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Statistics 5401 October 10, 2005
Multi-group Profile Analysis Example

This handout provides an analysis of some artificial data from Example 5.9 on p. 240 of
Multivariate Statistical Methods, 3td Edition by Donald F. Morrison, McGraw Hill 1990.

Each observation represents one subject's scores on three scales A, B and C computed from
a test instrument. Each subject was classified in one of four socioeconomic classes, 1, 2, 3
and 4 with sample sizes n; =8, n, =5, n3 =4 and n4 = 4, respectively. The data from
Morrison's Table 5.7 are in data set TAB5. 8 in file cbnor ex. t xt (5.8 was the table number
in the second edition).

There are three columns of contrast dummy vectors but no table of groups numbers. Thus
the first thing I did was to build factor groups from these dummy vectors.

Crd> y <-read("™,"TAB5.8") # read from cbmorex.txt
TABS. 8 21 6 FORNAT
) Data from T Table 5.8, p. 210 of Morrison

Col. 1. c1 = dumy variable (1,0,0,-1) for class 1
Col. 2: c2 = dumy variable (0,1,0,-1) for class 2
Col. 3: ¢3 = dumy variable (0,0,1,-1) for class 3

Col. 4-6: a,b,c = scores on scales a,b,c
nl1l=8, n2=5, n3=4, n4=4
Read fromfile "TP1: St at 5401: Dat a: cbnorex. t xt"

N N’ N’ N

Cmd> groups <- \ Construct factor from dummy vari ables
factor(1¥(y[, 1J==1)+2*(y[,2J==1)+3*(y[,3J==1)+4*(y[, 1]==-1))

Cnd> print(format:"1.0f",vector(groups)) # make sure we have it right
VECTOR
(1) 1111111122222333344414

Crd> y <- y[,-run(3)] # trim off dummy variables
Crd> setlabels(y,structure("@",vector("A","B","C")))

Qrd> list(y)
y REAL 21 3 (1 abel s)

Crd> stats <- tabs(y,groups,covar:T,mean:T,n:T)
Crd> compnames(stats) # names of components of structure stats

(1) "mean"

(2) "covar"

(3) "count"

Ond> stats$mean # each row is a group mean

(1,1) 18 20 19.75 Goup 1
(2,1) 13.8 15.2 14.2 Goup 2
(3,1) 13 14 15 Group 3
(4,1) 10 9 11 G oup 4
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Crd> # Make a plot of the group profiles rowplot()
Crd> # If the means were in columns you would use colplot()

Ond> rowplot(stats$mean,xticks:run(3),xmin:.75,xmax:3.25,\
title:"Profiles for Socioeconomic Classes 1 - 4"\
xticklabs:getlabels(y,2).\
xlab:"Scale",ylab:"Mean attitude Score")

Profile=zs for Socioceconomic Classes 1 - 4
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It appears there is a very substantial difference between groups and less difference between
scales but it is not clear whether the lack of parallelism of the profiles is significant.

First load the new macros for computing P-values of multivariate tests.

Crd> getmacros(cumwilks,cumtrace,cumpillai,quiet:T)

cummi | ks read fromfile "TP1: Stat 5401: St at 5401F04: Macr os: Mul var. nac"
cuntrace read fromfile "TP1l: Stat 5401: St at 5401F04: Macr os: Mul var. nac"
cunpillai read fromfile "TP1: Stat 5401: St at 5401F04: Macr os: Mul var . nac”

The do MANOVA ignoring the repeated measures aspect of the data.

Crd> manova('y=groups") # compute a MANOVA of the data
Model wused is y=groups This ignores profile considerations
WARNI NG summari es are sequenti al

SS and SP Matrices

DF

CONSTANT 1
A B C
A 4429. 8 4763. 8 4836. 4
B 4763. 8 5123 5201.1
C 4836. 4 5201.1 5280. 4
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gr oups 3

A B C
A 190. 44 252. 99 207. 37
B 252. 99 340. 15 274. 06
C 207. 37 274. 06 232. 27
ERRORL 17

A B C
A 42. 8 11.2 18. 2
B 11.2 30.8 3.8
C 18. 2 3.8 38.3

CGrd> h <- matrix(SS[2,,]); e <- matrix(SS[3,,])
Crd> fh <- DF[2]; fe <- DF[3]; p <- ncols(y)

Crd> vector(fh, fe, p) # degrees of freedom and dimension
(1) 17 3

First look at difference between groups by regular MANOVA without regard to the
repeated measurement aspect of the data.

Cnd> vals <- releigenvals(h,e);vals # relative eigenvalues
(1) 15. 375 0. 23073 0. 035694
Crd> theta <- vals/(1 + vals); theta

(1) 0. 93893 0. 18747 0. 034464
Crd> s <- min(fh,p); m <- (abs(fh-p)-1)/2; n <- (fe-p-1)/2
Crd> vector(s,m,n)

(1) -0.5 6.5

From the a = .05, s = 3 chart, the critical value for 0,,,, from is about .51 << 0.93893 so the
overall between group differences in the mean vectors are very significant.

Let's test the same hypothesis using the other three tests, using macros cumm | ks(),
cuntrace() and cunpi | | ai () to get P-values.

Crd> cumwilks(det(e)/det(h+e),th,fe,p) # P-value for LR test
(1) 1.2879e-07 Very highly significant

Crd> cumtrace(trace(solve(e,h)),fh,fe,p,upper:T) # Hottelling trace
(1) 7.1343e-34 Ditto

Crd> cumpillai(trace(solve(e+h,h)),th,fe,p,upper:T) # Pillai's trace
(1) - 0. 000687 Ooops! Bug in cunpillai()?

Now let’s explore how the differences we have found can be described. You can compute
profile analysis quantities from what we already have computed.

Cmd> c <- matrix(vector(1,-1,0, 0,1,-1),3)#contrast matrix

COmd> setlabels(c,structure(vector("AvsB","CvsB"),getlabels(y,2))); ¢
AvsB ? - ? C():

CvsB 0 1 -1

Cmd> chc <- ¢ %*% h %*% c' # hypothesis matrix for contrasts
Omd> cec <- ¢ %*% e %*% c' # error matrix for contrasts
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print(chc,cec)
Hypothesis matrix for parallelism (no-interaction)

AvsB CvsB
24. 61 -20.476
-20.476 24. 31
Error matrix for parallelism (no-interaction)
AvsB CvsB
51.2 -34
-34 61.5
val <- releigenvals(chc, cec);val # new relative eigenvalues
0. 50885 0. 17649
theta <- val/(1+val); theta
0. 33724 0. 15002

g <- nrows(chc) # new dimension

vector(fh, fe, q) # fe and th are the same, dimension is reduced
3 17 2

s <- min(fh,q);m <- (abs(th-q)-1)/2; n <- (fe-g-1)/2

vector(s,m,n)
2 0 7

# From the chart for alpha = .05, the critical value for
# thetamax is about 0.47 > 0.337. We cannot reject parallelism
# Just for illustration, we do other tests of HO based on

relative eigenvalues based on handout on MANOVA tests

ml <- fe-(g- fh+1)/2 vector(ml,2*n+m+s+1) # adjstment to LR test
17 Both formulas give same mnil

wilks <- ml*sum(log(l + val))

vector(g*fh, WI|kS ,cumchi(wilks, q*fh upper:T))
9. 756 0. 13531 DF, test stat, P-value

# P-value is .13531; same conclusion
cumwilks(1/prod(1 + val),fh,fe,q)

0. 13644 Exact P-value, sanme conclusion
m2 <- fe - (q+1) vector(m2, 2*n) #adjustment for TOsq
14 Both forrmulas give same n2

hotelling <- m2*sum(va|)

vector(g*fh,hotelling,cumchi(hotelling,g*fh,upper:T))
6 9.5948 0. 14279 DF, test stat, P-value

# large sample P-value is .14279; same conclusion
cumtrace(sum(val),th,fe,q,upper:T) # Hottelling

0.15187 Cl ose to exact; sane conclusion
ma3 <- fe + fh;vector(m3, 2*(m+n+s+1)) # Constant for Pillai's V
20 20 Both fornulas give sane nB

pillaiV <- m3*sum(theta)
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Crd> vector(g*fh, p|IIa|V CumChI(plllaIV g*fh,upper:T)) #Iarge sample
(1) 9.74 0.1358 DF, test stat, P-value

Crd> # large sample P-value is 0.1358; same conclusion

Crd> cumpillai(sum(val/(1+val)),th,fe,q,upper:T)
(1) 0. 11612 Close to exact; sanme conclusion

The conclusion means there is no substantial statistical evidence that the profiles are not
parallel, that is there does not appear to be interaction between the among subject factor,
socio-economic class, and the within subject factor, test instrument scale.

Now look at among-scale main effects, assuming parallelism. You test whether contrasts
in the overall means ignoring groups are 0 using Hotelling's T2.

Crd> grandmean <- describe(y,mean:T); grandmean
(1) 14. 524 15. 619 15. 857

Crd> N <- nrows(y) # Total Sample size

Crd> vhat <- (effe)*(1/N) #estimated variance matrix of grandmean
Crd> cybar <- ¢ %*% grandmean; cvhatc <- ¢ %*% vhat %*% c'
Ord> tsq <- cybar' %*% solve(cvhatc) %*% cybar

Cnd> tsq #Hotelling's T2

(1)
(1) 16. 913
Crd> f<- (fe - q + 1)*tsq/(fe*q) f # corresponding F-statistic
(1,1 7.9588

Crd> cumkF(f,q,fe - q + 1,upper:T) # P- value using F-distribution
(1,1) 0. 0039876

There is a highly significant difference among the scales, P = .00399. Now we need to find
out where the differences are using Bonferronized t-tests of the three pairwise differences
among the scales. We enlarge ¢ to include an A vs C contrast.

Cnd> c1 <- vconcat(c,vector(1,0,-1)");c1

(1, 1) 1 -1 0 A vs B
(2,1) 0 1 -1 B vs C
(3,1) 1 0 -1 A vs C
Crd> diffs <- vector(cl %*% grandmean);diffs #diffs among grand means
(1) -1. 0952 -0. 2381 -1. 3333

Crd> seDiffs <- sqrt(diag(c1 %*% vhat %*% c1'));seDiffs #Std Errors
(1) 0. 3787 0. 41505 0. 35385

Cnd> tstats <- diffs/seDiffs; tstats # t-statistics

(1) -2.8921 -0. 57365 -3.7681

Crd> 3*twotailt(tstats,fe) # two tail Bonferronized P-values

(1) 0. 030395 1.7211 0. 0046007

Scales B and C are not significantly different, but both are significantly different from scals
A. This might be summarized by an “underline diagram” with the three scale means:

Cmd> grandmean

(1) 14. 524 15. 619 15. 857
A B C




Profile Analysis Example

Now look at main effects between groups. This is based on the subject averages across all
three scales.

Crd> subjmeans <- describe(y',mean:T) # We work with subject means

Crd> anova("subjmeans=groups") # univariate ANOVA
Model used is subj means=groups
WARNI NG summaries are sequenti al

DF SS \%S3
CONSTANT 1 4937. 3 4937. 3
gr oups 3 247.97 82. 656
ERRORL 17 19. 811 1.1654

Crd> ms <- SS/DF; f <- ms[2]/ms[3]; f # ANOVA F-statistic

Crd> cumF(f,DF[2],DF[3],upper:T) # P-value is extremely significant

(1) 8.0979e-10
Since a subject mean can be computed from a vector y of scores by the linear combination
a’y where a =[1/3,1/3,1/3]’, you can also compute these SS’s directly from MANOVA H
and E as S5, = a’Ha and SS, = a’Ea. Alternatively, they are the averages of the 3x3 =9
elements of H and E.

Crd> a <-rep(1,p)/p;vector(a’ %*% h %*% a, a' %*% e %*% a)
(1) (2)
247.97 19.811 Sane as SSH and SSE in ANOVA

Chd> # or from the averages of the elements of H and E

Cd> descrlbe(hconcat(vector(h) vector(e)),mean:T)
(1) 247. 97 19. 811

Now lets do a multiple comparison analysis of the 4 group means using Bonferronized
two-sample t with standard errors computed from the MSE pooled across all groups.

Crd> grp_aves <- vector(statsdmean %*% rep(1,p)/p,labels:"Class ")

Crd> grp_aves
Class 1 C ass 2 Cass 3 Cl ass 4
19. 25 14. 4 14 10

Crd> # These are average across scales of group mean vectors
Cmd> diffs <- grp_aves - grp_aves'; diffs# all differences

(1,1) 0 4.85 5.25 9.25
(2,1) -4.85 0 0.4 4.4
(3,1) -5.25 -0.4 0 4
(4,1) -9.25 -4. 4 -4 0
COmd> n <- tabs(,groups);n # get sample sizes

(1) 8 5 4 4

Cmd> mse <- ms[3] # pooled error mean square
Omd> ses <- sqrt(mse*(1/n + 1/n’)); ses # std errors

(1,1) 0. 53976 0. 61542 0. 66107 0. 66107
(2,1) 0. 61542 0. 68275 0.72416 0.72416
(3,1) 0. 66107 0.72416 0. 76333 0. 76333
(4,1) 0. 66107 0.72416 0. 76333 0. 76333
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Ond> tstats <- diffs/ses;tstats

(1,1) 0 7. 8808 7.9417 13. 993
(2,1) - 7.8808 0 0. 55236 6. 076
(3,1) -7.9417 - 0. 55236 0 5. 2402
(4,1) -13. 993 -6.076 -5. 2402 0

Crd> ij <- hconcat(vector(1,1,1,2,2,3),vector(2,3,4,3,4,4))iij

(1,1) 1 2 Rows are i,j values to select
(2,1) 1 3 di stinct t-statistics
(3,1) 1 4

(4,1) 2 3

(5,1) 2 4

(6,1) 3 4

Cnd> tstats <- tstats]ij]; tstats

(1) 7.8808 7.9417 13.993 0. 55236 6.076
(6) 5. 2402

Crd> 6*twotailt(tstats,fe) # Bonferronized P-values

(1) 2.685e-06 2.4189e-06 5.5695e-10 3.5273 7.4102e-05

(6) 0.00039903
Crd> 6*twotailt(tstats,fe) <= .05 # T means significant at 5% level

(L) T T T F T T
Crd> terit <- invstu(.025/6,fe,upper:T); tcrit # alternative

(1) 2.984

Crd> abs(tstats) >= tcrit # same conclusion

(L) T T T F T T

Groups 2 and 3 are not significantly different but all other differences are significant. You
can summarize this with an “underline diagram”.

Crd> grp_aves[grade(grp_aves)] # sorted group means
Cass 4 Cass 3 Cass 2 Cass 1
10 14 14. 4 19. 25

Scheffé type comparisons for t from the F distribution are more conservative than t.
Cmd> scheffecrit<- sqrt(fh*invF(.05,fh,fe,upper:T)); scheffecrit

(1) 3. 0968 > tcrit = 2.984
Crd> abs(tstats) >= scheffecrit # same conclusion
(L) T T T F T T

An alternative approach would be to consider this as analogous to a split plot design with
subjects as whole plots and socioeconomic class and scale the whole plot and subplot
"treatments”, respectively.

To do this in MacAnova you need to turn y into a vector and create new factors, including
a factor for subject within treatment. I chose to group all the values for each subject
together.

Crd> yl <- vector(y') # make 3*N vector,"unraveling" by rows
Crd> groupsl <- factor(vector(hconcat(groups,groups,groups)’))
Crd> scales <- factor(rep(run(3),N)) # 1,2,3,1,2,3,..., 1,2,3

Crd> tmp <- vector(run(8),run(5),run(4),run(4))

Crd> subjects <- factor(vector(hconcat(tmp,tmp,tmp)’))

7
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Crd> paste(subjects) #quick look at subjects
(1) "1 11222333444555666777888111222
3334445551112223334441112223334424"

Crd> anova("yl=groupsl+E(subjects.groupsl)+scales+groupsl.scales”, \
fstat:T)
Model used is yl=groupsl+E(subjects.groupsl)+scal es+groupsl. scal es
DF SS VB P-val ue
CONSTANT 1 14812 14812 4236. 74706 < le-08
groupsl 3 743.9 247.97 70. 92709 < le-08
ERRCR1 17 59. 433 3. 4961 2. 26557 0. 020779
scal es 2 21. 238 10. 619 6. 88147  0.0030945
groupsl. scal es 6 18. 962 3.1603 2.04798 0. 085952
ERROR2 34 52. 467 1.5431

Note that the F-statistic for testing difference among the groups is the same as we derived
before. Its validity depends on equality of variance matrices among the groups, or more

accurately, equality of 1,'31, = 3;5,0; among the groups.

The other two P-values are appropriate only if the assumptions for the analysis of variance
are satisfied. In this context this means that the variances (diagonal elements o;; of Z) are

equal and all correlations p;; are equal. Let's look to see how likely this is.

Crd> s <- matrix(e/fe) # compute s from error matrix

Crd> diag(s)
(1) 2.5176 1.8118 2. 2529 Vari ances
Crd> d <- dmat(1/sqrt(diag(s))); d %*% s %*% d

(1) (2 (3) ,
(1) 1 0. 30848 0. 44952 Correl ati ons
(2) 0. 30848 1 0.11064
(3) 0. 44952 0.11064 1

The assumptions don't seem too badly violated, especially in view of the small error
degrees of freedom.

When the assumptions are not satisfied, but the groups have the same Z's, the F-statistics
still have a null distribution that is approximately F, but with modified degrees of
freedom. Greenhouse and Geisser (Psychometrika 24 (1959) 95-112) have shown that the
smallest the modified degrees of freedom can possibly be is 1/(p-1) times the ANOVA
degrees of freedom. Let's see what that does.

Crd> mse <- SS[6])/DF[6]; mse
ERROR2

1. 5431
COrd> fscales <- (SS[4])/DF[4])/mse; fparallel <- (SS[5]/DF[5])/mse
Crd> vector(fscales,fparallel) # same as in ANOVA output

(1) 6. 8815 2.048
Crd> df_min <- DF/(p-1); df_min [vector(4,5,6)] # minimum d.f.
scal esgroupsl. scal es ERROR2
1 3 17
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Ond> cumF(vector(fscales,fparallel),df _min[vector(4,5)],df_min[6],\
upper:T)
(1) 0.017802 0. 14528 scales and interaction P-val ues

These last are conservative P-values since they are based on pessimistic estimates of the
degrees of freedom. Both the unadjusted P-values 0.0030945 and 0.085952 and these
conservative P-values lead to the same conclusion as the multivariate analysis, namely
that interaction is not significantly different from 0 and among-scales differences are

significant, at least using a = .05.

What Greenhouse and Geisser actually showed was that you should adjust both
numerator and denominator degrees of freedom by multiplying them by

p ’ (0, - 5-)2
(r —1(A, —24,)

&

where

_\2 _
Al :ZZZ](O-ZJ_O-) and AZ :pz](a]_

Here 0, = ZiU s/ P =1trZ/p is the average of the diagonal elements of £, 0 =

Zi Zjaif /p’= 1,'21,/p? is the average of all the elements of Z, and 0 ; = zialj /pis

the average of column j of Z (also average of row j, since Z' = Z).

If you knew Z you could compute A; as p2— 1 times the “sample variance” of the
elements of Z, and A, as p(p-1) times the “sample variance” of the column means of Z.
When you don't know Z, the best you can do is estimate € by similar computations

starting with S - S, = E/f, the pooled estimated variance matrix. You can get the
“sample variance” of the elements of a matrix a by descri be(vector(a), var:T).

Cmd> sd <- trace(s)/p

Crd> topeps <- p"2*(sd - sum(vector(s))/p”2)"2

Cmd> al <- (p*p-1)*describe(vector(s),var:T)

Cmd> a2 <- p*(p-1)*describe(describe(s,mean:T),var:T)

Cmd> bottomeps <- (p-1)*(al - 2*a2) ; epsilon <- topeps/bottomeps
Crd> epsilon
(1) 0.96641 Not far from 1l -> little adjustnent

Crd> df <- epsilon*DF

Crd> df[vector(4,5,6)] # readjusted d.f.
scal esgroupsl. scal es ERROR2
1.9328 5. 7984 32. 858

Cmd> cumF(vector(fscales,fparallel),df[vector(4,5)],df[6],upper:T)
(1) 0. 0034763 0. 088938

Since £ is so close to 1, the adjusted P-values are not very different from the unadjusted
ones — 0.0030945 and 0.085952 — and give the same conclusion.



