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Multi-group Profile Analysis Example

This handout provides an analysis of some artificial data from Example 5.9 on p. 240 of
Multivariate Statistical Methods, 3rd Edition by Donald F. Morrison, McGraw Hill 1990.

Each observation represents one subject's scores on three scales A, B and C computed from
a test instrument.  Each subject was classified in one of four socioeconomic classes, 1, 2, 3
and 4 with sample sizes n1 = 8, n2 = 5 , n3 = 4 and n4 = 4, respectively.  The data from
Morrison's Table 5.7 are in data set TAB5.8 in file cbmorex.txt (5.8 was the table number
in the second edition).

There are three columns of contrast dummy vectors but no table of groups numbers.  Thus

the first thing I did was to build factor groups from these dummy vectors.

Cmd> y <- read("","TAB5.8") # read from cbmorex.txt
TAB5.8        21     6 FORMAT
) Data from Table 5.8, p. 210 of Morrison
) Col. 1: c1 = dummy variable (1,0,0,-1) for class 1
) Col. 2: c2 = dummy variable (0,1,0,-1) for class 2
) Col. 3: c3 = dummy variable (0,0,1,-1) for class 3
) Col. 4-6: a,b,c = scores on scales a,b,c
) n1=8,n2=5,n3=4,n4=4
Read from file "TP1:Stat5401:Data:cbmorex.txt"

Cmd> groups <- \   Construct factor from dummy variables
factor(1*(y[,1]==1)+2*(y[,2]==1)+3*(y[,3]==1)+4*(y[,1]==-1))

Cmd> print(format:"1.0f",vector(groups)) # make sure we have it right
VECTOR:
 (1) 1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 4

Cmd> y <- y[,-run(3)] # trim off dummy variables

Cmd> setlabels(y,structure("@",vector("A","B","C")))

Cmd> list(y)
y               REAL   21    3     (labels)    

Cmd> stats <- tabs(y,groups,covar:T,mean:T,n:T)

Cmd> compnames(stats) # names of components of structure stats
(1) "mean"
(2) "covar"
(3) "count"

Cmd> stats$mean # each row is a group mean
(1,1)          18          20       19.75 Group 1
(2,1)        13.8        15.2        14.2 Group 2
(3,1)          13          14          15 Group 3
(4,1)          10           9          11 Group 4

1



Profile Analysis Example

Cmd> # Make a plot of the group profiles rowplot()

Cmd> # If the means were in columns you would use colplot()

Cmd> rowplot(stats$mean,xticks:run(3),xmin:.75,xmax:3.25,\
title:"Profiles for Socioeconomic Classes 1 - 4",\
xticklabs:getlabels(y,2).\
xlab:"Scale",ylab:"Mean attitude Score")

It appears there is a very substantial difference between groups and less difference between
scales but it is not clear whether the lack of parallelism of the profiles is significant.

First load the new macros for computing P-values of multivariate tests.

Cmd> getmacros(cumwilks,cumtrace,cumpillai,quiet:T)
cumwilks read from file "TP1:Stat5401:Stat5401F04:Macros:Mulvar.mac"
cumtrace read from file "TP1:Stat5401:Stat5401F04:Macros:Mulvar.mac"
cumpillai read from file "TP1:Stat5401:Stat5401F04:Macros:Mulvar.mac"

The do MANOVA ignoring the repeated measures aspect of the data.

Cmd> manova("y=groups") # compute a MANOVA of the data
Model used is y=groups This ignores profile considerations
WARNING: summaries are sequential
          SS and SP Matrices
                DF
CONSTANT         1
            A           B           C
A      4429.8      4763.8      4836.4
B      4763.8        5123      5201.1
C      4836.4      5201.1      5280.4
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groups           3
            A           B           C
A      190.44      252.99      207.37
B      252.99      340.15      274.06
C      207.37      274.06      232.27
ERROR1          17
            A           B           C
A        42.8        11.2        18.2
B        11.2        30.8         3.8
C        18.2         3.8        38.3

Cmd> h <- matrix(SS[2,,]); e <- matrix(SS[3,,])

Cmd> fh <- DF[2]; fe <- DF[3]; p <- ncols(y)

Cmd> vector(fh, fe, p) # degrees of freedom and dimension
(1)            3           17            3

First look at difference between groups by regular MANOVA without regard to the
repeated measurement aspect of the data.

Cmd> vals <- releigenvals(h,e);vals # relative eigenvalues
(1)       15.375      0.23073     0.035694

Cmd> theta <- vals/(1 + vals); theta
(1)      0.93893      0.18747     0.034464

Cmd> s <- min(fh,p); m <- (abs(fh-p)-1)/2; n <- (fe-p-1)/2

Cmd> vector(s,m,n)
(1)            3         -0.5          6.5

From the α = .05, s = 3 chart, the critical value for θmax from  is about  .51 << 0.93893 so the
overall between group differences in the mean vectors are very significant.

Let's test the same hypothesis using the other three tests, using macros cumwilks(),
cumtrace() and cumpillai() to get P-values.

Cmd> cumwilks(det(e)/det(h+e),fh,fe,p) # P-value for LR test
(1)  1.2879e-07 Very highly significant

Cmd> cumtrace(trace(solve(e,h)),fh,fe,p,upper:T) # Hottelling trace
(1)  7.1343e-34 Ditto

Cmd> cumpillai(trace(solve(e+h,h)),fh,fe,p,upper:T) # Pillai's trace
(1)   -0.000687 Ooops! Bug in cumpillai()?

Now let’s explore how the differences we have found can be described.  You can compute
profile analysis quantities from what we already have computed.

Cmd> c <- matrix(vector(1,-1,0,  0,1,-1),3)'#contrast matrix

Cmd> setlabels(c,structure(vector("AvsB","CvsB"),getlabels(y,2))); c
               A           B           C
AvsB           1          -1           0
CvsB           0           1          -1

Cmd> chc <- c %*% h %*% c' # hypothesis matrix for contrasts

Cmd> cec <- c %*% e %*% c' # error matrix for contrasts
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Cmd> print(chc,cec)
chc: Hypothesis matrix for parallelism (no-interaction)
            AvsB        CvsB
AvsB       24.61     -20.476
CvsB     -20.476       24.31
cec: Error matrix for parallelism (no-interaction)
            AvsB        CvsB
AvsB        51.2         -34
CvsB         -34        61.5

Cmd> val <- releigenvals(chc, cec);val # new relative eigenvalues
(1)     0.50885     0.17649

Cmd> theta <- val/(1+val); theta
(1)     0.33724     0.15002

Cmd> q <- nrows(chc) # new dimension

Cmd> vector(fh, fe, q) # fe and fh are the same, dimension is reduced
(1)           3          17           2

Cmd> s <- min(fh,q);m <- (abs(fh-q)-1)/2; n <- (fe-q-1)/2

Cmd> vector(s,m,n)
(1)           2           0           7

Cmd> # From the chart for alpha = .05, the critical value for 

Cmd> # thetamax is about 0.47 > 0.337. We cannot reject parallelism

Cmd> # Just for illustration, we do other tests of H0 based on

Cmd> # relative eigenvalues based on handout on MANOVA tests

Cmd> m1 <- fe-(q-fh+1)/2; vector(m1,2*n+m+s+1) # adjstment to LR test
(1)          17          17 Both formulas give same m1

Cmd> wilks <- m1*sum(log(1 + val))

Cmd> vector(q*fh,wilks,cumchi(wilks,q*fh,upper:T))
(1)           6      9.7561     0.13531 DF, test stat, P-value

Cmd> # P-value is .13531; same conclusion

Cmd> cumwilks(1/prod(1 + val),fh,fe,q)
(1)     0.13644 Exact P-value, same conclusion

Cmd> m2 <- fe - (q+1); vector(m2, 2*n) #adjustment for T0sq
(1)          14          14 Both formulas give same m2

Cmd> hotelling <- m2*sum(val)

Cmd> vector(q*fh,hotelling,cumchi(hotelling,q*fh,upper:T))
(1)           6      9.5948     0.14279 DF, test stat, P-value

Cmd> # large sample P-value is .14279; same conclusion

Cmd> cumtrace(sum(val),fh,fe,q,upper:T) # Hottelling
(1)     0.15187 Close to exact; same conclusion

Cmd> m3 <- fe + fh;vector(m3, 2*(m+n+s+1)) # Constant for Pillai's V
(1)          20          20 Both formulas give same m3

Cmd> pillaiV <- m3*sum(theta)
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Cmd> vector(q*fh,pillaiV,cumchi(pillaiV,q*fh,upper:T)) #large sample
(1)           6      9.7452      0.1358 DF, test stat, P-value

Cmd> # large sample P-value is 0.1358; same conclusion

Cmd> cumpillai(sum(val/(1+val)),fh,fe,q,upper:T)
(1)     0.11612 Close to exact; same conclusion

The conclusion means there is no substantial statistical evidence that the profiles are not
parallel, that is there does not appear to be interaction between the among subject factor,
socio-economic class, and the within subject factor, test instrument scale.

Now look at among-scale main effects, assuming parallelism.  You test whether contrasts
in the overall means ignoring groups are 0 using Hotelling's T2.

Cmd> grandmean <- describe(y,mean:T); grandmean
(1)      14.524      15.619      15.857

Cmd> N <- nrows(y) # Total Sample size

Cmd> vhat <- (e/fe)*(1/N) #estimated variance matrix of grandmean

Cmd> cybar <- c %*% grandmean; cvhatc <- c %*% vhat %*% c'

Cmd> tsq <- cybar' %*% solve(cvhatc) %*% cybar

Cmd> tsq #Hotelling's T^2
            (1)
(1)      16.913

Cmd> f <- (fe - q + 1)*tsq/(fe*q);f # corresponding F-statistic
(1,1)      7.9588

Cmd> cumF(f,q,fe - q + 1,upper:T) # P- value using F-distribution
(1,1)   0.0039876

There is a highly significant difference among the scales, P = .00399.  Now we need to find
out where the differences are using Bonferronized t-tests of the three pairwise differences
among the scales.  We enlarge c to include an A vs C contrast.

Cmd> c1 <- vconcat(c,vector(1,0,-1)');c1
(1,1)           1          -1           0 A vs B
(2,1)           0           1          -1 B vs C
(3,1)           1           0          -1 A vs C

Cmd> diffs <- vector(c1 %*% grandmean);diffs #diffs among grand means
(1)     -1.0952     -0.2381     -1.3333

Cmd> seDiffs <- sqrt(diag(c1 %*% vhat %*% c1'));seDiffs #Std Errors
(1)      0.3787     0.41505     0.35385

Cmd> tstats <- diffs/seDiffs; tstats # t-statistics
(1)     -2.8921    -0.57365     -3.7681

Cmd> 3*twotailt(tstats,fe) # two tail Bonferronized P-values
(1)    0.030395      1.7211   0.0046007

Scales B and C are not significantly different, but both are significantly different from scals
A.  This might be summarized by an “underline diagram” with the three scale means:

Cmd> grandmean
(1)      14.524      15.619      15.857
                          A                        B                          C      
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Now look at main effects between groups.  This is based on the subject averages across all
three scales.

Cmd> subjmeans <- describe(y',mean:T) # We work with subject means

Cmd> anova("subjmeans=groups") # univariate ANOVA
Model used is subjmeans=groups
WARNING: summaries are sequential
                DF          SS          MS
CONSTANT         1      4937.3      4937.3
groups           3      247.97      82.656
ERROR1          17      19.811      1.1654

Cmd> ms <- SS/DF; f <- ms[2]/ms[3]; f # ANOVA F-statistic

Cmd> cumF(f,DF[2],DF[3],upper:T) # P-value is extremely significant
(1)  8.0979e-10

Since a subject mean can be computed from a vector y of scores by the linear combination
a’y where a = [1/3, 1/3, 1/3]’, you can also compute these SS’s directly from MANOVA H

and E as SSh = a’Ha and SSe = a’Ea.  Alternatively, they are the averages of the 3×3 = 9
elements of H and E.

Cmd> a <- rep(1,p)/p;vector(a' %*% h %*% a, a' %*% e %*% a)
         (1)         (2)
      247.97      19.811 Same as SSH and SSE in ANOVA

Cmd> # or from the averages of the elements of H and E

Cmd> describe(hconcat(vector(h),vector(e)),mean:T)
(1)      247.97      19.811

Now lets do a multiple comparison analysis of the 4 group means using Bonferronized
two-sample t with standard errors computed from the MSE pooled across all groups.

Cmd> grp_aves <- vector(stats$mean %*% rep(1,p)/p,labels:"Class ")

Cmd> grp_aves
     Class 1     Class 2     Class 3     Class 4
       19.25        14.4          14          10

Cmd> # These are average across scales of group mean vectors

Cmd> diffs <- grp_aves - grp_aves'; diffs# all differences
(1,1)           0        4.85        5.25        9.25
(2,1)       -4.85           0         0.4         4.4
(3,1)       -5.25        -0.4           0           4
(4,1)       -9.25        -4.4          -4           0

Cmd> n <- tabs(,groups);n # get sample sizes
(1)           8           5           4           4

Cmd> mse <- ms[3] # pooled error mean square

Cmd> ses <- sqrt(mse*(1/n + 1/n')); ses # std errors
(1,1)     0.53976     0.61542     0.66107     0.66107
(2,1)     0.61542     0.68275     0.72416     0.72416
(3,1)     0.66107     0.72416     0.76333     0.76333
(4,1)     0.66107     0.72416     0.76333     0.76333
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Cmd> tstats <- diffs/ses;tstats
(1,1)           0      7.8808      7.9417      13.993
(2,1)     -7.8808           0     0.55236       6.076
(3,1)     -7.9417    -0.55236           0      5.2402
(4,1)     -13.993      -6.076     -5.2402           0

Cmd> ij <- hconcat(vector(1,1,1,2,2,3),vector(2,3,4,3,4,4));ij
(1,1)           1           2 Rows are i,j values to select
(2,1)           1           3 distinct t-statistics
(3,1)           1           4
(4,1)           2           3
(5,1)           2           4
(6,1)           3           4

Cmd> tstats <- tstats[ij]; tstats
(1)      7.8808      7.9417      13.993     0.55236       6.076
(6)      5.2402

Cmd> 6*twotailt(tstats,fe) # Bonferronized P-values
(1)   2.685e-06  2.4189e-06  5.5695e-10      3.5273  7.4102e-05
(6)  0.00039903

Cmd> 6*twotailt(tstats,fe) <= .05 # T means significant at 5% level
(1) T       T       T       F       T       T 

Cmd> tcrit <- invstu(.025/6,fe,upper:T); tcrit # alternative
(1)       2.984

Cmd> abs(tstats) >= tcrit # same conclusion
(1) T       T       T       F       T       T      

Groups 2 and 3 are not significantly different but all other differences are significant.  You
can summarize this with an “underline diagram”. 

Cmd> grp_aves[grade(grp_aves)] # sorted group means
     Class 4     Class 3     Class 2     Class 1
          10          14        14.4       19.25

Scheffé type comparisons for t from the F distribution are more conservative than t.

Cmd> scheffecrit<- sqrt(fh*invF(.05,fh,fe,upper:T)); scheffecrit
(1)      3.0968 > tcrit = 2.984

Cmd> abs(tstats) >= scheffecrit # same conclusion
(1) T       T       T       F       T       T    

An alternative approach would be to consider this as analogous to a split plot design with
subjects as whole plots and socioeconomic class and scale the whole plot and subplot
"treatments", respectively.

To do this in MacAnova you need to turn y into a vector and create new factors, including
a factor for subject within treatment.  I chose to group all the values for each subject
together.

Cmd> y1 <- vector(y') # make 3*N vector,"unraveling" by rows

Cmd> groups1 <- factor(vector(hconcat(groups,groups,groups)'))

Cmd> scales <- factor(rep(run(3),N)) # 1,2,3,1,2,3,..., 1,2,3

Cmd> tmp <- vector(run(8),run(5),run(4),run(4))

Cmd> subjects <- factor(vector(hconcat(tmp,tmp,tmp)'))
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Cmd> paste(subjects) #quick look at subjects
(1) "1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 1 1 1 2 2 2
3 3 3 4 4 4 5 5 5 1 1 1 2 2 2 3 3 3 4 4 4 1 1 1 2 2 2 3 3 3 4 4 4"

Cmd> anova("y1=groups1+E(subjects.groups1)+scales+groups1.scales", \
fstat:T)

Model used is y1=groups1+E(subjects.groups1)+scales+groups1.scales
                DF          SS          MS           F     P-value
CONSTANT         1       14812       14812  4236.74706     < 1e-08
groups1          3       743.9      247.97    70.92709     < 1e-08
ERROR1          17      59.433      3.4961     2.26557    0.020779
scales           2      21.238      10.619     6.88147   0.0030945
groups1.scales   6      18.962      3.1603     2.04798    0.085952
ERROR2          34      52.467      1.5431

Note that the F-statistic for testing difference among the groups is the same as we derived
before.  Its validity depends on equality of variance matrices among the groups, or more

accurately, equality of 1p

�

∑∑∑∑1p = ∑i∑jσij among the groups.

The other two P-values are appropriate only if the assumptions for the analysis of variance

are satisfied.  In this context this means that the variances (diagonal elements σii of ΣΣΣΣ) are

equal and all correlations ρij are equal.  Let's look to see how likely this is.

Cmd> s <- matrix(e/fe) # compute s from error matrix

Cmd> diag(s)
(1)      2.5176      1.8118      2.2529 Variances

Cmd> d <- dmat(1/sqrt(diag(s))); d %*% s %*% d
            (1)         (2)         (3)
(1)           1     0.30848     0.44952 Correlations
(2)     0.30848           1     0.11064
(3)     0.44952     0.11064           1

The assumptions don't seem too badly violated, especially in view of the small error
degrees of freedom.

When the assumptions are not satisfied, but the groups have the same ΣΣΣΣ's, the F-statistics
still have a null distribution that is approximately F, but with modified degrees of
freedom.  Greenhouse and Geisser (Psychometrika 24 (1959) 95-112) have shown that the
smallest the modified degrees of freedom can possibly be is 1/(p–1) times the ANOVA
degrees of freedom.  Let's see what that does.

Cmd> mse <- SS[6]/DF[6]; mse
      ERROR2
      1.5431

Cmd> fscales <- (SS[4]/DF[4])/mse; fparallel <- (SS[5]/DF[5])/mse

Cmd> vector(fscales,fparallel) # same as in ANOVA output
(1)      6.8815       2.048

Cmd> df_min <- DF/(p-1); df_min [vector(4,5,6)] # minimum d.f.
     scalesgroups1.scales      ERROR2
           1           3          17
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Cmd> cumF(vector(fscales,fparallel),df_min[vector(4,5)],df_min[6],\
upper:T)

(1)    0.017802     0.14528 scales and interaction P-values 

These last are conservative P-values since they are based on pessimistic estimates of the
degrees of freedom.  Both the unadjusted P-values 0.0030945 and 0.085952 and these
conservative P-values lead to the same conclusion as the multivariate analysis, namely
that interaction is not significantly different from 0 and among-scales differences are

significant, at least using α = .05.

What Greenhouse and Geisser actually showed was that you should adjust both
numerator and denominator degrees of freedom by multiplying them by

    
ε

σ σ
≡

−
− −
p

p A A
d

2 2

1 21 2

( )

( )( )
,

where

    
A ijji1

2= −∑∑ ( )..σ σ   and 
    
A p jj2

2= −∑ ( ). ..σ σ .

Here     σ σd iii
p= ∑ /  = trΣΣΣΣ/p is the average of the diagonal elements of ΣΣΣΣ,    σ ..  =

    
σ ijji

p/ 2∑∑ = 1p'ΣΣΣΣ1p/p2 is the average of all the elements of ΣΣΣΣ, and     σ . j  =     σ iji
p∑ /  is

the average of column j of ΣΣΣΣ     (also average of row j, since ΣΣΣΣ ' = ΣΣΣΣ).

If you knew ΣΣΣΣ you could compute A1 as p2 – 1 times the “sample variance” of the

elements of ΣΣΣΣ, and A2 as p(p–1) times the “sample variance” of the column means of ΣΣΣΣ.

When you don't know ΣΣΣΣ, the best you can do is estimate ε  by similar computations

starting with   ̂Σ = Sp = E/fe, the pooled estimated variance matrix.  You can get the
“sample variance” of the elements of a matrix a by describe(vector(a),var:T).

Cmd> sd <- trace(s)/p

Cmd> topeps <- p^2*(sd - sum(vector(s))/p^2)^2

Cmd> a1 <- (p*p-1)*describe(vector(s),var:T)

Cmd> a2 <- p*(p-1)*describe(describe(s,mean:T),var:T)

Cmd> bottomeps <- (p-1)*(a1 - 2*a2) ; epsilon <- topeps/bottomeps

Cmd> epsilon
(1)     0.96641  Not far from 1 -> little adjustment

Cmd> df <- epsilon*DF

Cmd> df[vector(4,5,6)] # readjusted d.f.
      scalesgroups1.scales      ERROR2
      1.9328      5.7984      32.858

Cmd> cumF(vector(fscales,fparallel),df[vector(4,5)],df[6],upper:T)
(1)   0.0034763    0.088938

Since   ̂ε  is so close to 1, the adjusted P-values are not very different from the unadjusted
ones – 0.0030945 and 0.085952 – and give the same conclusion.
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