THE UNIVERSITY OF MINNESOTA
Statistics 5401 November 2, 2005

The Singular Value Decomposition and Some Applications

The singular value decomposition (SVD) of a matrix is a very useful tool in
statistics.

Suppose A = [ajj] is a n by p matrix where n > p. There is a mathematical
theorem to the effect that A can always be represented (decomposed) as
A =L TR’ where

L is n by p with orthonormal columns, that is, L'L = I,
T = diaglty, to, ..., tp] is p by p diagonal, with t; > t> > ... > t, > 0,
R is p by p with orthonormal columns, that is, R'R = I,.

The columns of L = [Ly,..., L,] are the left singular vectors of A. Each Lg is a
vector of length n.

t1, to, ..., tp are the singular values of A and are always assumed to be in
decreasing order and non-negative.

The columns of R = [rq,..., rpl are the right singular vectors of A Each ry is a
vector of length p.

The notation L and R stands for "left” and "right” and is not universally used.
Another way to express the SVD A =L TR’ is
A = 3 q<k<ptiblirk’,

a sum of outer products of left and right singular vectors weighted by singular
values.

This representation makes clear that rank(A) = number of non-zero singular
values. In fact, the best way to find the rank of a numerical matrix is usually
to compute the singular values and count how many are essentially non-zero.

The SVD is related to eigenvalues and eigenvectors in at least two ways:

e The squared singular values t12 > t52 > ... > t,2 are the eigenvalues of the p
by p symmetric matrix A'A and the first p eigenvalues of the n by n
symmetric matrix AA'.

e The right singular vectors ry,...,rp are the eigenvectors of A'A.

e The left singular vectors Ly,...,.Lp are the eigenvectors of AA' associated
with the non-zero eigenvalues of AA’.

The Singular Value Decomposition and Some Applications

Although these properties suggest you could compute the SVD using software
for computing eigenvalues and eigenvectors, it is better to use an algorithm
specifically designed to compute the SVD, such as the one used by MacAnova
function svd() . Here is a short example of its use.

A matrix a is first constructed, then decomposed.

Cmd> x <- run(10);a <- hconcat(rep(1,10),x,x"2,x"3); a
1

(1,1) 1 1 1
(2,1) 1 2 4 8
(3,1) 1 3 9 27
(4,1) 1 4 16 64
(5,1) 1 5 25 125
(6,1) 1 6 36 216
(7.1) 1 7 49 343
(8,1) 1 8 64 512
(9,1) 1 9 8l 729
(10,1) 1 10 100 1000

Cmd> svd(a) # just get singular values
(1) 14154 27.14 2.2961 0.41587

Since all 4 singular values are non-zero, the matrix has rank 4. However, since

the smallest singular value is small relative to the largest, in a certain sense
we can say the matrix is almost of rank 3.

Cmd> results <- svd(a, all:T);results # get everything

component: values

(1) 14154 27.14 22961 0.41587 vect or
component: leftvectors

(1,1) -0.00079055 0.04376 -0.48416 -0.76645

(2,1) -0.0059493 0.13086 -0.52913 -0.067025

(3,1) -0.01969 0.2395 -0.44324 0.26814

(4,1) -0.046225 0.34536 -0.2751 0.33222

(5,1) -0.089767 0.42413 -0.073307 0.21842 10 by 4
(6,1) -0.15453 0.45151 0.11353 0.019917

(7,1) -0.24472 0.40319 0.23679 -0.1701

(8,1) -0.36456 0.25487 0.24789 -0.25845

(9,1) -0.51825 -0.017766 0.098213 -0.15193

(10,1) -0.71002 -0.43902 -0.26085 0.24263

component: rightvectors

(1,1) -0.0015222 0.067665 -0.59637 -0.79985

(2,1) -0.012736 0.27806 -0.75857 0.58914 4 by 4
(3,1) -0.11096 0.95185 0.26184 -0.1145

(4,1) -0.99374 -0.10995 -0.018601 0.0064589

The Singular Value Decomposition and Some Applications

Here are numerical checks of the properties of the SVD.
Cmd> L <- results$leftvectors; L' %*% L # left vectors orthonormal

(1,2) 1-6.9389e-18 -1.1102e-16 -2.3592e-16

(2,1) -6.9389¢e-18 1 1.6653e-16 3.8858e-16

(3,1) -1.1102e-16 1.6653e-16 1-4.4409e-16

(4,1) -2.3592e-16 3.8858e-16 -4.4409e-16 1

Cmd> R <- results$rightvectors; R' %*% R# right vectors orthonormal
(1,1) 1 4.0533e-17 -6.9218e-17 4.9043e-17

(2,1) 4.0533e-17 1 6.2095e-17 4.8526e-17

(3,1) -6.9218e-17 6.2095e-17 1-1.4827e-16

(4,1) 4.9043e-17 4.8526e-17 -1.4827e-16 1

Cmd> L %*% dmat(results$values) %*% R' # reproduces matrix a
(1,1) 1 1 1 1

(2,1 1 2 4 8

(3,1) 1 3 9 27

(4,1) 1 4 16 64

(5,1) 1 5 25 125

6,1) 1 6 36 216

(7,1) 1 7 49 343

8,1) 1 8 64 512

9,1) 1 9 81 729

(10,1) 1 10 100 1000

This confirms that you can reproduce a matrix from the three pieces of its
SVD.

The SVD and low rank approximations to matrices
Suppose for any reason you would like to replace A by another n by p matrix,
say A¢r) = [aij(M], which has rank 1 but, to some degree, approximates A. How
can you measure how good the approximation is. Statisticians think naturally
of the sum of squares of the elements of the difference A - ,&(1):

A - A2 = >-i2.iaij - 511‘ ()2 = tr((A - Agy)'(A - Apy))

To say that A(;) has rank 1 means that A(;) = tLr’, for some scalar t and
normalized vectors L and r (L'L = r'r = 1).

Question: What rank 1 matrix A¢y = tLr’ minimizes 1A - A¢)i2?

It is not difficult to show that the answer is ,&(1) = t1Lyry’, where ty, Ly, and
r, are the first singular value, and associated left and right singular vectors,
respectively. Because of the minimizing property, we say Ay = tiLiry’ is the
least squares rank 1 approximation to A. If it is a good approximation, that is
the residual sum of squares I1A - tjLyr;'112 is small enough, you might say that
A almost has rank 1.

The Singular Value Decomposition and Some Applications

When you generalize the question and seek for the best rank m > 1
approximation A¢n) to A in the same least squares sense, the solution again
comes from the SVD: The least squares rank m approximation to A is A(m) =
> 1<k<mtkLkrk’, computed from the first m singular values, and right and left
singular vectors. If I1A - Agm)li2 is quite small and

IA - Am-1)112 considerably larger, you might say that A almost has rank m.

The minimized sum of squared residuals is the sum of squares of the remaining
singular values, tm.1, ..., t D

A = Ay 12 = 313 i(aij - @ijm))2 = Smet <kepti.

When this sum of the squares of the p-m smallest singular values is small
relative to A2 = 3 i) jaij? = 2 1<«k<ptk?, that is if

2 m+1<k<ptk?/2_1<k<pti?
is small, then the rank m approximation Ay provides a good fit to A.

Let's see how well the SVD-based approximations of different ranks actually
approximate the matrix a in the example above. 1 used a for(...){...} loop to
print out all 3 approximations in one command, omitting the rank 4 case which
we have already seen exactly reproduces a.

Cmd> for(i,run(3)){ # loops over i from 1 to 3
J <-run(i) # integers 1 to i to be used as subscript
print(paste("Rank",i,"approximation™))
results$leftvectors|,J] %*% dmat(results$values[J]) %*% \
results$rightvectors[,J]'}

Rank 1 approximation

(1,1) 0.0017032 0.014251 0.12416 1112

(2,1) 0.012818 0.10725 0.93436 8.3681

(3,1) 0.042422 0.35494 3.0923 27.695

(4,1) 0.099592 0.83328 7.2597 65.018

(5,1) 0.1934 1.6182 14.098 126.26

(6,1) 0.33293 2.7856 24.269 217.35

(7,1) 052725 4.4115 38434 344.21

(8,1) 0.78544 6.5718 57.255 512.77

(9,1) 11166 9.3424 81.393 728.95

(10,1) 15297 12.799 11151 998.68

The Singular Value Decomposition and Some Applications

Rank 2 approximation

(1,1) 0.082063 0.34448 1.2546 0.98138
(2,1) 0.25314 1.0948 4.3149 7.9776
(3,1) 0.48224 21623 9.2793 26.98
(41) 0.7338 34394 16.181 63.987
(5,1) 0.97227 4.8188 25.054 125
(6,1) 11621 6.1929 35.933 216
(7,1) 12677 7.4541 4885 343.01
(8,1) 12535 84951 63.839 512.01
9,1) 1.084 9.2083 80.934 729
(10,1) 0.72351 9.4862 100.17 999.99
Rank 3 approximation (very good approxi mation)
(1,1) 0.74505 1.1878 0.96351 1.0021
(21) 097771 2.0164 3.9968 8.0002
(3,1) 1.0892 29343 9.0128 26.999
(41) 11105 39186 16.016 63.999
(5,1) 1.0727 49465 25.01 125
(6,1) 10066 5.9951 36.001 216
(7,1) 0.94342 7.0417 48.992 343
(8,1) 0.91403 8.0633 63.988 512
(9,1) 0.94946 9.0372 80.993 729
(10,1) 1.0807 9.9406 100.01 1000

As the rank increases, you get progressively better approximation. In
particular, you get an excellent rank 3 approximation to a, justifying the claim
that it is almost of rank 3.

Regression when both X and Y are measured with error
One application of this result is to the estimation of a simple linear
relationship between random variables X and Y when both are observed subject
to error (in ordinary regression, only Y is considered subject to error).

One way to formalize this is to assume that X; = x; + M and Y; = y; + €, Where
the x; and y; are not directly observable, but satisfy yi = 8o + B1x{. mMi and g
are assumed independent measurement errors with E[n;] = Ele;] = 0 and VIn;] =
V[e;] = 02. That is, the "true” values, X; and y; lie on a line in the x-y plane and
the errors are independent with equal variances.

When X and Y are normal, it is not hard to show that the maximum likelihood

estimate of the line passes through the point (X, Y), so that §o = Y - §1X, just
as in ordinary least ordinary squares regression. Moreover, the best estimates
of the remaining unknown quantities 81, X1, X2, ..., Xy minimize the sum of the
squared distances, measured perpendicular to the line, from the points (Xj, Yj)

to the points (xi, Y + B1(xi - X)), all of which lie on the line.

The Singular Value Decomposition and Some Applications

This sum of squared perpendicular distances is
RSS = > i(X; - X - (Xi - X))2 + >i(Yi - Y - Bi(xi - X))2
Note that RSS includes square X-residuals as well as Y-residuals.

Define A = [X - X1y, Y - Y1yl and A = (x - X1\)[1 B1], a matrix with rank 1.
Here X = [X{]l and Y = [Y{] are n by 1 column vectors of the observed data and x
= [x;] is a possible vector of the unobserved "true” x's. A and A are both N by
2 and RSS = I1A - Al2.

Therefore, if A = LTR’ is the SVD of [X - X1,, Y - Y1,], the A which minimizes
RSS is ;&(1) =ty

It follows that [1 §4]is proportional to ry’ = [rq7, ro1] and thus $1 = roq/rqy.
Moreover, if you are interested in it, you can estimate the true x by X = X1, «
S1F11L1.

Here is an illustration of this usage, using data on the first two variables,
extracted as yl1 and y2, for variety I. Setosa in the Fisher Iris data.

Read from file "TP1:Stat5401:Data:JWData5.txt"
Cmd> groups <- factor(data[,1]); y <- data[,-1]
Cmd> y1 <- y[groups == 1,1]; y2 <- y[groups == 1,2]

Cmd> means <- describe(hconcat(yl,y2),mean:T);means
1) 5.006 3.428

Cmd> svdstuff <- svd(hconcat(yl-means[1],y2-means[2]),all:T)
Cmd> sl <- svdstuff$values[1] # first (largest) singular value
Cmd> rl <- vector(svdstuff$rightvectors[,1])# its right sing. vector

Cmd>11 <- vector(svdstuff$leftvectors[,1])# its left sing. vector

Cmd> betal <- r1]2]/r1[1]; betaO <- means|2] - betal*means[1]

Cmd> vector(betaO, betal)
(1) -2.0924 1.1028

Cmd> # Here is ordinary LS regression

Cmd> regress("y2 = y1")
Model used isy2 =yl

Coef StdErr t
CONSTANT -0.56943 0.52171 -1.0915
yl 0.79853 0.10397 7.6807

N: 50, MSE: 0.065806, DF: 48, R"2: 0.55138
Regression F(1,48): 58.994, Durbin-Watson: 2.3454
To see the ANOVA table type 'anova()'

The Singular Value Decomposition and Some Applications

Note that the least squares regression coefficients are quite different from
those determined from the SVD. So let’'s compare the two lines.

Cmd> plot(y1, y2, symbols:" \ 1",show:F) # sstart graph with points
Cmd> x0 <- vector(4,6) # x-values at ends of lines to be drawn
Cmd> addlines(x0, betaO+betal* x0,show:F) # added line from ASVD

Cmd> addlines(x0, COEF[1] + COEF[2]*x0, linetype:3, \
xlab:"y1", ylab:"y2", \
title:"Best perpendicular LS (solid) and ordinary (dotted) LS lines")
Best perpendicular LS (s0lid) and ordinary (dotted) LS lines
T T T T T T T {\-:\} T

1 {} 1 1 1 1 1 —

4.4 4. 1.5 5 5.2 ! 5.6 =
¥l

Remark: Because the scale of the two axes are not identical, the distances

whose squares are minimized are not actually the perpendicular distances in

the graph from the line. They would be if the scales were identical.

You can generalize this result to p variables. When you have sample of N
multivariate p-dimensional random vectors Xi,..., XN, Whose expectations are
assumed to lie on a line in p-dimensional space, and X = [X1,....Xy]' is the data
matrix, then the best fitting line in the perpendicular least square sense runs
through the sample mean X = N-1>'X; and and has the same direction as Ly, the
first right singular vector of the residuals X = X -1yX’' from the mean.
Essentially you are finding a rank one approximation to X. Alternatively, you
can view 1yX’ + tiLir;’ as a rank 2 approximation to X, with the first
component selected on a priori grounds and the second computed from the
configuration of the data points. It is not hard to show that 1,'Lj = O for the

The Singular Value Decomposition and Some Applications

left singular vectors Lj of X.

SVD and Principal components
The preceding, in which the matrix X = X - 1yX' is approximated by a rank 1
matrix, suggests it may be interesting to approximate X by a rank m matrix

X(m), Where 1 <m < p. Then you could approximate the original data matrix by
the rank m+1 matrix 1yx' + X(m). From the general results for the SVD, the

best (in the least squares sense) choice of X is

5Z(m) = Z]ikgmtkl.krk',
where the tg, L, and r¢ are the singular values and vectors of X. When the
approximation is a good one, that is Y m.1<k<ptk2/2 1<k<ptk? is small, for some
purposes it may be possible to replace your original p variables, the columns of
X, by m new variables, defined by the n by 1 left singular vectors Ly, ..., Liy. If
you also retain the sample mean x and the first m right singular vectors rq, ...,
'm, you can almost recover X and hence little information may have been lost.
This results in an effective reduction in dimensionality from p to m < p.

In fact, the left singular vectors are closely related to the principal
components of the data. Specifically, let ux be the kth normalized eigenvector
of the sample covariance matrix V[X] = (N-1)-15(x;-X)(x;-X)' = (N-1)-1X"X.
Then you can express Zx = Xug, the vector containing the values of the kth
principal component, as Zyx = Tn(X'ug) + tyLy.

This is completely expressible in terms of the SVD because ux = ry, where ri is
the kth right singular vector so that Zy = 1n(X'r¢) + tcLx. Thus except for a
scaling factor and the addition of scalar X'r¢, the principal components are the

same as the left_singular vectors of X. The matrix of all principal components
is Z = XU = 1y(X'R) « LT, if U= [uy,....upl.

We illustrate this again with the Fisher Iris data.

Cmd> stats <- tabs(y,covar:T,mean:T)

Cmd> compnames(stats)
(1) "mean”
(2) "covar"

Cmd> ybar <- stats$mean; sy <- stats$covar; N <- nrows(y)
Cmd> svdstuff <- svd(y - ybar',all:T)

Cmd> compnames(svdstuff)
(2) "values"

(2) "leftvectors"

(3) "rightvectors"

The Singular Value Decomposition and Some Applications

Cmd> eigs <- eigen(sy) # sqrt of (N-1)*eigenvalues = singular valUEs

Cmd> hconcat(sqrt((N 1)*eigs$values), svdstuffdvalues)
(1,1) 25.1

(2,1) 6.0131 6 0131

(3,1) 3.4137 3.4137

4,1) 1.8845 1.8845

Since S = (N-1)-1X'X, the elements of (N-1)*eigs$values
X'X, the squares of the singular values of X.

are the eigenvalues of

Cmd> zc <- y %*% eigs$vectors # compute covariance princ. components

Cmd> tvals <- svdstuff$values # singular values

Cmd> left <- svdstuff$leftvectors # left singular vectors

Cmd> right <- svdstuff$rightvectors # right singular vectors
Cmd> ones <- rep(1,N)

Cmd> zcl <- ones %*% (ybar' %*% right) + left %*% dmat(tvals)

Cmd> zcl [run(5),] # 1st 5 case of PC's computed from SVD
1) (2) 3) (4)

(1) 2.8182 -5.6463 0.65977 0.031089

(2) 27882 -5.15 0.84232 -0.065675

(3) 2.6134 -5.182 0.61395 0.013383

4) 2.757 -5.0087 0.60029 0.10893

(5) 2.7736 -5.6537 0.54177 0.09461

Cmd> zc[run(5),] # first 5 cases of PC's computed from S
1) (2) 3) (4)
2.8182 5.6463 -0.65977 0.031089
(2) 2.7882 5.15 -0.84232 -0.065675
(3) 26134 5182 -0.61395 0.013383
(4) 2757 5.0087 -0.60029 0.10893
(5) 2.7736 5.6537 -0.54177 0.09461

The two ways of computing principal components yield the same answers

except for signs.

