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Relative Eigenvalues and Eigenvectors

Relative eigenvalues and eigenvectors generalize ordinary eigenvalues and eigenvectors.  They
are quite important in multivariate analysis.

The terminology “relative eigenvalues” and “relative eigenvector” is not common.  Some-
times they are called generalized eigenvalues and eigenvectors.

Definition of ordinary eigenvectors and eigenvalues

Suppose A = A’ is a p by p symmetric matrix.  If u ≠ 0 is a p by 1 vector and λ a scalar such that

Au = λu,

then u is an (ordinary) eigenvector of A  with eigenvalue λ.

In MacAnova, you compute the eigenvalues and eigenvectors of a symmetric matrix a by

eigen(a).  This returns a structure with two components, values, a vector of eigenvalues λ1 ≥
λ2 ≥ ... ≥ λp, and vectors, a matrix whose columns are the eigenvectors u1, u2, ..., up.
eigenvals(a) computes just the eigenvalues.

Caution You cannot use eigen(a) or eigenvals(a) when a is not symmetric.

A p by p symmetric matrix B is positive definite if and only if x’Bx > 0, for all p by 1 vectors
x ≠ 0.  A positive definite matrix B is always invertible, that is B–1 exists.  B is positive definite if

any only if all of its eigenvalues are positive, that is λp = λmin > 0.

Definition of relative eigenvectors and eigenvalues
Now suppose A = A’ and B = B’ are two p by p symmetric matrices with B positive definite and
hence non-singular (invertable).  It’s perfectly OK if A is not invertible.

Then if u is a p by 1 vector and λ a scalar such that

Au = λBu, (1)

then u is an eigenvector of A relative to B (a relative eigenvector) with relative eigenvalue λ.

Because B–1B = Ip , when you multiply both sides of (1) on the left by B–1, you get

B–1Au = λIpu = λu. (2)

This shows that u is an ordinary eigenvector of the non-symmetric matrix  B–1A with

ordinary eigenvalue λ.

Let v ≡ Bu, so that u = B–1v.  Then you can rewrite eq. (1) as AB–1v = λ BB–1v.  But BB–1 = Ip, and

hence AB–1v = λv, so  λ is also an eigenvalue of the non-symmetric matrix AB–1 with
eigenvector v  = Bu ≠ u.
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Although u and λ are (ordinary) eigenvector and eigenvalue of the non-symmetric matrix
B–1A, you cannot compute them in MacAnova by eigen(solve(b) %*% a), because eigen()
requires that its argument is symmetric.  The special algorithm provided by MacAnova
functiona releigenvals() and releigen() is essential

Like eigen(a), releigen(a,b) returns a structure with components values, a vector of

relative eigenvalues λ1 ≥ λ2 ≥ ... ≥ λp in decreasing order, and vectors, a matrix whose columns
are the relative eigenvectors u1, u2, ..., up.  releigen(a,b) returns the vector of relative
eigenvalues in decreasing order, that is, it’s the same as releigen(a,b)$values.

When B = Ip is the identity matrix, the eigenvectors and eigenvalues of A relative to B are
ordinary eigenvectors and eigenvalues of A.  Thus most of the properties of the ordinary
eigenvectors and eigenvalues of a symmetric matrix are special cases of properties of relative
eigenvalues and eigenvectors.  You can obtain the corresponding properties by substituting Ip

for B in most of the equations.

Properties

• All eigenvalues λi of A relative to B are real (as opposed to imaginary or complex) numbers
and the eigenvectors ui have real components.

• A is positive definite if and only if all λi  > 0, that is λp = λmin > 0.

• There are always p linearly independent eigenvectors u1, u2, ..., up of A relative to B with

relative eigenvalues λ1 ≥ λ2 ≥ ... ≥ λp (the ordering we always assume).    When the λi’s are

all different (λi ≠ λj, all i ≠ j), the ui’s are unique up to multiplication by scalars.  In addition,

when λi ≠ λj,

ui’Buj = uj’Bui = 0, (3)

that is ui and u j are orthogonal relative to B.

• When λi = λj for some i ≠ j, the eigenvectors are not unique but they may still always be
computed so that (3) is true.  

• By multiplying eigenvalues by a suitable scalar (1/√(ui’Bui)), you can always find ui such that

ui’Bui = 1. (4)

We will always assume (3) and (4) hold, even when there are equal λ’s.

When the u’s satisfy (3) and (4), multiplying Auj = λjBuj on the left by ui’, you have, from (3)

and (4),

 0,  i ≠ j

ui’Auj = uj’Aui = λiuj’Bui  =  , (5)

λ
i
,  i = j

You can summarize (1), (3), (4), and (5) in the matrix identities

AU = BUΛΛΛΛ,  with U ≡ [u1,...,up] and ΛΛΛΛ ≡ diag[λ1,...,λp], (6)

U’BU = Ip (7)
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and, from eq. (5)

U’AU = ΛΛΛΛ (8)

Eq. (6) and (7) imply that

U–1 = U’B (9)

and

A = BUΛΛΛΛU’B = ∑1≤i≤pλivivi’, where vi ≡ Bui. (10)

B = BUU’B = ∑1≤i≤pvivi’

Eq. (10) expresses A as a sum of outer products vivi’ weighted by λi.  By the definition
of the rank of a matrix, this implies that rank(A) = s if and only if there are exactly s
non-zero eigenvalues of A relative to B.  In most statistical applications, A is non-

negative definite so that λi ≥ 0, i = 1, ..., p.  This means that λ1 ≥ λ2 ≥ ... ≥ λs ≥ λs+1 = λs+2

= ... = λp = 0, that is the last p – s relative eigenvalues are zero.

Eq. (11) expresses B as the sum of the same outer products vivi’ equally weighted by 1

instead of by λi.

Corresponding properties of ordinary eigenvalues and vectors

Ordinary eigenvalues and eigenvectors of a symmetric matrix A satisfy Aui = λiui, i = 1, ...,p

with ui’ui = ||ui||2 = 1, ui’uj = 0, i≠ j.  It is helpful to compare (6) to (10) with the corresponding
identities for ordinary eigenvalues and eigenvectors.

A U = U ΛΛΛΛ,  U = [u1,...,up], ΛΛΛΛ = diag[λ1,...,λp], (6’)

U’ U = Ip,   that is U is an orthogonal matrix, (7’)

U’ A U = ΛΛΛΛ (8’)

U–1 = U’,  another way of expressing (7’), (9’)

and

A = U ΛΛΛΛ U’ = ∑1≤i≤pλiuiui’ (10’)

Ip =  U U’ = ∑1≤i≤puiui’ (11’)

Other properties and identities

Because the eigenvalues of A relative to B are ordinary eigenvalues and eigenvectors of B–1A,

you also have (recall tr(C) ≡ trace(C) ≡ ∑icii)

tr{B–1A} = tr{AB–1} = ∑1≤i≤pλi = λ1 + λ2 + ... + λp (12)

and

det{B–1A} = det{AB–1} = ∏1≤i≤pλi ≡ λ1λ2...λp. (13)
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The following facts are sometimes useful.

Suppose u is an eigenvector of A relative to B with relative eigenvalue λ.  Then λ/(1+λ) is an

eigenvalue of A relative to A + B and 1 + λ is an eigenvalue of A + B relative to B, both with
the same corresponding relative eigenvector u.  That is

Au = {λ/(1+λ)}(A + B)u (14)

and

(A + B)u = (1 + λ)Bu (15)

However, if u’Bu = 1, then u’(A + B)u = 1 + λ ≠ 1, so that u does not satisfy the usual
normalizing condition (4) relative to A + B.

By applying eq. (12) to eq. (14) and eq. (13) to eq. (15), you obtain

tr{(A + B)–1B} = ∑1≤i≤p{λi/(1 + λi)} (16)

and

det{B–1(A + B)} =∏1≤i≤p(1 + λi) = (1 + λ1)(1 + λ2)...(1 + λp). (17)

log(det{B–1(A + B)}) = ∑1≤i≤plog(1 + λi) = log(1 + λ1) + log(1 + λ2) +... + log(1 + λp) (18)

Extremal properties of relative eigenvalues and eigenvectors
The importance of relative eigenvalues and eigenvectors in multivariate analysis stems from
the following facts:

λ1 = λmax = u1’Au1/u1’Bu1 = maxu(u’Au/u’Bu) (19)

λ2 = u2’Au2/u2’Bu2 = maxu,u’Bu1=0(u’Au/u’Bu)

λ3 = u3’Au3/u3’Bu3 = maxu,u’Bu1=0,u,u’Bu2=0(u’Au/u’Bu), etc.

maxu,u’Bu1=0(...) means the maximum over all choices of u that satisfy u’Bu1 = 0, that is al  u that

are orthogonal to Bu1 and maxu,u’Bu1=0,u,u’Bu2=0(...) means the maximum over all choices of u

that are orthogonal to both Bu1 and Bu2.

Less important in statistics are minimization properties:

λp = λmin = up’Aup/up’Bup = minu(u’Au/u’Bu)

λp–1 = up–1’Aup–1/up–1’Bup–1 = minu,u’Bup=0(u’Au/u’Bu)

λp–2 = up–2’Aup–2/up–2’Bup–2 = minu,u’Bup=0,u,u’Bup–1=0(u’Au/u’Bu), etc.
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Application to one-way MANOVA
The one-way multivariate analysis of variance (MANOVA) provides an important example of
how relative eigenvalues and eigenvectors may be used.

Suppose you have g independent random samples of size n1,...,ng from g populations that are

Np(µj,ΣΣΣΣ), j = 1,...,g and are interested in testing the null hypothesis 

H0: µ1 = µ2 = ... = µg

One approach finds the linear combination of the response variables xj, j = 1, ..., p, for which H0

appears to be most violated and then tests to see if an F statistic computed from the linear
combination is significantly large.

For any particular length p vector u, y = yu ≡ u’x = ∑jujxj is a univariate random variable which
is a linear combination of the xj’s.  Computing yu 

for every observation yields g independent

univariate random samples from the g populations N(µ1y,σy
2), N(µ2y,σy

2),..., where µ1y = u’µ1,

µ2y = u’µ2, ..., and σy
2 = u’ΣΣΣΣ u.

When H0 is true, the univariate null hypothesis

H0u: µ1y  = µ2y = ... = µgy

is certainly true also.

You can, in fact say more: H0 is true when and only when H0u is true for every u, that is, the
expectations of any linear combination of the x’s is the same in each population.

For a fixed u, a familiar test statistic for the univariate null hypothesis H0u is the univariate F
statistic
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  , where N = ∑jnj.

SSh and SSe are often notated SSB (B for "between") and SSW (W for "within").

For any fixed u, when H0u is true Fu is distributed as Ffh,fe
 = Fg–1,N–g, fh = g–1, fe = N–g.

Another expression for Fu is

Fu = {u’Hu/(g–1)}/{u’Eu/(N–g)} = {fe/fh}(u’Hu/u’Eu), (20)

where the hypothesis  and error matrices are
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H and E are exact analogs of SSh, the hypothesis sum of squares and SSe, the error sum of

squares in a univariate one-way ANOVA, except that terms of the form (...)2 become terms of
the form (...)(...)’.
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The diagonal elements of H and E are the hypothesis and error sums of squares in univariate
one-way analyses of variance of x1, x2, ..., and xp.

Note that sometimes, as in Johnson and Wichern, H is notated B, since it is a matrix of
between group sums of squares and products, and E is notated W, since it is a matrix of within
group sums of squares and products.  I will consistantly use H and E because the notation is
applicable to more situations.

In this one-way MANOVA situation, s = rank(H) = min(g–1, p).   In more general MANOVA
situations, when H has degrees of freedom fh, s = rank(H) = min(fh, p).

I use fh as a standard notation for hypothesis degrees of freedom.  Here fh = g–1.  There are never
more than s = min(fh,p) non-zero relative eigenvalues of H relative to E.

Multivariate test statistics based on relative eigenvalues
Because H0 is true if and only if the univariate null hypotheses H0u are true for all vectors u, a
plausible test statistic for H0 is the maximum value of Fu over all choices for u.  Maximizing
Fu = {(N–g)/(g–1)}(u’Hu/u’Eu) (see eq. (20)) is equivalent to maximizing u’Hu/u’Eu and thus by
eq. (19) the maximum value is

Fmax = {(N–g)/(g–1)}

    

ˆ ˆ

ˆ ˆ

u Hu

u Eu

1 1

1 1

′

′
 = {(N–g)/(g–1)}  λ̂1  = {(N–g)/(g–1)}  

ˆ
maxλ (21)

where       û j  and     λ̂ j , j = 1,...,p are the eigenvectors and eigenvalues of H relative to E.  Thus Roy

suggested   
ˆ

maxλ  as a test statistic for the multivariate null hypothesis H0.

I must emphasize that     ̂u1 is not fixed, but is random because it is computed from the random
matrices H and E.  Moreover, it is specifically chosen so as to maximize Fu.  This means that the
null distribution of Fmax is not Fg–1,N–g.  Use of ordinary F tables is erroneous with Fmax,

although such use is a common mistake. Instead new tables or charts are required to get its
critical values.

Geometric interpretation

If s ≡ rank(H) = min(p,fh) > 1, and the largest relative eigenvalue is dominant (that is,   λ̂1  >>   λ̂2

≈ 0), then all the sample mean vectors     x1,     x2 , ...,     xg  lie close to a line (a 1 dimensional structure)

in p-dimensional space.  This suggests that   
ˆ

maxλ  might be a particularly good test statistic when
the population means µ1,...,µg are different and near a line.

When the first two relative eigenvalues dominate (  λ̂1  ≥   λ̂2  >>   λ̂3 ≈ 0), then the sample mean
vectors lie close to a two-dimensional plane in p-dimensional space.  

6



Relative Eigenvectors and Eigenvalues

All the     λ̂ j ’s are indicators of the size of H relative to E.  Since "large" H is evidence against H0,

you can use the     λ̂ j ’s to construct other test statistics.

• The likelihood ratio test of H0 against the alternative

H1: not all µj’s the same, that is µj1
 ≠ µj2

 for some j1 ≠ j2,

rejects H0 for large values of

1/Λ* ≡ det{E–1(H + E)} =    (
ˆ )( ˆ ) ( ˆ )1 1 11 2+ + … +λ λ λ p  (see eq. (15)).

This is usually used in the form –2 m1log Λ* = 2m1log(det{E–1(H + E)}) =  2m1∑ilog(1 +     λ̂ i)
where m1 = fe – (p – fh + 1)/2 is a constant

• Hotelling’s generalized T
0

2 Hotelling suggested that H0 should be rejected for large values of

T0
2 ≡ fetr(E–1H) = fe    λ̂ ii∑  (see eq. (12))

• Pillai’s trace statistic V Pillai proposed rejecting H0 for large values of the statistic

V = m3tr{(H + E)–1H}  = m3

    

ˆ

ˆ
λ

λ
i

i

i 1 +
∑ , m3 = fh + fe = N–1 (see eq. (16))

All these statistics, the maximum relative eigenvalue   λ̂1 , 1/Λ*, T0
2, and V, can be considered as

overall measures of the size of H relative to E.  In general they are not equivalent and can lead
to different conclusions when used in a hypothesis test.  However, when p = 1 (univariate case)

or fh = 1, they all depend only on   λ̂1  and are thus equivalent since   λ̂1  = 1/Λ*– 1 = T0
2/fe =

V/(1 – V).  And in large samples, all but the test using only   λ̂1  are essentially identical.
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MANOVA canonical variables

The variable     ̂zi  ≡       ̂ ′u xi  is often called the first canonical variable associated with the null-

hypothesis.  Since the F statistic in the univariate ANOVA based on     ̂z1  is Fmax =     Fû1
,      ̂z1  =      ̂ ′u x1  =

    
û xi i

i

p

1
1=

∑  is the linear combination of variables x1, x2,..., xp for which the the null hypothesis

appears to be most violated.  The elements of vector     ̂u1 are the coefficients defining the linear

combination.  Thus examination of the elements of     ̂u1 can sometimes clarify in what way a
null hypothesis fails to be true.

The linear combination     ̂z2  =     ̂ ′u x2  = 
    

û xi i
i

p

2
1=

∑  is the second MANOVA canonical variable.  It is

the linear combination of the original x’s that is uncorrelated with     ̂z1  and for which the null
hypothesis appears to be most violated.  Similarly you can define MANOVA canonical

variables     ̂z3 ,     ̂z4 , ...,     ẑp  by       
ˆ ˆz j j= ′u x .  At most, only the first s = min(fh,p) canonical variables are

of interest in the sense that they help describe the differences among the groups.  This is

because, for j > s, the F-statistic = (fe/fh)    λ̂ j  associated with     ẑ j  is exactly 0 and has no among-

group information.  When s  = min(p, fh) is large, the hope is that only the first few relative

eigenvalues, perhaps   λ̂1  and   λ̂2  or   λ̂1 ,   λ̂2  and   λ̂3 , or even just   λ̂1 , will be dominant and then
only those few corresponding canonical variables will have almost all the information about
differences among the group.
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