5401:Data:JWData5.txt"
Cmd> n <- nrows(data) # sample size
Cmd> stats <- tabs(data, covar:T,mean:T);stats
component: mean
\begin{tabular}{lllll} 
(1) & 1906.1 & 1749.5 & 1509.1
\end{tabular}
component: covar
\begin{tabular}{rrrrr}
\((1,1)\) & \(1.0562 e+05\) & 94614 & 87290 & 94231 \\
\((2,1)\) & 94614 & \(1.0151 e+05\) & 76137 & 81064 \\
\((3,1)\) & 87290 & 76137 & 91917 & 90352 \\
\((4,1)\) & 94231 & 81064 & 90352 & \(1.0423 e+05\)
\end{tabular}
```

Cmd> xbar <- stats\$mean; s <- stats\$covar
Cmd> cor(data) \#correlation matrix

$(1,1)$	1	0.91376	0.88593	0.89812
$(2,1)$	0.91376	1	0.78821	0.7881
$(3,1)$	0.88593	0.78821	1	0.9231
$(4,1)$	0.89812	0.7881	0.9231	1

Cmd> eigen(s) component: values				
(1)	$2 \mathrm{e}+05$	26814	7688.5	5550.9
component: vectors				
$(1,1)$	0.52638	-0.19881	-0.23971	0.79116
$(2,1)$	0.48659	-0.72687	0.13627	-0.46511
$(3,1)$	0.47569	0.44462	0.75856	0.025065
$(4,1)$	0.50977	0.48421	-0.59039	-0.39637

Cmd> cl \# previously entered 3 by 4 matrix				
$(1,1)$	1	1	-1	-1
$(2,1)$	1	-1	0	0
$(3,1)$	0	0	1	-1

(Exhibit 3 continued on following page)

Exhibit 3 (continued)

Cmd> $(1,1)$	$\begin{array}{r} \text { clxbar' \% *\% } \\ 254.72 \end{array}$	solve (c1sc1	(n) ㅇ*ㅇ clx			
Cmd> c2 \# previously entered matrix						
$(1,1)$	1	-1		0	0	
$(2,1)$	1	0	0	-1	0	
$(3,1)$	1		0	0	-1	
$(4,1)$	0		1	-1	0	
$(5,1)$	0	1	1	0	-1	
$(6,1)$	0		0	1	-1	
Cmd> c2xbar <- vector (c2 \%*\% xbar)						
Cmd> c2sc2 <- c2 \% $\%$ \% s \%*\% c2'						
Cmd> vhat2 <- c2sc2/n						
Cmd> print (format: $110.4 f "$, c2xbar:c2xbar', format:"10.3f", c2sc2, vhat 2)c2xbar:						
$(1,1)$	156.5667	396.9667	181.1333	240.4000	24.5667	-215.8333
c2sc2:						
$(1,1)$	17899.357	-149.843	-2163.595	-18049.200	-20062.953	-2013.753
$(2,1)$	-149.843	22953.964	14448.246	23103.807	14598.089	-8505.718
$(3,1)$	-2163.595	14448.246	21382.809	16611.841	23546.405	6934.563
$(4,1)$	-18049.200	23103.807	16611.841	41153.007	34661.041	-6491.966
$(5,1)$	-20062.953	14598.089	23546.405	34661.041	43609.357	8948.316
$(6,1)$	-2013.753	-8505.718	6934.563	-6491.966	8948.316	15440.282
vhat2:						
$(1,1)$	596.645	-4.995	-72.120	-601.640	-668.765	-67.125
$(2,1)$	-4.995	765.132	481.608	770.127	486.603	-283.524
$(3,1)$	-72.120	481.608	712.760	553.728	784.880	231.152
$(4,1)$	-601.640	770.127	553.728	1371.767	1155.368	-216.399
$(5,1)$	-668.765	486.603	784.880	1155.368	1453.645	298.277
$(6,1)$	-67.125	-283.524	231.152	-216.399	298.277	514.676

3. This problem deals with the analysis of data in Table 4.3 in Johnson and Wichern. The stiffness of 30 boards was measured in four different ways, two dynamic testing methods (sending a shock wave down the board and vibrating a board), and using two static methods. Exhibit 3 contains MacAnova output related to analysis of these data.

There is interest in comparing static with dynamic testing methods, comparing the dynamic methods and comparing the static methods.
(a) (15) Describe in words what the 3 elements of variable $c 1$ xbar on p. 3 of the exhibits are and why they might be relevent things to compute. Is there statistical evidence that expectations of the elements of c1xbar are non-zero?

Solution

The three rows of c1 define contrasts. Row 1 defines the contrast $y_{1}+y_{2}-y_{3}-y_{4}$, a comparison of the dynamic tests with the static tests and c1xbar [1] $=\bar{y}_{1}+\bar{y}_{2}-\bar{y}_{3}-\bar{y}_{4}$. Row 2 defines the contrast $y_{1}-y_{2}$, a comparison of the two dynamic tests and c1xbar [2] $=\bar{y}_{1}-\bar{y}_{2}$.

Row 3 defines the contrast $y_{3}-y_{4}$, a comparison of the two static tests and c1xbar [3] = $\bar{y}_{3}-\bar{y}_{4}$. These contrast thus match the interests summarized in paragraph two of the question.

Since $\mathrm{V}[\mathbf{C y}]=\mathbf{C} \Sigma_{y} \mathbf{C}$, and $\hat{\mathrm{V}}[\mathbf{C} \overline{\mathbf{y}}]=\frac{1}{n} \mathbf{C S C}$, the MacAnova output can be recognized as computing $\mathrm{T}^{2}=254.72$ for testing $\mathrm{H}_{0}: \mathbf{C} \boldsymbol{\mu}=0$, that is $\mu_{1}+\mu_{2}-\mu_{3}-\mu_{4}=0, \mu_{1}-\mu_{2}=0$ and $\mu_{3}-\mu_{4}$. Since $f_{e}=n-1=29$ and the length of $\mathbf{C} \boldsymbol{\mu}=p^{\prime}=p-1=3$, you compare $\left(f_{e}-p^{\prime}+1\right) \mathrm{T}^{2} /\left(f_{e} p^{\prime}\right)=27 \times 254.72 /(29 \times 3)=79.051$ with $\mathrm{F}_{3,27}(.05)=2.96$, so there is strong evidence that $\mathbf{C} \boldsymbol{\mu} \neq \mathbf{0}$. The null hypothesis is equivalent to $\mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}$.

Another way to do it would be to Bonferronize the three t-statistics whose numerators are the elements of $c 1 x b a r$ and whose denominators are the estimated standard errors, $\operatorname{sqrt}(\operatorname{diag}(\mathrm{c} 1 \mathrm{sc} 1 / \mathrm{n}))$. These are $t_{1}=421.53 / \sqrt{ }(95759 / 30)=7.461, t_{2}=156.57 / \sqrt{ }(17899 / 30)=6.41$ and $t_{3}=-215.83 / \sqrt{ }(15440 / 30)=-9.5137$. The critical value is $t_{29}(.025 / 3)=2.541$. Since all three t statistics exceed this, you can reject H_{0}. Moreover you can conclude there is a difference between the dynamic and static tests, between the two dynamic tests, and betseen the two static tests.
(b) (15) Find a 95% confidence interval for the difference between the mean measurement using the shock-wave measurement (variable 1) and the mean measurement using the first static test (variable 3). (Hint: Look at row 2 of matrix c 2 on p. 3 of exhibits.) Do it using a method that would be appropriate for simultaneous confidence intervals of all comparisons of two measurement methods. Use the shortest limits that would be appropriate.

Solution

The most appropriate method is Bonferronized t-based intervals. There are 6 comparisons defined in c2 Berronizing factor is 6 .

Each comparison is of the form $\bar{y}_{j}-\bar{y}_{k} \pm t \sqrt{\hat{\mathrm{~V}}\left[\bar{y}_{j}-\bar{y}_{k}\right]}=\bar{y}_{j}-\bar{y}_{k} \pm t \sqrt{\mathbf{c}_{i}^{\prime}(\mathbf{S} / n) \mathbf{c}_{i}}$, where $\mathbf{c}_{\mathbf{i}}{ }^{\prime}$ is the row of c2 defining the comparison, in this case row 2. From the output $\mathbf{c}_{2}{ }^{\prime}(\mathbf{S} / n) \mathbf{c}_{2}=765.132$ and from tables of Bonferronized t with d.f. $=29, t=2.83$. So the interval is

$$
396.9667 \pm 2.83 \times \sqrt{ } 765.132=(318.69,475.25)
$$

A critical value based on the F-distribution, whether or not Bonferronized, in not appropriate.

