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Notes on Profile Analysis

Profile analysis provides a relatively simple form of the analysis of repeated measures.
Recall that repeated measures analysis deals with multivariate observations x = [x1, x2, ..., xp]’
where each variate is a measurement or determination on essentially the same quantity
under p different conditions or treatments.  In particular, the xi’s might be measurements at
time ti, i = 1, ... , p.

Variable xi is the response under level i of a within-subject factor.  As in other situation
where there are multiple treatments, you are primarily interested in the differences among
the levels of the within-subject factor.

One way to display the data x1, x2, ..., xp for a given individual or case is as a plot of x1, x2, ...,
xp against the variable number 1, 2, ..., p.  This is sometimes called the profile for that case.
Similarly you can make a profile plot of the mean vector µ as a plot of µ1, µ2, ..., µp against
1, 2, ..., p.

Here are some examples in which profile analysis might be appropriate.

(i)  x1, x2, ..., x6 are measurements of a person’s heart rate x made at 6 fixed times over
the course of 24 hours.

(ii) x1, ..., x8 are the total amounts of milk obtained from a cow in the 1st, 2nd, ..., 8th week
of lactation.

(iii) x1, x2, x3, x4 are ratings of 4 brands of root beer made by a taste test panel member.

Single sample test of within-subject equality of means

In the simplest case, there is a single sample x1, x2, ..., xn from a multivariate population

with mean µ = [µ1, µ2, ..., µp]’ and covariance matrix ∑∑∑∑.  When all components of x measure
essentially the same quantity under different conditions, you should view this as a repeated
measures factorial design with one within-subject factor with p levels and no among-
subject factor.  There is no among-subject factor since all vectors (cases) come from a single
population.

Because different variables represent observations at different times or under different
conditions, a hypothesis of immediate interest is usually that there are no differences among
variate means, that is

H0: µ1 = µ2 = ... = µp,
or equivalently

H0: µ = µ1p for some µ.

For Example (i) this is the hypothesis that the expected heart rate (population average heart
rate) is the same at the 6 times.

For Example (iii), this is the hypothesis that the 4 brands do not differ in their mean ratings.

You can approach many problems in repeated measures analysis by defining suitable
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contrasts among the variables.  For example, define the following p–1 by p contrast matrix
(contrasts specified by rows):

Ca =

 

1 1 0 0 0

1 0 1 0 0

1 0 0 0 1 0

− …
− …

… … … … … …
−
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



Then you can express H0 as H0: C1µ = 0, that is µ1–µ2 = 0, µ1–µ3 = 0, ..., µ1–µp = 0.

Suppose w is the p–1 dimensional random vector

w = Cax = [x1–x2, x1–x3, ..., x1–xp]’.

Then w has expectation Ε[w] = Caµ and you can express the null hypothesis as

H0a: E[w] = 0.

You can test this hypothesis in any of a number of familiar ways, the most appropriate of
which will often be a 1-sample Hotelling’s T2:

T2 =   ′ −w w wˆ [ ]V 1  = 
  

′ 





−

w S w
1

1

n
 = n(Ca x )’(CaSxCa’)–1(Ca x ),

where  x  and  w  = Ca  x  are the sample means of x and w, and Sx and Sw = CaSxCa’ are their
sample unbiased variance matrices on fe = n – 1 degrees of freedom.

Because the dimension of w is q = p – 1, the null distribution of T2 (assuming the
multivariate normality of x) is

{qfe/(fe – q + 1)}×Fq,fe–q+1 = {(p–1)(n–1)/(n–p+1)}× Fp–1,n–p+1.

In large samples this approaches χq
2.

Ca is only one of many different contrast matrices you might use.  Let C be any other full
rank contrast matrix, that is a p–1 by p matrix with rank p–1 whose rows sum to zero.
Symbolically, C must satisfy C1p = 0.  Then you can also express H0 as H0: Cµ = 0.  For

example,

Cb  =

 

1 1 0 0 0

0 1 1 0 0

0 0 0 1 1
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is a contrast matrix which you can use to express the same null hypothesis in the form H0b:

µ1 = µ2, µ2 = µ1, ..., µp–1 = µp, that is there is no difference between adjacent levels of the
within subject treatment or factor.

When the variables represent responses at equally spaced quantitative levels of a factor,
perhaps time, you might consider using a matrix C whose rows are given by orthogonal
polynomials weights.  For p = 4, this would be
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Cp  =

 

− −
− −

− −

















3 1 1 3

1 1 1 1

1 3 3 1

Row j of Cp  is related to a null hypothesis concerning the form of polynomical dependence
of the mean on the time.

The use of a different C ≠ Ca might appear to result in a different T2 statistics, say  2 =

n(C x )’(CSxC’)–1(C x ).  However, there always exists a non-singular p–1 by p–1 matrix A (for

example, A = CaC’(CC’)–1), such that Ca = AC.  Substituting in the formula for T2,  and using

the identity  (ACSxC’A’)–1 = (A’)–1(CSxC’)–1A–1 it easily follows that T2 = 2.  Therefore the

value of T2 does not depend on the particular choice of C.  You should normally a C that
most closely reflects your interests, such as comparisons with the µ1, comparisons between
adjacent means, or the form of a polynomial response function.

There are, of course, other tests of H0: Cµ = 0, such as Bonferronized single sample t-tests
based on w1, ..., wp–1.  Although these tests will depend on the choice of C, they still may be
appropriate if C has been chosen on the basis of research goals.  For example, when x1

represents a measurement under a control treatment or an initial value at the start of an
experiment, your focus might be on the comparisons of each treatment with the control or
initial value, that is comparison of µj with µ1, j = 2,..., p.  In that case, a Bonferronized t
analysis based on w = Cax, where Ca is as above might be most appropriate.  Or if you have a
special interest in the successive changes between µj–1 and µj, a Bonferronized analysis based
on w = Cbx might be appropriate as it might reveal when any change took place.  If you are
interested in the form of a possibly curvilinear dependence on time, an analysis based on w
= Cp might be appropriate.

Comparison with Randomized Block Design (RCBD)

The situation just described is deceptively similar to a univariate randomized complete
block (RCBD) experiment.  The n subjects (individual multivariate observations xi)
correspond to n blocks, and the within-subject measurements (components of x)
correspond to to measurements made on “plots” within a block.

If this approach were applicable, you could do an ordinary univariate two-way (blocks and
treatments) Analysis of Variance (ANOVA), followed by univariate analysis of treatment
means.  In MacAnova, if x is the n by p matrix of responses, you might do the ANOVA by

Cmd> y <- vector(x) # put all values in vector, a column at a time

Cmd> blk <- factor(rep(run(n),p)) # "block number" factor

Cmd> trt <- factor(rep(run(p),rep(run(n),p))) # treatment numbers

Cmd> anova("y = blk + trt")

vector(x) “unravels” data matrix x, column by column, into a vector of length n–p.

rep(run(n),p) builds a vector consisting of p repetitions of each block number  1, 2, ..., n.

rep(run(p),rep(run(n),p)) builds a vector consisting of the form (1, 1, 1, ..., 1, 2, ..., 2, ...,
n,..., n), where there are p 1’s, p 2’s, ... .
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From the ANOVA you would get an F = MStreatment/MSerror for testing H0.  In a RCBD

experiment, when H0 is true, F is distributed as Fp–1,(n–1)(p–1) .

However, an important component of a RCB experiment is the random assignment of the
treatments to the experimental units in each block.  It is what makes the use of Fp–1,(n–1)(p–1)

appropriate.  In a repeated measures design this is usually impossible, even conceptually.
For example, if each component is associated with a different observation time, they cannot
be randomized and hence the ANOVA may not be appropriate.

Even when randomization is impossible, it may still be possible to use the ANOVA
approach if you can assume an additive linear model of the following form:

xij = µi + Bj + εij, i = 1,...,p, j = 1,...,n,

where (i) the normal errors ε’s are independent with 0 mean; (ii) the ε’s have constant

variance σε
2; and (iii) the subject effects Bj are random with expectation 0 and variance σB

2

and are independent of the ε’s.  This model implies that all the correlation between different
measurements on a subject comes from sharing a common subject effect.

Both the randomization model and the additive linear model imply that that the variance
matrix of x is of the the so called intraclass correlation form

ΣΣΣΣ =
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 = σ2[(1 – ρ)Ip + ρ1p1p’].

The corresponding correlation matrix is

  R =

 

1

1

1

1
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

 = (1 – ρ)Ip + ρ1p1p.

For the model just given, σ2 = σε
2 + σB

2 and ρ = σB
2/(σε

2 + σB
2).  When ΣΣΣΣ is of this form, then

if C is any contrast matrix, that is C1p = 0, V[Cx] = CΣΣΣΣC’ = σε
2CC’, where σε

2 = (1 – ρ)σ2.  This is

what is exactly required for the ANOVA approach to be valid.  When the ANOVA approach
to testing H0 is applicable, it is preferred, since it is simpler and has greater power than T2.

Except in unlikely situations, when ΣΣΣΣ is not of this form but still V[Cx] = σε
2CC’, the ANOVA

F-statistic is not distributed as F.

In the univariate randomized block approach, you estimate σε
2 by the usual randomized

block ANOVA error mean square s2 = MSerror on (n–1)(p–1) degrees of freedom, and
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estimate V[C x ] by   
ˆ [ ]V1 Cx  = (s2/n)CC’.  This is not the same estimate as the multivariate

estimate   
ˆ [ ]V Cx  = C(S/n)C’.

It is interesting that you can express the usual ANOVA among-treatments F-statistic

MStreatment/MSerror as (C x )’(  
ˆ ( )V1 Cx )–1(C x )/(p–1), reminiscent of the formula for T2.  If

V[Cx] ≠ const×CC’ then the ANOVA F-statistic does not have the usual F-distribution,
although various approximations to its distribution are in use.  See Sec. 10.17 in the
MacAnova User’s Guide for version 4.07.

Two sample profile analysis
The next most complicated profile analysis situation is the two sample case.

Suppose you have two random samples x11,...,xn11 and x12,...,xn22 of sizes n1 and n2 from

populations with means µ1 and µ2, respectively and common variance matrix ΣΣΣΣ.  A typical
situation might involve two treatment groups of subjects, with measurements of
comparable quantities x1, x2, ..., xp  made on each subject at times t1, t2, ..., tp or under p
different experimental conditions.  You can view this situation as a two-factor repeated
measures design with one  within-subject factor with p levels, and one  between-subjects
factor with 2 levels.

By analogy with a 2 by p factorial experiment, you can express the elements (individual
means) µi1 and  µi2 of µ1 and µ2 as

µij = µ + αi + βj + (αβ)ij, i = 1, 2, j = 1,...,p.

Usually the “side conditions”, α1 + α2 = 0 (that is, α2 = – α1), ∑jβj = 0, ∑i(αβ)ij = (αβ)1j + (αβ)2j

= 0 (that is, (αβ)2j = –(αβ)1j), and ∑j(αβ)ij = 0, i = 1,2) are assumed.  These are the side con-
ditions assumed by MacAnova for a two-way ANOVA.

The αi are between-subjects effects, the βj’s are within-subjects effects, and the (αβ)ij terms are
interaction effects which determine the pattern of interaction between the two factors.  At

each level of factor 2, the treatment means differ by µ1j – µ2j = α1 – α2 + (αβ)1j – (αβ)2j.

When (αβ)ij = 0 for all i and j, then the elements of αααα1 and αααα2 are determined additively, that

is, µij = µ + αi + βj and the differences µ1j – µ2j = α1 – α2 do not depend on within subject

level j.  

Test of parallelism (no interaction) for two samples

When (αβ)ij ≡ 0 so that there is no interaction between the two factors and µij = µ + αi + βj,
you can express each mean vector as

µi = µ1p + αi1p + ββββ, ββββ = [β1, ...,βp]’, i = 1, 2.

In this case, µ1 – µ2 = (α1 – α2)1p = [α1–α2, α1–α2,..., α1–α2]’.  That is, at each level of factor 2,

the two treatment means differ by a the same amount α1 – α2.  Geometrically, this means
that the profiles (graphs µ1j and µ2j vs j) are parallel.
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When H0: (αβ)ij ≡ 0 is not true, that is at least one (αβ)ij ≠ 0, then the profiles are not
parallel and Cµ1 ≠ Cµ2.

When the profiles are parallel, α1 – α2 is the between-subjects difference at all levels of the
within-subject factor and hence it describes fully the difference between the two levels of the
between-subject factor.  Furthermore,  the null hypothesis H0: µ1 = µ2 reduces to the simpler

hypothesis H0: α1 = α2.

Similarly, let c’µi with c’1p = 0 define a within-subject contrast, that is, c defines a compar-

ison among µi1, ... ,µip, i = 1, 2.  Then, when the assumption of parallelism is true ((αβ)ij ≡ 0),

c’µi = µc’1p + αic’1p + c’ββββ =  c’ββββ, i = 1,2,

does not depend on the level i of the between-group factor.  This means that the βj’s fully
describe the differences among the expected values at different levels of the within-subject
factor.  In this case, the null hypothesis that there is no difference among the means of p

measurements reduces to H0: β1 = β2 = ... = βp, that is, Cµi = Cββββ = 0, where C is a full rank

p–1 × p matrix satisfying C1p = 0. 

The preceding facts suggest a method of analysis to answer many of the standard questions
that are asked in the univariate ANOVA of a 2 by p factorial experiment.  Define the n = n1

+ n2 vectors wki = Cxki, i = 1, 2,  k = 1,..., nj of contrasts among the elements of the xki’s.  The
wki’s have dimension q = p–1 by 1.

Test of parallelism (no interaction)

You can express null hypothesis H0: (αβ)ij ≡ 0 as H0: E[w1]  = E[w2], that is Cµ1 = Cµ2.  You can

use any test of this hypothesis, in particular the two-sample Hotelling’s T2 statistic based on
the wki’s:

T2 =   ( ) ˆ [ ] ( )w w w w w w1 2 1 2
1

1 2− ′ − −−V

    = (C( x 1 –  x 2))’{(1/n1+1/n2)CSC’}–1(C( x 1 –  x 2))

    = {n1n2/(n1+n2)}( x 1 –  x 2)’C’(CSC’)–1C( x 1 –  x 2),

where S = Spooled = (n1+n2–2)–1{(n1–1)S1 + (n2–1)S2} is the pooled sample variance matrix on

fe = n1+n2–2 degrees of freedom.  T2 has the null distribution {qfe/(fe–q+1)}F(q, fe–q+1) =
{(p–1)(n1+n2–2)/(n1+n2–p)}Fp–1,n1+n2–p because the dimension w is q = p – 1.  As before, the

value of T2 does not depend on the particular C chosen.  You would reject H0 if

T2 > {(p–1)(n1–n2+2)/(n1+n2–p)}Fp–1,n1+n2–p(α).
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Two sample test of within-subject equality of means, assuming parallelism.

When there is no interaction, that is, when the profiles are parallel, the n = n1 + n2 vectors

w11,..., wn11, w12,..., wn22 all have common mean vector Cββββ.  Since the null hypothesis of no

within-subject differences, (H0:β1 = β2 = ... = βp) is equivalent to H0:E[wij] = Cββββ = 0, you can

test it by a single sample Hotelling’s T2, treating all n1+n2 wki’s as a sample from a single

population with sample mean  w  = (n1  w1  + n2  w2 )/(n1+n2) = C x , where  x  =

(n1 x 1+n2 x 2)/(n1+n2).  The estimated variance matrix of  x  is   
ˆ [ ]V x  = (1/n)S and therefore

the estimated variance matrix of  w  = C x  is   ˆ [ ]V w  =   ˆ [ ]V Cx  = (1/n)CSC’.  HotellingÆs T2 is

T2 =  w ’  ˆ [ ]V w –1  w  = (C x )’{(1/n)CSC’}–1C x ,

with null distribution {(p–1)(n1+n2–2)/(n1+n2–p–1)}Fp–1,n1+n2–p–1.  This provides a test of the

“main effects” of the within-subject factor, assuming no interaction.

If the null hypothesis of parallelism is rejected, it is certainly evidence that  Cµµ 1 ≠  Cµµ 2 and

that either  Cµµ 1 ≠ 0 or  Cµµ 2 ≠ 0 or both.

Test of equality of the two group mean vectors, assuming parallelism

Again assume that the effects of within-subject treatment and between-subject treatment are
additive, that is, that the the two profiles are parallel.  Then you may want to test the null
hypothesis that the two group mean vectors are identical, that is, the hypothesis that there is

no non-zero between-subject factor effect.  Symbolically this is H0: α1 = α2 = 0.   You could

test H0 by an ordinary two sample Hotelling’s T2 test of H0: µ1 = µ2, but this does not take
advantage of the assumption that the profiles are parallel.  With this assumption, the
problem can reduced to a univariate problem.  

Let  be any fixed p by 1 vector that defines a linear combination of the p responses such

that ’1p = 1, for example  = 1p/p.  Then, assuming the additive model E[xi] = µi = µ1p +

αi1p + ββββ,

E[ ’xij] = ’µj = µ ’1p + αj ’1p + ’ββββ =  µ  + αj, i = 1,...,nj, j = 1,2,

where  µ  = µ + ’ββββ. Therefore α1 = α2 if and only if E[ ’x1] = E[ ’x2].  You can test this
equality with a univariate two sample t-statistic

t = ( ’ x 1 – ’ x 2)/ SE [ ’ x 1 – ’ x 2] =

( ’ x 1 – ’ x 2/{(1/n1+1/n2) ’S }1/2.

When H0 is true, t is distributed as Student’s tfe
 = tn1+n2–2.  Unfortunately, there is no unique

choice for .  The conventional choice is to weight all responses equally, that is, to put  =

p–11p, so that ’x = p–1∑1≤j≤pxj is the average response across the levels of the within-subject

factor.  Ideally you would like to choose  such that ’ΣΣΣΣ /|| ||2 is minimized, since this
will maximize the power of the t-test.
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Multi-sample profile analysis

The concepts involved in two sample profile analysis are easily extended to several
samples.  Now you analyze g random samples x11,...,xn1,1, x12,...,xn2,2, ..., x1g,...,xng_g from g

populations with means µ1, µ2, ..., µg respectively and common variance matrix ΣΣΣΣ.  A
typical situation might involve g treatment groups of subjects, with measurements of
comparable quantities x1, x2, ..., xp  made on each subject at times t1, t2, ..., tp or under p
different experimental conditions.  This situation may be viewed as a two-factor repeated
measures design with one within-subject factor with p levels, and 1 between-subjects factor
with g levels.

Precisely as in the two sample case, you can decompose each mean as

µij = µ + αi + βj + (αβ)ij, i = 1, ... ,g, j = 1,...,p

The αi’s are the between-groups (between subjects) effects, the βj’s are the between-

measurements within-subjects effects, and the (αβ)ij’s are interaction effects expressing how

the within-subjects effects differ among groups.  Usually it is assumed that ∑iαi = ∑jβj =

∑i(αβ)ij = ∑j(αβ)ij = 0.

Test of parallelism with several groups

If all the interaction terms are zero, then for each group, the differences µij1 – µij2 = βj1 – βj2 of

the components µij of µi are the same for all groups.   Geometrically this means that the g

mean profiles are parallel.  For this reason a test of H0: (αβ)ij = 0, i = 1,...,g, j = 1,...,p is often
called a test for parallelism.  If H0 is true, then, as with the case of two groups,

µi = µ1p + αi1p + ββββ, where ββββ = [β1, β2, ..., βp]’

Let C be a rank p–1 contrast matrix, that is C’1p = 0p–1.  Under the hypothesis of parallelism,

Cµi = Cββββ, i = 1, ..., g.  That is, if w = Cx, the means µw,i = Cµi = Cββββ are identical for all i.
Therefore any test the hypothesis µw,1 = µw,2 = ... = µw,g provides a test of parallelism.  You
can do this by a p–1 dimensional multivariate analysis of variance MANOVA based on wij =
Cxij, i = 1, ..., nj, j = 1, ..., g.  If H and E are the p by p hypothesis and error matrices in a
MANOVA based on x, the p–1 by p–1 matrices Hw = CHC’ and Ew = CEC’ are the hypothesis
and error matrices for the analysis of w.  You can use any of the usual MANOVA tests based

on Hw and Ew.

If the profiles are not parallel, that is, there is interaction between the among-group factor
and the within-subject factor, it usually means that there is little point in testing “main
effects”, since the presence of interaction means that the effects of each factor depend on the
level of the other factor.  Hence, to examine main effects, you usually assume parallelism.

Multi sample test of within-subject equality of means, assuming parallelism

Assuming parallelism (no interaction), all the variable means within a subject are equal

whenever β1 = β2 = ... = βp = β, that is ββββ = β1p.  When ββββ = β1p, and only ββββ = β1p, then Cββββ =

βC1p = 0.  Thus you can test H0: β1 = β2 = ... = βp by testing µw = E[Cx] = 0.  You can do this

using Hotellings T2 =   ′ −w w wˆ [ ]V 1 , where  w  = C x ,  x  = (∑ini
 x i)/n = ∑j∑ixij/n is the grand
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mean vector, and   
ˆ [ ]V w  = n–1CSpC’.  Here n = ∑ini is the total number of cases (subjects) and

Sp = E/(n – g) is the pooled covariance matrix on fe = n – g degrees of freedom.  Assuming

normality and equality of covariance matrices (ΣΣΣΣ1 = ΣΣΣΣ2 = ... = ΣΣΣΣp), under H0, since the

dimension of w is q = p – 1, T2 is distributed as

{fe–q/(fe–q–1)}Fq, fe–q–1 = {(n–g)(p–1)/(n–g–p)}Fp–1,n–g–p.

Multi-sample test of equality of group mean vectors, assuming parallelism

Now suppose that you want to test the null hypothesis H0:µ1 = µ2 = ... = µg, assuming that

the mean vectors are of the form µi = µ1p + αi1p + ββββ.  Clearly, when you can assume

parallelism, H0 is true if and only if α1 = α2 = ... = αg.  As in the two sample case, let  be a p

by 1 vector such that ’1p = 1.  Then, if γi = ’µi, γi = (µ + β) + αi, with β = ’ββββ.  Then α1 = α2

= ... = αg if and only if γ1 = γ2 = ... = γg.  But, if y ≡ ’x, y is a univariate random variable

whose mean in group i is γi.  The usual test in the univariate situation is a univariate one-
way ANOVA F-statistic on g–1 and fe = n–g degrees of freedom.  If H and E are the
hypothesis and error matrices for a one-way MANOVA of the hypothesis H0: µ1 = µ2 = ... =

µg, then the numerator and denominator sums of squares in the F-statistic are ’H  and

’E , respectively.  As with the two sample case, the conventional choice for  is  =
(1/p)1p, and the analysis reduces to an ANOVA on the equally weighted average of all p

responses of each subject.  Also, for the conventional choice ’H  = ∑i∑jhij/p2 and ’E  =

∑i∑jeij/p2, where H = [hij] and E  = [eij].
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