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Examples of Principal Component Plots

This handout presents examples of two types of principal component plots.

The first illustrates the use of principal components based on an estimated variance matrix of
residuals from a linear model, that is on purely random variation. Such analysis is useful in
studying the structure of covariance matrices and for assessing difference between groups of
covariance matrices.  It is not useful in finding linear combinations that differ between
groups.

The second and third illustrate the use of principal components based on a variance matrix
computed from heterogeneous data, ignoring any groups.  Among other things, this
illustrates the usefulness of principal components in displaying differences in means between
groups.

The first two examples  are based on the Fisher Iris data in matrix T11_05 in file
JWData5.txt.  This consists of 4-dimensional vectors of measurements of blossoms from
three iris varieties.  There are data from 50 blossoms of each variety in the data set. 

Principal component plots based on residuals from a linear model
The coefficients of the first principal component are the coefficients of the linear combination
of the four variables that has the greatest residual variance after removing the variety means,
and similarly for the remaining PC’s.  The coefficients used to compute PC’s are either
elements the eigenvectors of the pooled variance matrix S or of the right singular vectors of
the data matrix after subtracting the sample mean.

The variables (PC's) plotted are the corresponding linear combinations of the responses
x1,...,x4. This uses information about the within group covariance matrix to compute principal
components, but preserves the between group information.  Where there are differences
among variety means of the original responses, there will generally also be difference in
variety means among the principal components.

Cmd> irisdata <- read("","t11_05",quiet:T) #read jwdata5.txt
Read from file "TP1:Stat5401:Data:JWData5.txt"

Cmd> varieties <- irisdata[,1]; y <- irisdata[,-1]

Cmd> setosa <- y[varieties == 1,];versicolor <- y[varieties == 2,]

Cmd> virginica <- y[varieties  == 3,]

Cmd> list(setosa,versicolor,virginica)
setosa          REAL   50    4     (labels)
versicolor      REAL   50    4     (labels)
virginica       REAL   50    4     (labels)

Cmd> s1 <- tabs(setosa,covar:T)

Cmd> s2 <- tabs(versicolor,covar:T)

Cmd> s3 <- tabs(virginica,covar:T)
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Principal Components Example

Cmd> spooled <- (49*s1+49*s2+49*s3)/147;spooled # pooled var matrix
(1,1)     0.26501    0.092721     0.16751    0.038401
(2,1)    0.092721     0.11539    0.055244     0.03271
(3,1)     0.16751    0.055244     0.18519    0.042665
(4,1)    0.038401     0.03271    0.042665    0.041882

Or you could compute spooled from the one-way MANOVA error matrix

Cmd> varieties <- factor(varieties) # make sure varieties is a factor

Cmd> manova("y = varieties",silent:T) # silent:T suppresses output

Cmd> e <- matrix(SS[3,,]); fe <- DF[3]

Cmd> spooled <- e/fe; spooled
            SepLen      SepWid      PetLen      PetWid
SepLen     0.26501    0.092721     0.16751    0.038401
SepWid    0.092721     0.11539    0.055244     0.03271
PetLen     0.16751    0.055244     0.18519    0.042665
PetWid    0.038401     0.03271    0.042665    0.041882

Cmd> r <- cor(RESIDUALS) # correlations of residuals needed below

Cmd> eigs <- eigen(spooled); eigs
component: values
(1)     0.44357    0.086183    0.055352    0.022364
component: vectors
               (1)         (2)         (3)         (4)
SepLen     0.73775    0.056086     0.63238     0.22951
SepWid     0.32057    -0.87323    -0.18057    -0.31953
PetLen     0.57285     0.45883    -0.58182    -0.35042
PetWid     0.15748    -0.15425    -0.47851     0.84996

Cmd> pcomp <- y %*% eigs$vectors # columns are principal components

Cmd> list(pcomp)
pcomp           REAL   150   4     (labels)

If you do MANOVA using the principal components as response, the error matrix is diagonal.
This is the case because the PCs were computed from the pooled within group variance
matrix.

Cmd> manova("pcomp = varieties", silent:T)

Cmd> SS[3,,]/DF[3] # Diagonal with eigenvalues on the diagonal
                   (1)         (2)         (3)         (4)
ERROR1 (1)     0.44357 -1.0441e-16 -2.3602e-17  -1.195e-16
       (2) -1.0441e-16    0.086183  4.9091e-18 -9.2991e-18
       (3) -2.3602e-17  4.9091e-18    0.055352  7.1655e-17
       (4)  -1.195e-16 -9.2991e-18  7.1655e-17    0.022364
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Principal Components Example

Now make plots of the first 3 PC's vs each other.

Cmd> plot(P_Comp1:pcomp[,1],P_Comp2:pcomp[,2],symbols:varieties, \
title:"Fisher Iris covariance principal components"))

Cmd> plot(P_Comp1:pcomp[,1],P_Comp3:pcomp[,3],symbols:varieties, \
title:"Fisher Iris covariance principal components")

Cmd> plot(P_Comp1:pcomp[,1],P_Comp4:pcomp[,4],symbols:varieties, \
title:"Fisher Iris covariance principal components")

Note the different orientations of the clouds of points.  This indicates that the covariance
matrices are almost certainly not identical.

You can also compute principal components from the eigenvectors of the correlation matrix
r.  They are different from the covariance principal components.  We computed r previously.

Cmd> r
            SepLen      SepWid      PetLen      PetWid
SepLen           1     0.53024     0.75616     0.36451
SepWid     0.53024           1     0.37792     0.47053
PetLen     0.75616     0.37792           1     0.48446
PetWid     0.36451     0.47053     0.48446           1

You could also compute r from spooled by pre-multiplying and post-multiplying S by a

diagonal matrix with 1/√sii on the diagonals.
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Cmd> eigsr <- eigen(r);eigsr # find eigenvalues and vectors of r
component: values
(1)      2.5038     0.72514      0.5824      0.1887
component: vectors
               (1)         (2)         (3)         (4)
SepLen      0.5424    -0.45697     0.21498     0.67139
SepWid     0.46638     0.46647     0.69656    -0.28232
PetLen     0.53483    -0.45341    -0.31393    -0.64017
PetWid     0.44971     0.60663    -0.60831     0.24436

Now compute the correlation principal components.  You need to divide the rows of the
eigenvectors by the standard deviations to compensate for the fact that the eigenvectors come
from the correlation matrix, that is the variance matrix of standardized variables.  This is
needed to get coefficients that can be directly applied to the data matrix.  Alternatively you
could divide the columns of y by the standard deviations and use the eigenvectors as they are
computed.  That's what we do here.

Cmd> sd <- sqrt(diag(spooled)) # find standard deviations

Cmd> pcompsr <- (y/sd') %*% eigsr$vectors

Cmd> plot(P_Comp1:pcompsr[,1],P_Comp2:pcompsr[,2],symbols:varieties, \
title:"Fisher Iris correlation principal components")

Cmd> plot(P_Comp1:pcompsr[,1],P_Comp3:pcompsr[,3],symbols:varieties, \
title:"Fisher Iris correlation principal components")

Cmd> plot(P_Comp2:pcompsr[,2],P_Comp3:pcompsr[,3],symbols:varieties, \
title:"Fisher Iris correlation principal components")
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Principal Components Example

Principal component plots based on heterogeneous data

Principal components analysis is often viewed as a method to analyze an estimated
covariance or correlation matrix, derived either from a homogeneous sample, or from
residuals from a linear model as in the first example.  However, the basic computations are
often informative when applied to data that may be heterogeneous data, perhaps sampled
from a mixture of several populations. 

Consider a situation in which there may be several distinct but non-identified sub-popu-
lations of the population being sampled, perhaps subspecies or varieties.  Then a sample will
contain observations from some or all of these sub-populations.

To be specific, suppose you have observations y1, y2, ..., yN, n1 of which come from a

population with mean µµµµ1 and variance matrix ΣΣΣΣ1, n2 from a population with mean µµµµ2 and

variance matrix ΣΣΣΣ2, and so on.  What is different from an ordinary one-way MANOVA
situation is that (a) you do not know the number g of subpopulations, and (b) you cannot a
priori associate a data point with a specific subpopulation.  This further implies that you do
not know n1, n2, ... . What you would like to do is display the data in a way that is likely to
expose the differences between groups, perhaps with the aim of identifying the
subpopulations.
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Note ΣΣΣΣ* involves only the covariance matrices ΣΣΣΣ j, while ∆∆∆∆ involves only the µµµµ 's.  Moreover, ∆∆∆∆
is 0 only if all the subpopulation means are the same, and the more the means are separated,

the larger is ∆∆∆∆.

What matters, of course, is how separated the means are relative to within group variance as

measured by ΣΣΣΣ*.  When ∆∆∆∆     is large in comparison with ΣΣΣΣ*, the eigenvalues and eigenvectors

of S or R will primarily reflect the structure of ∆∆∆∆  and scatter plots of the first few principal
components against each other will tend to emphasize differences among the unknown

group means.  On the other hand, when ∆∆∆∆     is not large in comparison with ΣΣΣΣ*, the

eigenvalues and eigenvectors of S will primarily reflect the eigen structure of ΣΣΣΣ* which

depends only on the within groups variance matrices.  In this case, because ΣΣΣΣ* is a weighted
average of the separate variance matrices, the eigen structure will tell you little.

When the variables differ substantially in scale, it is almost always better to plot the principal

components based on the correlation matrix R = D S D, where D = diag[1/√s11,1/√s22,...,1/√spp].
If uj = [u1j, ..., upj]' is the j-th eigenvector of R, then the coefficients of the j-th correlation

principal component are the elements of the vector       ũ j  = Duj = [u1j/√s11, u2j/√s22, ..., upj/√spp]',

that is the rows of uj are divided by the sample standard deviations √skk of the Y's.
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Principal Components Example

Here is a continuation of the analysis of the Fisher Iris data.

Cmd> s <- tabs(y,covar:T) # var. of all data, ignoring varieties

Cmd> r <- cor(y); r # correlation matrix, ignoring varieties
            SepLen      SepWid      PetLen      PetWid
SepLen           1    -0.11757     0.87175     0.81794
SepWid    -0.11757           1    -0.42844    -0.36613
PetLen     0.87175    -0.42844           1     0.96287
PetWid     0.81794    -0.36613     0.96287           1

Cmd> eigs <- eigen(r);eigs # eigen structure of correlation matrix
component: values
(1)      2.9185     0.91403     0.14676    0.020715
component: vectors
               (1)         (2)         (3)         (4)
SepLen     0.52107     0.37742     0.71957     0.26129
SepWid    -0.26935      0.9233    -0.24438    -0.12351
PetLen     0.58041    0.024492    -0.14213    -0.80145
PetWid     0.56486    0.066942    -0.63427      0.5236

Cmd> sd <- sqrt(diag(s)) # standard deviations

Cmd> princomps <- (y/sd') %*% eigs$vectors
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Principal Components Example

Cmd> plot(P_Comp1:princomps[,1],P_Comp2:princomps[,2], \
symbols:varieties,title: \

"Correlation principal components based on S for Fisher Iris Data")

Cmd> plot(P_Comp1:princomps[,1],P_Comp3:princomps[,3], \
symbols:varieties,title: \

"Correlation principal components based on S for Fisher Iris Data")

Cmd> plot(P_Comp2:princomps[,2],P_Comp3:princomps[,3], \
symbols:varieties,title: \

"Correlation principal components based on S for Fisher Iris Data")

The upper left plot, of the first and second principal components, does a pretty good job of
separating the three varieties.

By way of comparison, here are all 6 scatter plots of pairs of the actual variables in the data set
created using macro plotmatrix(). 
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Cmd> plotmatrix(y,lower:T,symbols:varieties, \
   title:"Scatter plots of Fisher Iris Data",xlab:"",ylab:"", \

labels:vector("SepLen","SepWid","PetLen","PetWid"))

For every pair of variables, variety 1 is well separated from the other two varieties, so we
should not be surprised that the principal components reveal this separation.  And for every
pair there is substantial overlap between varieties 2 and 3.  It is not clear there is any gain from
the use of principal components.

As a second example, we analyze the multivariate data in file cbspots.txt.  Each of the p =
19 variables is the density of a spot on an autoradiograph of a sample of blood from a rat.  The
density is presumed proportional to the amount of a particular protein in the blood.  The rats
had been subjected to 10 treatment, one of which, treatment 2 or B, was a control (no
treatment).  In this analysis, the known treatment structure is ignored in computing principal
components.  To display how well principal components reveal the underlying structure, the
points in the principal component plots are labelled A, B, ..., J to show group membership.
The analysis is in terms of log10(y+1) because y is very skew.

Cmd> spots <- read("","spots",quiet:T) # read from cbspots.txt
Read from file "TP1:Stat5401:Data:cbspots.txt"

Cmd> treatment <- spots[,1]; y <- log10(spots[,-1] + 1)

Cmd> s <- tabs(y,covar:T) # covariance matrix ignoring varieties

Cmd> eigs <- eigen(s);eigs$values
 (1)       1.896      1.0798     0.29923     0.19009     0.12589
 (6)    0.076357    0.069458    0.051192    0.034265    0.025372
(11)    0.023382    0.017485    0.012756   0.0087761   0.0085185
(16)    0.006892   0.0052675   0.0049177   0.0034336

Cmd> zc <- y %*% eigs$vectors # Compute principal components
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Cmd> print(format:"7.4f",tabs(zc,covar:T)[run(8),run(8)])
MATRIX:
(1,1)  1.8960  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
(2,1)  0.0000  1.0798  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
(3,1)  0.0000  0.0000  0.2992  0.0000  0.0000  0.0000  0.0000  0.0000
(4,1)  0.0000  0.0000  0.0000  0.1901  0.0000  0.0000  0.0000  0.0000
(5,1)  0.0000  0.0000  0.0000  0.0000  0.1259  0.0000  0.0000  0.0000
(6,1)  0.0000  0.0000  0.0000  0.0000  0.0000  0.0764  0.0000  0.0000
(7,1)  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0695  0.0000
(8,1)  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0512

Cmd> # note PC's are uncorrelated and have eigenvalues as variance

Cmd> labs <- \
 vector("A","B","C","D","E","F","G","H","I","J")[treatment]

Cmd> plotmatrix(zc[,run(3)],lower:T,symbols:labs,xlab:"",ylab:"", \
labels:vector("PC 1","PC 2","PC 3"), \
title:"Covariance principal components plots for cbspots.txt")

Cmd> r <- cor(y) # compute correlation matrix

Cmd> print(format:"7.4f",r[run(8),run(8)]) # part of corr matrix
MATRIX:
        Sp01    Sp02    Sp03    Sp04    Sp05    Sp06    Sp07    Sp08
Sp01  1.0000  0.7777  0.7129  0.8913 -0.0812  0.6958  0.7880 -0.3736
Sp02  0.7777  1.0000  0.9134  0.7711 -0.2579  0.8507  0.7318 -0.5619
Sp03  0.7129  0.9134  1.0000  0.6288 -0.3898  0.8645  0.6154 -0.5166
Sp04  0.8913  0.7711  0.6288  1.0000 -0.0128  0.6298  0.8320 -0.3870
Sp05 -0.0812 -0.2579 -0.3898 -0.0128  1.0000 -0.5055 -0.1085  0.3062
Sp06  0.6958  0.8507  0.8645  0.6298 -0.5055  1.0000  0.6362 -0.5377
Sp07  0.7880  0.7318  0.6154  0.8320 -0.1085  0.6362  1.0000 -0.3585
Sp08 -0.3736 -0.5619 -0.5166 -0.3870  0.3062 -0.5377 -0.3585  1.0000
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Cmd> # Note: labels came from labels in cbspots.txt

Cmd> eigs <- eigen(r);eigs$values # correlation eigenvalues
 (1)      8.1623      3.7179      1.7374      1.1274     0.89645
 (6)     0.76408     0.56048     0.53438     0.36238      0.2947
(11)     0.20819     0.16422     0.12944     0.10691    0.080667
(16)    0.054977    0.050571     0.02898    0.018455

Cmd> # There is less dominance of first 2 principal components

Cmd> sd <- sqrt(diag(s)) # standard deviations

Cmd> coeffs <- eigs$vectors / sd # divide rows by standard deviations

Cmd> zr <- y %*% coeffs # coefficients directly applicable to y's

Cmd> print(format:"7.4f",tabs(zr,covar:T)[run(8),run(8)])
MATRIX:   Part of covariance matrix of principal components
(1,1)  8.1623  0.0000  0.0000  0.0000 -0.0000 -0.0000  0.0000 -0.0000
(2,1)  0.0000  3.7179 -0.0000 -0.0000 -0.0000  0.0000  0.0000 -0.0000
(3,1)  0.0000 -0.0000  1.7374 -0.0000  0.0000 -0.0000 -0.0000 -0.0000
(4,1)  0.0000 -0.0000 -0.0000  1.1274  0.0000  0.0000  0.0000 -0.0000
(5,1) -0.0000 -0.0000  0.0000  0.0000  0.8964 -0.0000  0.0000 -0.0000
(6,1) -0.0000  0.0000 -0.0000  0.0000 -0.0000  0.7641 -0.0000 -0.0000
(7,1)  0.0000  0.0000 -0.0000  0.0000  0.0000 -0.0000  0.5605  0.0000
(8,1) -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000  0.0000  0.5344

Cmd> plotmatrix(zr[,run(3)],lower:T,symbols:labs,xlab:"",ylab:"",\
labels:vector("PC 1","PC 2","PC 3"),\
title:"Correlation principal components plots for cbspots.txt")
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Let's see how this analysis compares with making scatter plots of the original variables.  It
make sense to concentrate on the variables with the largest univariate F-statistics because you
might expect that these would do a good job of displaying the differences among the treatment
groups.

Cmd> treatment <- factor(treatment) # turn vector into factor

Cmd> manova("y=treatment",silent:T) # suppress output

Cmd> print(paste(TERMNAMES)) # names of the three MANOVA terms
CONSTANT treatment ERROR1

Cmd> fh <- DF[2]; fe <- DF[3] # hypothesis and error d.f.

Cmd> fstats <-(diag(SS[2,,])/fh)/(diag(SS[3,,])/fe); fstats
 (1)      146.07      49.278      24.806      102.51      26.041
 (6)      48.442      46.134      5.9153      52.793      20.797
(11)      68.431      20.052      20.809      57.768      7.6594
(16)      36.844      7.2989      5.3226      2.6324

Cmd> J <- grade(fstats,down:T)[run(4)];J# indices of 4 largest F's
(1)           1           4          11          14

Cmd> fstats[J] # the 4 largest F-statistics
(1)      146.07      102.51      68.431      57.768

Cmd> plotmatrix(y[,J],lower:T,symbols:labs, \
xlab:"y transformed to log10(y+1)",ylab:"", \
title:"Pairwise scatter plots of cbspots.txt cols. 1, 4, 11, 14")

Group A is very different from all the treated groups on both variables Y1 and Y4 and the plots
show relatively little beside this.  The plots show less intergroup separation than do the
principal components plots.
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