Example of the Use of MacAnova

This document is primarily an example of how MacAnova is used. It illustrates inputting data and macros, both by typing in directly and reading from a file, reading a macro from a terminal and retrieving a macro from a file, computing a mean and a covariance matrix, computing eigenvalues and eigenvectors, and computing one-way ANOVA and MANOVA. It should be read in conjunction with An Introduction to MacAnova.

There are many explanatory comments. Read them carefully to understand what is happening. Some of them suggest using help () to get more information. Regularly using help () or Help on the Help menu which provides HTML based help is a useful habit to acquire.
MacAnova is available for Windows (and DOS), Macintosh and Linux computers. File Readme.txt spells out the special features available. In addition, once you are in MacAnova, help() topics launching, macintosh, dos_windows and wx contain some of the same material.

The version of MacAnova available for downloading is a new generation (except the version for Classic Macintosh) based on the Carapace framework written by Gary Oehlert in the School of Statistics. It is referred to below as Carapace MacAnova. The documentation has not completely caught up to the new version, at least that which describes the user interface.
There is a comprehensive Users' Guide to MacAnova 4.07 which can be downloaded in PDF format from URL http://www.stat. umn.edu/macanova/
documentationug. html, but this is not essential. It is several versions out of date but may still be useful, especially the sections on writing macros.

Launching MacAnova for Macintosh and Windows

Start MacAnova on a Macintosh by double clicking on the MacAnova icon. You may want to put an alias or shortcut to MacAnova on the desktop or someother convenient place.

Typographical conventions

In the sample session below, italicized items are typed by the user. Bold face items are comments added to output lines. This is a convention that will be used in many handouts. There are also many comments starting with "\#" on the same lines as MacAnova commands. Anything after "\#" is ignored by MacAnova.
Lines in the output starting Cmd> are command lines input by the user.
In the Carapace version of MacAnova, you type commands (what is to the right of Cmd>) in the lower panel of the MacAnova window, followed by Return or Enter. What you typed immediately appears in the upper panel, preceded by Cmd> and followed by output produced, if any. In the Macintosh Classic MacAnova and earlier Windows or Linux versions, MacAnova prints Cmd> at the end of an output window as a prompt, and you type the command after Cmd>, followed by Return or Enter.

MacAnova Example

Getting help

Carapace MacAnova has a Help menu with menu item Help. Selecting that brings up a new window similar to a browser that displays help with clickable cross references. When you first select it, you have an index window listing all commands, grouped by help file. There are also clickable Search Key items that provide you with lists of related commands.
Alternatively, you can get help using commands help () and usage () typed in the command panel. For example, to get help on command vector (), type help (vector). You can get a list of help topics in a specific area, say regression, by help (key: "regression"). Type help (key: "?") for a list of all possible values for key.
You can also get very brief information on how a command is used by, say, usage (vector). This doesn't tell what the command does but shows how it is used.
Most help topics have subtopics. This makes it easier to zero in on the specific information you need. See the examples below.

I have often found that when someone is having trouble doing something in MacAnova, they have made no attempt to use the browser based help or help () or usage ().

Sample MacAnova session

$$
\text { M A C A N O V A } 5.05
$$

An Interactive Program for Statistical Analysis and Matrix Algebra
For information on major features, type 'help(macanova)'
For information on linear models and GLM's, type 'help(glm)' For latest information on changes, type 'help (news)' For information on Unix version, type 'help(unix)' Version of August 28, 2005 (Carapace Mac OSX [gcc]) Type 'help(copyright)' for copyright and warranty info
Copyright (C) 1994 - 2005 Gary W. Oehlert and Christopher Bingham MacAnova home page: http://www.stat.umn.edu/macanova

```
This release of MacAnova has a completely rewritten user interface. You won't see a lot of new capabilities in this first release, but new capabilities are on the way. The computational core has not changed.
```

The changes that you will notice now are that you type commands into the lower pane of the window, and graphics look somewhat different. Also, you will find that you can do many things from menus. We are still working on the menus, and future versions will be more complete.

MacAnova now has some dynamic graphics. However, they're
still a little buggy (we're working on it!), so you may with to make sure that you have saved before using them.

Please let us know if you find any problems. Happy computing! gary@stat.umn.edu and kb@stat.umn.edu

Cmd> \# Anything after a '\#' is ignored may be used as a comment
Cmd> spool("") \# record session in file;

MacAnova Example

In the Mac, Windows and Linux versions, using" " as a file name brings up a file navigation dialog box in which you can select a file. On a Classic Macintosh you can also select Spool Output To File on the File menu and select the file in a dialog box.

MacAnova Example

Cmd> \# The (1,1) indicates xbar is a matrix; it has 1 row and hence
Cmd> \# is a row vector
Cmd> help(sum, subtopics:"?") \# get help subtopics of topic sum Available subtopics for topic 'sum' are:
usage
dimensions_keyword
margins_keyword
structure_argument
examples
see_also
Type help (sum: vector("subtopicA", "subtopicB", ...))
NOTE: This command crashed my computer in Macintosh OS X 10.3.8, but will be fixed soon.
Cmd> help(sum:"usage") \# or help(sum, subtopic:"usage") Usage (subtopic of 'sum')
sum(x) computes the sum of the elements of a REAL or LOGICAL vector x.
If x is LOGICAL, True is interpreted as 1.0 and False as 0.0 and sum(x)
is the number of elements of x that are True.
If x is a m by n matrix, sum(x) computes a row vector (1 by n matrix) consisting of the sum of the elements in each column of x.
If x is an array with dimensions n1, $n 2, n 3, \ldots, y<-$ sum(x) computes an array with dimensions $1, n 2, n 3, \ldots$ such that $y[1, j, k, \ldots]=$ sum(x[i,j,k,...], i=1,...,n1). This is consistent with what happens when x is a matrix. Note: MacAnova3. 35 and earlier produced a result with dimensions n2, n3,
sum(x, squeeze:T) does the same, except the first dimension of the result (of length 1) is squeezed out unless the result is a scalar. In particular, if x is a matrix, sum(x,squeeze:T) will be identical to vector (sum(x)), and if x is an array, sum(x,squeeze:T) will be identical to array (sum (x), dim(x) [-1]).
sum (NULL) is NULL. See topic 'NULL'.
sum (a, b, c, \ldots) is equivalent to sum(vector (a, b, c, \ldots)) if a, b, c, \ldots are all vectors. They must all have the same type, REAL or LOGICAL or be NULL. sum(NULL, NULL, ..., NULL) is NULL.
sum(x, silent:T) or sum(a,b,c,..., silent:T) does the same but suppresses warning messages about MISSING values or overflows.

If all the elements of a vector x are MISSING, sum(x) is 0.0.
sum(x, undefval:U), where U is a REAL scalar does the same, except the returned value is U when all the elements of x are MISSING.

Cmd> help(sum:"examples")
Subtopic 'examples' of help on 'sum'
Examples:
Examples:
If x is a n by matrix
Cmd> $r<-x-\operatorname{sum}(x) / s u m(!i s m i s s i n g(x))$
computes the matrix of the residuals of $x[i, j]$ from the column means.

MacAnova Example

When there are no MISSING values, divide by nrows (x)
If x is a n by 4 by 5 array,
Cmd> r <- x - sum(x)/sum(!ismissing(x))
computes an array with r[i,j,k] = the residual of $x[i, j, k]$ from the mean of all $x[i, j, k]$ with the same values for j and k. That is, it treats x analogously to a 4 by 5 array of vectors of length n. See topic 'arithmetic'. When there are no MISSING values, divide by dim(x) [1].

If z is a vector of integers,
Cmd> $\operatorname{sum}\left(z==\operatorname{run}(\min (z), \max (z))^{\prime}\right)$
computes a row vector giving the frequency distribution of the values in z.

Cmd> a \# 2 by 2 by 3 array	with labels			
		C1	C2	C3
A1 B1		9	5	7
B2		9	12	11
A2 B1		4	11	10
	B2		11	15

Cmd $>$			
	sum (a,dimensions:2)	\# sum over dimension 2; 2 by 1 by 3 result	
A1 (1)	C1	C2	C3
A2 (1)	18	17	18

Cmd> sum(a,margins:vector (1,3), squeeze:F) \# same as preceding

		C1	C2	C3
A1	(1)	18	17	18
A2	(1)	15	26	19

Cmd> sum(a,dimensions:2, squeeze:T) \# sum over dim 2; 2 by 3 result

	C1	C2	C3
A1	18	17	18
A2	15	26	19

Cmd> sum(a,margins:vector $(1,3))$ \# same as preceding

	C1	C2	C3
A1	18	17	18
A2	15	26	19

Now back to actually doing stuff instead of reading help information.

```
(1) Cmd> dim(xbar) # xbar is a 1 by 2 matrix (a row vector)
```

Cmd> \# Compute column sums using matrix operations instead of sum()
Cmd> rep $(1,4)$ ' $\% \star \circ \mathrm{x} \#$ 1'X $^{\prime} \mathrm{rep}(1,4)$ is same as vector $(1,1,1,1)$
(1,1) 20016

Cmd> \# The vector rep $(1,4)$ is equivalent to a 4 by 1 matrix of 1 's

MacAnova Example

Cmd> \# Now compute sample covariance matrix using matrix algebra

Cmd> \# You could use res \%c\% res instead of res' \%*\% res
Cmd> sn <- ssp/n\# sample (biased) covariance matrix, divisor of n

MacAnova Example

Cmd> \# Note that this is s, except possibly for rounding error

```
Cmd> u' %*% s %*% u # Equivalent to u %c% s %*% u (U' S U)
```

(1,1) 45.423-9.3171e-17
$(2,1)-3.7537 e-17 \quad 0.57729$

Cmd> \# Note that this is d, except for rounding error
The off diagonal elements should be mathematically zero. Because of rounding error they are very small non-zero numbers.

Cmd> listbrief() \# See all data and macros in memory					
adddatapath	CONSOLE	fromclip	MACROFILE	regs	toclip
addmacrofile	DATAFILE	getdata	MACROFILES	res	twotailt
alltrue	DATAPATH	getmacros	makecols	resid	u
anovapred	DATAPATHS	GRAPHWINDOWS	makefactor	resvsindex	vboxplot
anytrue	DEGPERRAD	haslabels	model	resvsrankits	VERSION
boxcox	DELTAT	hasnotes	n	resvsyhat	x
breakif	df	hist	PI	rowplot	xbar
CLIPBOARD	E	HOME	readcols	s	yhat
colplot	enter	l	redo	sn	
console	enterchars	LASTLINE	regcoefs	ssp	

Note: Your list almost certainly will not match this one exactly.
Items are listed in alphabetical order, ignoring case. Some are variables you created; others are predefined constants and macros, or items created by commands in file MacAnova.ini, which, it exists, is automatically excuted when you start up MacAnova. Type help (launching) and help (customize) for information about MacAnova.ini.

Cmd> listbrief (real:T)	\# numerical objects only			
DEGPERRAD	E	PI	sn	x
DELTAT	1	res	ssp	xbar
df	n	s	u	

Cmd $>$ listbrief (macro:T)	\# only macros			
adddatapath breakif	getdata makecols regs	toclip		
addmacrofile colplot	getmacros makefactor resid	twotailt		
alltrue	console	haslabels model	resvsindex vboxplot	
anovapred	enter	hasnotes readcols	resvsrankits yhat	
anytrue	enterchars	hist	redo	resvsyhat

MacAnova Example

```
Cmd> jw115 <- read("","t11_05")#find file JWdata5.txt
T11_05 150 5 format Descriptive comments on file
) Data from Table 11.5 p. 657-658 in
) Applied Mulivariate Statistical Analysis, 5th Edition
) by Richard A. Johnson and Dean W. Wichern, Prentice Hall, 2002
) These data were edited from file T11-5.DAT on disk from book
) The variety number was moved to column 1
) Measurements on petals of 4 varieties of Iris. Originally published
) in R. A. Fisher, The use of mltiple measurements in taxonomic,
) problems Annals of Eugenics, 7 (1936) 179-198
) Col. 1: variety number (1 = I. setosa, 2 = I. versicolor,
) 3 = I. virginica)
) Col. 2: x1 = sepal length
) Col. 3: x2 = sepal width
) Col. 4: x3 = petal length
) Col. 5: x4 = petal width
) Rows 1-50: group 1 = Iris setosa
) Rows 51-100: group 2 = Iris versicolor in
) Rows 101-150: group 3 = Iris virginica in
Read from file "TP1:Stat5401:Data:JWData5.txt"
```

Note: Because of a bug, Carapace MacAnova does not print the name of the file read from.
Alternatively, you can set CHARACTER variable DATAFILE to the full path name of the file and use getdata () to retrieve a data set. Here's what it looks like on my Macintosh.

```
Cmd> DATAFILE <- getfilename() # find JWData5.txt
Cmd> DATAFILE # full name of data file
(1) "TP1:Stat5401:Data:JWData5.txt"
```

Cmd> jw115 <- getdata(t11_05, quiet:T) \#quiet:T suppresses comments
Read from file "TP1:Stat5401:Data:JWData5.txt"

Now that the data has been read in, here are some things you can do with then.
Cmd> dim(jw115) \# find the number of rows and columns
(1) $150 \quad 5 \quad 150$ rows and 5 columns

| Cmd> jw115[vector $(49,50,51,52)]$, | $\#$ Look at rows 49 through | 52 | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $(1,1)$ | 1 | 5.3 | 3.7 | 1.5 | 0.2 |
| $(2,1)$ | 1 | 5 | 3.3 | 1.4 | 0.2 |
| $(3,1)$ | 2 | 7 | 3.2 | 4.7 | 1.4 |
| $(4,1)$ | 2 | 6.4 | 3.2 | 4.5 | 1.5 |

Cmd> varieties <- jwll5[,1] \# make column with variety numbers
Cmd> \# These work because 1st subscript indexes rows or cases, 2nd
Cmd> \# indexes columns or variables
Cmd> y <- jw115[varieties==2,-1] \# extract rows with versicolor data
Cmd> \# Subscript of -1 omits column 1 and takes the rest
Cmd> \# varieties == 2 is True only for versicolor cases and using
Cmd> \# it as subscript 1 selects the rows for which it is True
(1) $\quad \operatorname{dim}(y) \quad{ }_{50} \quad n=\underset{4}{50}$ cases with $p=4$ variables

MacAnova Example

```
Cmd> \# Enter a simple macro to compute covariance matrix
Cmd> mycovar <- macro("@y <- \$1
    @n <- nrows (@y)
    @res <- @y - sum(@y)/@n
    @res' ㅇ* *o @res / (@n-1)", dollars:T)\#text of macro is inside "..."
Cmd> mycovar \# look at text of macro
(1) "@y\$\$ <- \$1
    @n\$\$ <- nrows (@y\$\$)
    @res\$\$ <- @y\$\$ - sum(@y\$\$)/@n\$\$
    @res\$\$' \%*\% @res\$\$ / (@n\$\$-1)"
```

Variables that start with @ are temporary and will be deleted automatically. Because I used dollars:T on the macro () command, \$\$ gets added to every temporary variable name. This ensures variables used in different macros don't "collide," that is, end up with the same name. The first macro argument will be substituted for $\$ 1$. Because @ans' \% *\% @ans / (@n-1) is the last expression in the macro, mycovar (y) returns its value, the covariance matrix. $\% * \%$ is the MacAnova matrix multiplication operator.

Cmd $>$	mycovar(y)	$\#$	Use it just	like a function
$(1,1)$	0.26643	0.085184	0.1829	0.05578
$(2,1)$	0.085184	0.098469	0.082653	0.041204
$(3,1)$	0.1829	0.082653	0.22082	0.073102
$(4,1)$	0.05578	0.041204	0.073102	0.039106

Cmd> \# This is equivalent to substituting 'y' for '\$1' in macro text
Cmd> $s<-m y c o v a r(y) ~ \# ~ s a v e ~ c o v a r i a n c e ~ m a t r i x ~ a s ~ s$
Cmd> write(s) \# write() gives more decimals
s:

$(1,1)$	0.266432653	0.0851836735	0.182897959	0.0557795918
$(2,1)$	0.0851836735	0.0984693878	0.0826530612	0.0412040816
$(3,1)$	0.182897959	0.0826530612	0.220816327	0.0731020408
$(4,1)$	0.0557795918	0.0412040816	0.0731020408	0.0391061224

As the Perl saying goes, There's more than one way to do it. Here I used tabs () to compute the covariance matrix:

Cmd $>$	tabs (y, covar: T)			
$(1,1)$	0.26643	0.085184	0.1829	0.05578
$(2,1)$	0.085184	0.098469	0.082653	0.041204
$(3,1)$	0.1829	0.082653	0.22082	0.073102
$(4,1)$	0.05578	0.041204	0.073102	0.039106

covar () is a more elaborate macro in file MacAnova.mac.txt which computes a covariance and mean vector. It is automatically retrieved when you use it.

MacAnova Example

Cmd> cov <- covar (y) \# use covar ()				
Cmd> cov component: (1)	$\begin{aligned} & \text { \# the re } \\ & : \text { n } 50 \end{aligned}$	is a st Sample	ructure with size	3 components
component:	: mean	Sample	ean as row	vector
$(1,1)$	5.936	2.77	4.26	1.
component:	: covar	Varia	Covarianc	trix
$(1,1)$	0.26643	0.085184	0.1829	0.05578
$(2,1) \quad 0$	0.085184	0.098469	0.082653	0.041204
$(3,1)$	0.1829	0.082653	0.22082	0.073102
$(4,1)$	0.05578	0.041204	0.073102	0.039106

Cmd> compnames (cov) \# displays names of components
(1) "n"
(2) "mean"
(3) "covariance"

Cmd> cov\$mean \# extract component mean

$(1,1)$	5.936	2.77	4.26	1.326	
Cmd> cov[2]	\# extract component $2 ;$	same as	cov\$mean		
$(1,1)$	5.936	2.77		4.26	1.326

Cmd> \# Change vector varieties into a factor (categorical variable)
Cmd> varieties <- factor(varieties) \# essential for anova(), manova()
Cmd> $y<-j w 115[,-1]$ \# 150 by 4 matrix $=$ everything but column 1
Cmd> makecols (y,sepal_len, sepal_wid,petal_len, petal_wid)
Cmd> \# makecols creates 4 vectors from the columns of y
Cmd> listbrief(real:T)

d	jw115	PI	sepal_wid	varieties
DEGPERRAD	n	res	sn	x
DELTAT	petal_len	s	ssp	xbar
$d f$	petal_wid	sepal_len	u	y

Cmd> anova("petal_wid=varieties") \# typical one-way ANOVA
Model used is petal_wid=varieties

	DF	SS	MS
CONSTANT	1	215.76	215.76
Varieties	2	80.413	40.207
ERROR1	147	6.1566	0.041882

Cmd> anova("petal_wid=varieties", fstats:T) \# f-stats and P values too Model used is petal_wid=varieties

	DF	SS	MS	F	P-value
CONSTANT	1	215.76	215.76	5151.66322	0
varieties	2	80.413	40.207	960.00715	0
ERROR1	147	6.1566	0.041882		

Cmd> secoefs() \# get coefficients and standard errors.
component: CONSTANT
component: coefs value of CONSTANT coefficient
(1) 1.1993

MacAnova Example
component: se
value of its standard error
(1) 0.01671
component: varieties
component: coefs
(1) -0.95333 0.12667
component: se
$\begin{array}{llll}\text { (1) } & 0.023631 & 0.023631 & 0.023631\end{array}$
values of variety effects
0.82667 they sum to zero
0.023631 values of their standard errors
Cmd> listbrief (real:T,char:T) \# list REAL \& CHARACTER variables CLIPBOARD DEPVNAME jw115 RESIDUALS TERMNAMES CONSOLE DF d df DATAFILE dpdata DATAPATH HELPFILES DATAPATHS HELPINDICES DEGPERRAD HII P DELTAT HOME
jw115 RESIDUALS TERMNAMES

MACROFILE s u
MACROFILES sepal_len varieties
n
petal_len
petal_wid
PI
sepal_wid VERSION
sn x
SS xbar
ssp y STRMODEL
Cmd> \# DEPVNAME, DF, HII, RESIDUALS, STRMODEL and TERMNAMES are
Cmd> \# so-called "side-effects" variables created by anova()
Cmd> hconcat (DF, SS, SS/DF) \# Type help (hconcat)

	(1)	(2)	(3)
CONSTANT	1	215.76	215.76
varieties	2	80.413	40.207
ERROR1	147	6.1566	0.041882

Cmd> \# hconcat() puts vectors or matrices side by side Cmd> resvsrankits (title: \backslash
"Anova residuals for Petal Width vs Rankits")
Anova residuals for Petal Width vs Rankits

MacAnova Example

The graph was copied from a graphics window and pasted into a word processor document on a Macintosh. resvsrankits () is a predefined macro. Such a plot is often used as a diagnostic technique to assess whether the residuals are approximately normal; if there is a lot of curvature in the plot, it would suggest non-normality.
Multivariate Analysis of Variance (MANOVA) is a generalization of univariate ANOVA. In place of each ANOVA sum of squares, MANOVA computes a matrix whose elements are sums of squares (on the diagonal) or sums of products (off the diagonal). The basic MacAnova function for doing this is manova (), used much like anova ().

Cmd> manova("y=varieties") \# full-fledged multivariate ANOVA Model used is y=varieties
WARNING: summaries are sequential
SS and SP Matrices

CONSTANT	DF1	[4,4] elements of matrices are		
		ANOVA SS computed above		
	SepLen	SepWid	PetLen	PetWid
SepLen	5121.7	2679.8	3293.9	1051.2
SepWid	2679.8	1402.1	1723.4	550.01
PetLen	3293.9	1723.4	2118.4	676.06
PetWid varieties	1051.2	550.01	676.06	$\underline{215.76}$
	2			
	SepLen	SepWid	PetLen	PetWid
SepLen	63.212	-19.953	165.25	71.279
SepWid	-19.953	11.345	-57.24	-22.933
PetLen	165.25	-57.24	437.1	186.77
PetWid	71.279	-22.933	186.77	80.413
ERROR1	147			
	SepLen	SepWid	PetLen	PetWid
SepLen	38.956	13.63	24.625	5.645
SepWid	13.63	16.962	8.1208	4.8084
PetLen	24.625	8.1208	27.223	6.2718
PetWid	5.645	4.8084	6.2718	6.1566

Cmd> secoefs() \# get coefficients and their standard errors component: CONSTANT

component: coefs		Constant terms for all 4 variables		
	SepLen	SepWid	PetLen	PetWid
(1)	5.8433	3.0573	3.758	1.1993
component: se		Their standard errors		
	SepLen	SepWid	PetLen	PetWid
(1)	0.042032	0.027735	0.035137	0.01671
component: varieties				
component: coefs		Variety	fects for	4 variables
	SepLen	SepWid	PetLen	PetWid
(1)	-0.83733	0.37067	-2.296	-0.95333
(2)	0.092667	-0.28733	0.502	0.12667
(3)	0.74467	-0.083333	1.794	0.82667
	nent: se	Their st	dard error	
	SepLen	SepWid	PetLen	PetWid
(1)	0.059443	0.039224	0.049691	0.023631
(2)	0.059443	0.039224	0.049691	0.023631
(3)	0.059443	0.039224	0.049691	0.023631

MacAnova Example

Cmd> predtable (seest:T,sepred:T)\# Cell means \& se's for all 4 vars	
component: estimate	Estimated values of group mean vectors
(1,1) 5.006	3.428 1.462 0.246
$(2,1) \quad 5.936$	2.77 4.26 1.326
(3,1) 6.588	2.974 5.552 2.026
component: SEest	Their standard errors
(1,1) 0.072802	$0.048039 \quad 0.060858$ 0.028942
$(2,1) \quad 0.072802$	$0.048039 \quad 0.060858$ 0.028942
(3,1) 0.072802	$0.048039 \quad 0.060858$ 0.028942
component: SEpred	Standard errors of prediction
(1,1) 0.51991	0.34307 0.43462 0.20669
$(2,1) \quad 0.51991$	$0.34307 \quad 0.43462$ 0.20669
(3,1) 0.51991	0.34307 0.43462 0.20669
Cmd> \# Without seest:T and sepred:T predtable() just computes means	
Cmd> contrast("varieties", vector (1,-1,0)) \# compare 1-st two groups	
component: estimate (1,1) -0.93	Estimated contrast for each variable $0.658 \quad-2.798 \quad-1.08$
component: ss	Sums Squares and products for contrast
(1,1,1) 21.623	-15.299 65.054 25.11
$(1,2,1)-15.299$	$10.824-46.027-17.766$
$(1,3,1) \quad 65.054$	-46.027 195.72 75.546
$(1,4,1) \quad 25.11$	-17.766 75.5469 .16
$\begin{aligned} & \text { component: se } \\ & \begin{array}{ll} (1,1) & 0.10296 \end{array} \end{aligned}$	Std Error of contrast for each variable $0.067938 \quad 0.086067 \quad 0.04093$
Cmd> \# save everything in a file so that we could restart at same	
Cmd> \# place on a future run, using restore()	
Cmd> save("") \# on Mac or Windows, dialog box lets you name file	
Workspace saved on fi	le Example.sav Name selected in dialog

On a future run, or later in the same run, restore ("") would restore things just as they are now. Type help (save, restore) to get full information.

In windowed versions you can also use Save Workspace on the File menu.

Cmd> quit \# terminate MacAnova

In windowed versions, you can select Quit on the File menu. You will be asked if you want to save your workspace (all the variables and macros) and the command/output window. To bypass these queries, you can type quit (F) at the prompt.

