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Testing MANOVA Hypotheses (corrected)

In multivariate linear models, including the multivariate analysis of
variance (MANOVA), many hypothesis tests are based on a comparison of
two p by p matrices, a hypothesis matrix H with degrees of freedom f

(hypothesis degrees of freedom) and an error matrix E with degrees of
freedom f, (error degrees of freedom).

MANOVA generalizes univariate analysis of variance (ANOVA) to many
variables, with a direct correspondence of many ideas. For example, H
corresponds to an ANOVA hypothesis sum of squares SSy,, and E to an

error sum of squares SSe. In the one-way MANOVA discussion in Johnson
and Wichern, H and E are called B (between) and W (within).
The hypothesis and error matrices H and E

You can compute H and E using formulas analogous to the corresponding
univariate ANOVA SS except that you substitue a p by p matrix product

yy' wherever a y2 would appear in the univariate formula, where y is a
px1 observation vector.

For example in the g-sample one-way univariate ANOVA with group
sample sizes ny, .., ng, the hypothesis SS and error SS for testing Hy: jg =

Ho = ... = }.lg are

SSh = 2i1<j<q MU} - Y )
and

SSe = Zi<j<g La<isn(Uij ~ Y17 = Zicjeg(ny=1)s )%,
where sj2 s the sample variance for group j.

In the corresponding g sample one-way MANOVA, the hypothesis matrix for
testing the equality of the g mean vectors (Hg: py = ... = Hg) is

H = 215]'59 r]j(!-]_.j - U_)(U_J - U_)
with error matrix
E =2 1<j<qg Z]gignj(gij - U_.j)(gij - U_]) = 2 1<j<g(Nj-1)8;,

where §; is the unbiased sample variance matrix for group j.
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Similar explicit formulae are available in other multivariate analogues of
more complex ANOVAs including randomized block, split plot, Latin squares,
and incomplete block designs.

You can find more general formulas in an explicit linear model framework.
Let the "full” model be

Y = Z B + €& = M + E, M = E[Y] = ZB,

Nxp Nxr rxp Nxp Nxp Nxp
where (a) the rows of € are independent with zero means and common
variance matrix £, and (b) the r columns of Z are appropriate predictor
variables - dummy variables and/or covariates. Each column of B contains

coefficients for the corresponding column of Y. Each row of B contains
coefficients multiplying the corresponding column of Z.

Linear hypotheses
Any linear hypothesis that can be tested can be put in the form Hy: LB = O,
with some gxr matrix L with rank(L) = q = f. Then the hypothesis matrix
used to test Hg is

H = (LB)(L (2'2)'L)-"(LB), E =(Y - ZB)(Y - ZB),

where (Z'Z) is a generalized inverse of Z'Z (ordinary inverse when Z is

of full rank), and B = (Z2'Z2)"Z2'Y is the usual "least squares” estimator of
B (maximum likelihood estimator under normality). (Note: A generalized

inverse A- of a matrix A satisfies AAA = A.)

For example, one way to express the usual one-way MANOVA uses

B = [, oy, oy, ..., og]". Then you can exprfess the hypothesis of no
treatment effects Hyp: oy = oty = ... = ot as Hyp: LB = 0, where L is the g -
1 by g+ 1 matrix
o0 1 -1 0 0... 0 0 ]
0o 1 0 -1 0 0O O
L={0 1 0 0 -1 0O O
(0o 1 0 0 O 0o -1 |
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Whether you proceed by generalizing an ANOVA computation or by using the
linear models approach, there are always NxN matrices Q; and Q¢ such that
H=YQ,Y and E=Y'Q.Y,
where Qp and Q. are mutually orthogonal (Q,Q. = Q.Q, = 0) symmetric

projection matrices (Q2 = Q = Q') with ranks f,, and f,, respectively.
Moreover Q.,Z = 0 so that Q.M = Q.Z2B = 0.

For the hypothesis Hy: LB = O, these matrices are
Q= 2(2'Z2)°L'(L(Z'Z)L")" L(Z'Z)"Z" and Qg = Iy - Z2(Z2'2)-Z’
The following propositions are true:

(1) Hg is true if and only if Q,M = Q,ZB = 0. Equivalently, Hq is true if
and only if M'QM = B'Z2'Q,ZB = 0.

(2) When Hg is true, E[H] = f,£. When the rows of € are independent
Np(0.Z), H has the Wishart distribution Wy (H,Z).

(3) EIE] = fZ, whether or not Hy is true. When the rows of € are N;(0,Z),
E has the Wishart distribution Wy (E,Z), and is independent of H.

(4) When Hg is false, E[H] = f,Z + M'QM = f,Z. When € is Ny(0,Z), H is
still independent of E and has what is known as the non-central
Wishart distribution with noncentrality matrix A = £-"M'QyM.

Note that M'QyM is formed from the expectation matrix M = E[Y] = ZB
exactly the same way as H = Y'Q,Y is formed from Y. This means that,
even without constructing Qy,, if you know how to compute H from Y, you
can compute M'QyM for any M by using M in place of Y in your calculation.
For example, in one-way MANOVA, where

M= E[Y] = [Jy, 1y, oo 1qs oy Mg, o LB (note the transpose)

with gy = B+ o and with ny Hq's, ny My's, etc. Because

H= 3 1eee U -Y U, -y.),
a formula for M'QM is
M'QuM = 3 qqjeq NilCHy - O - J)'L JL = g egni /N,
Similarly, if you express H as H = (LB)'(L(2'Z)-L")""(LB), then M'Q;M =
(LB)'(L(Z'Z)-L")-1(LB), the same as H without the "hats” on B.
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This means you can consider M'Q,M to be a population analogue of the

sample hypothesis matrix H, and the null hypothesis is equivalent to
asserting M'Q,M = 0, that is, asserting that E[H] = f,Z.

Let X3 > X, > ... > X\, be the eigenvalues of M'QyM relative to f.&. These
are also the ordinary eigenvalues of the (non-symmetric) noncentrality
matrix A = £TM'Q,M. Then, another way to state the null hypothesis
M'QyM = 0 is Hp: Xy = Xy = ... = X, = 0. Because the X\'s are in
decreasing order and are non-negative, you can restate the null hypothesis
simply as Hp: Xy = 0. The X\;'s are population analogues of X; > X, > ... >
Xp. the eigenvalues of H relative to E.

[t is important to remember that both H and its population analogue
M'Q,M together with relative eigenvalues {\;} and {X;} are associated with

a specific null hypthesis. For each null hypothesis being tested there is a
different H and a different M'Q,M with different relative eigenvalues.

Distribution of relative eigenvalues
The null distribution (distribution when Hy:M'Q;M = 0 is true) of the s

non-zero eigenvalues A; > ... > X, is quite complicated. However, with

multivariate normal errors it depends only on three integer or half integer
quantities.

These quantities are, in the standard notation,

min(p, fi,) > 1
(|p-fn|-172>-1/2
= (fo-p-1)/2>-1/2 (when fg < p, E-! does not exist).

S
m
n

The quantities s, m and n are somewhat analogous to degrees of freedom
in univariate F-tests. When p = 1 (univariate), s =1, m=f,/2-1,n =
fo/2 - 1.

The non-null distribution (distribution when Hy is false, M'Q,M z 0)

depends on these same quantities as well as the population eigenvalues
N1y s As.

There an interesting duality between f, and p in the definitions of these
quantities and corresponding identities in sampling distributionsw. If you
substitute f;, = p for fy, p = f, for p, and fg = fg + f, - p for fg, then s, m,
and n are unchanged and it can be verified that the distribution of non-
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zero eigenvalues X, ..., A is unchanged. For example,

(fo-p-1)/2>(fa-p-1)/2=(fg+f,-p-"f,-1)/2=n,

Test statistics for multivariate linear hypotheses

Many test statistics have been proposed for testing Hq: E[H] = f,,E, that is,
M'Q,M = 0. Several are based on the sample relative eigenvalues X; > X,

> ... > Xp of H relative to E (ordinary eigenvalues of E-TH). By the

preceding, the null distribution of such test statistics depends only on s,
m and n.

Remark: when f, <p, then X;.; = .. = X, =0, that is, there are at
most s = min(p,fn) non-zero X's. Also, whether or not Ho 1s true, the
population values X;.; = ... = X, = 0, so the null hyothesis is equivalent
toHg: XAy =Xy = ... = Xg = 0.

When Hg is not true (that is, E[H] z f,£ or M'Q,M z 0 or X\; > 0), the
power (probability of rejecting Hy) of any test based on the sample
eigenvalues X;, ..., X depends only on the population eigenvalues \; > X,
> ... > X\g defined above.

Special cases whens =1 (p=1or f,=1)
When p = 1 (the univariate case), under Hg, there is only one relative
eigenvalue X; and

X1 = $S5,,/SSe = (fn/f)F(fh, fo)
(central Fon f,, and f. d.f.),

[n the null null case (Hy false)
Ny = (fh/TIF(fh, fes 82)
(non-central F on f, and f, d.f. and non-centrality parameter §2),
where 82 = X\; = M'Q,M/c2 (M is a vector whenp = 1).

When f,, = 1 (essentially the case of Hotelling's T2), the only non-zero
eigenvalue is A; = tr E-TH = T2/fe = {p/(fg - p + 1)} F(p, fe-p+1) when Hg
is true. When H; is true, X; = {p/(fq - p + 1)IF(p, fo-p+1;: A7) (non-central
F).

These two cases cover all the possibilities when s = min(f,, p) = 1. Thus

S
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the only distributional difficulties for test statistics based on the X;'s
are when when s > 2, that is when p > 2 and f, > 2.

Test statistics based on relatative eigenvalues
Here are some of the test statistics based on the relative eigenvalues
that have been proposed, together with information about their exact or
approximate distributions.:

1. Roy’'s maximum root test

Reject Hy for “large” X;. This is equivalent to rejecting Ho for "large” 6;
= X;/(1 + X;), since 6 is an increasing function of X.

Charts for the 1% and 5% critical values of 6; for 2 <'s <5 as computed

by Heck (1960) are in a handout posted on the class web site
(http://ww. st at. umm. edu/ ~kb/ cl asses/ 5401/ fi | es/ RoysTest . pdf ). |
don’t know of a useful approximation to the distribution of Roy's test.

For s = 2, P(6; < X) = [,(2m+2,2n+2) - Cx™1(1 - x)*1[(m+1,n+1), where
[,(a,b) is an imcomplete beta function computed in MacAnova by

cunbet a(x, a, b) and C = /TtxI'(m+n+5/2)/{T(m+3/2)T'(n+3/2)}, where I'(z)
is the gamma function. When N is an integer, I'(N) = (N-1)! and T'(N+1/2) =
VT 1x3x. . .x(2N-1)/2N,

2. Likelihood ratio based test (Wilks' test)

Reject for "small” values of
A* = det(E)/det(E + H) = 1/det(l, + E-TH) = T 4<{1/(1 + X}

Rao (1948) (see also Anderson (1965)) gave the following expression for
an approximation to the cumulative distribution function (cdf) of a
multiple of log A*. Define

my=fe-(Pp-fy+1)/2=2n+m=+s+1andPg=P(Xs? > x).

g
Then the upper tail probability for - mjlog A* = MY <ics 10g(1 + X;)
under Hg is
P(-m;log A* > x) =
Pr+ B1(Prag - Pi)/my2 + {Bo(Prg - Pr) - B12(Prag - Pll/my* + O(1/m;®),

where

f = pfy

B, = (pf,,/748)(p? + ;2 - 5),
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52 = 512/2 + (pfh/1920)(3p4+3fh4+1Op2fh2 - 50(p2 + fh2) + 150)

Using just the first term, that is, using the approximation
P(-milog A* > x) = P; = P(X:2 > x) is equivalent to treating

-mylog A* = {fg - (p-fr+1)/2}3 1 jeslog(l + X))

as a X;° random variable, where f = pf,. This is a widely used

approximation that is generally sufficiently accurate. The additional
terms, which go rapidly to zero as m; -» o, serve to correct this first

approximation.

MacAnova macro cumwi | ks() with keyword phrase useF: F uses this series
when min(p, f,) > 2.

Fujikoshi (1973) derived a similar, more complicated expression for the
non-null distribution when X\; > 0. The leading term is

P(-m; log A* > x) = P;(82) + O(1/my), P;(82) = P(X;2(82) > x),
82 = trA = tr Z_1M'QhM = Z1§j§3>\j'

Here X2(82) represents the non-central chi-squared distribution with
non-centrality parameter §2 and, as before, the Aj's are the eigenvalues of
M'Q;M relative to £. You can use this to compute the approximate power
of the likelihood ratio test for specified §2.

Rao’s approximation is essentially an adjustment to the standard large
sample result for the ratio X of maximized likelihoods. This result says
that, for large samples, -2 log X\ is approximately X2, where f is the
number of restrictions Hy imposes on the parameters. In this situation,
X = (A*)?/N where N is the number of rows (cases) in Y and f = pf;, the
number of elements in the f,, by p matrix LB, all of which are
hypothesized to be 0. Thus

-2 10g X = N log A* = NY jjslog(l + X)).
Rao’'s adjustment replaces N by my. Generally, for large N, m{/N > 1. In

the one-way MANOVA case where f, = g-1 and fg=N-g, m; =N-g -
(p+g-1+1)/2 and hence m;/N = 1 - (1/2)(g + p + 1)/N > 1 for large N.

Rao (1951, 1973) derived a different approximation to the null
distribution of A when s = min(p, f;,) > 1 based on the F distribution:
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(1 = (AU /(A7 Z{pfy/(mit - v)} F(pfy, myt-v),
where
t = {(p2f,2 - 4)/(p2 + 1,2 - 5)}1/2 and v = (pfy, - 2)/2.

Thus (myt - v)(1 - (A*)V/8)/(pfh (A*)1/1) is approximately F(pfy, m;t-v).

MacAnova macro cumwi | ks() uses this approximation to the distribution of
A* when useF: F is not an argument.

Exact distribution of A* when s < 2
When s < 2, Rao’s formula involving the F distribution is exactly correct
(not an approximation). It reduces to the following special cases:

s=1:t=1,mt-v=2n+2
{(n+1)/(m+ DT - A*)/A* = F(2m + 2, 2n + 2)
s=2:1t=2, mt-v=4n+ 4,

{(2n + 2)7(2m + 3)H1 - (A*)1/2}/(A*)1/2 Z F(4m + B, 4n + 4).
In terms of p, fy,, and fg, these cases are
fro= 1, any p: {(fo - p + 1)/pH1 - A*)/A* ZF(p, fe-p+1)
foo= 2, any p>2: {(fo - p + 1)/pH1 - (A*)V/2}/(A*)1/2 ZF(2p, 2(fo-p+1))
p=1,any f: {fo/f }(1 - A*)/A* = F(fh, f,)
p =2, any f, > 2: {(fg-1)/f,H1 - (A%)1/2}/(A*)1/2 2 F(2f,, 2(f-1))

3. Hotelling's generalized T,° or trace test:
Reject Hq for "large” To2 = fo tr(E"TH) = fo Xqqjes Nj -

When s = 1, Tg2 = f X1z foA™/(1 = AY) = f{(m+1)/(n+1)}F(2m+2, 2n+2).
When fr = 1, Tg2 = T2 (Hotelling’s ordinary T2) and has null distribution
{(pfe)/(fe = p + 1)IF(p, fo-p+1). Whenp = 1, Tg2 = F(f,.fo).

Remark When f,, > 1, Tg2 is in fact a generalization of Hotelling’s T2 in
that it can be put in the form Ty2 = (6 - 0)'[V[6]1-1(6 - 0)'. You only need
to take all f = f,,p elements of LB and string them into a long vector © of
length f and similarly string out the elements of B into 6, and take as
V[6] the "natural” estimator obtained by substituting S = (fo)"'E for S in
an equation for V[@]. From what is known of statistics of this type, in
large enough samples, the distribution of T2 is approximately X;°.
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For moderately large f., Fujikoshi (1973) found an adjustment to T,2
whose distribution is better approximated by X;2. Moreover he found

terms to adjust the P-value computed from X2 to get a better
approximation. Let m, = fo - p - 1 = 2n and define the adjusted statistic
to be

T =my tr(E"TH) = (Mmy/f)Tg2 = (1 - (p+1)/fy) Tg?

Then, approximately, upper tail probabilities are
P(T > X) = Py + {fx(p+f,,+1)/(4my)}(P; - 2P;,5 + Pf,4)
+ {£/(96mM2)} Focj<al-1)1 hiPg.pj + O(1/my2),

where f = pf, and P4 = P(X42 > x) as before, and

g
ho = (3F-8)(p+f,+1)2 + 4g hy = 12f(p+f+1)2
hy = 6(3f+8)(p+f,+1)2 hs = 4((3f+16)(p+fy+1)2 + 4Q)
hy = (3f+24)(p+f,+1)2 + 12g g = (p+1)(frel) + 2.

Fujikoshi also gives the O(1/f.3) term.

MacAnova macro cuntrace() uses this approximation by default.
Using just the leading term (P(T > x) = P;) is often sufficiently accurate.
This means you treat the modified statistic

T=(my/f)xTg2 = (fg-p - DIr(E-TH) = (fg -p - 1) Z15j55 5\\j

as X2, f = pf,. To order 1/m,, the null upper « probability points
(critical values) of T are

T(o) = Xp2(t) - my H{(p++1)/72HX2() - (X¢2(x))2/(f+2)}.
When Hg is false, a Fujikoshi (1973) found a similar more complicated
series involving non-central X2. The leading term is the same as for
-m;logA”™, that is, P(T > x) = P(82) + O(1/f,).
4. Pillai's trace criterion

Pillai’'s trace test is

~ ~

Reject Hg for "large” V = maxtr(H+E)"TH = mzx> 1 <sXi/(T+X),
mz = (fe+f) = 2N+ m+ s + 1),

You can obtain a large fg approximation for the null hypothesis tail
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probability P(V > x) by changing the sign of the second term in the
expression for P(T > x) above and replacing m, and m,2 by mz and msZ2.

MacAnova macro cuntrace() with keyword phrase pillai: T uses this
approximation.

Upper tail probability points (critical values) accurate to O(mz~') are

V(o) = Xi2() - mz H{(p+f+1)/2HX2(e) - (X;2(e0))2/(F+2)}, T = pfy.

When Hg is false, the leading term of the power function is again
P(V > x) = P¢(82) + O(1/(fg+f,)).

Differences among the tests
How should you chose among these tests? The large sample (actually
large f.) form of the power functions (non-null rejection probabilities)
for -my log A, To2, and V (but not X;) are all the same, that is, P;(82),
based on non-central X;2 with non-centrality parameter §2 = trA =
tr Z_1M‘QhM = Z151§S>\J.

You might have expected this. In a "neighborhood” of Hg, that is, when
X1,....\g are all small, when N is large, all three test statistics are

essentially equivalent. This is the only case that matters in large
samples, since otherwise virtually any test will have power close to 1.
For example, when fg is large and therefore m, and mz are also large,

and
V= ms 215155(5\\]/(1"'}’:])) ;m2(1 + (p+fh+1)/m2)21§jis>tj ;T

Thus for large fo with Hy "near” Hq, the three statistics are essentially

the same. In fact, in power computations that have appeared in the
literature, there does not seem to be much to choose between the various
tests, at least for large fo. The differences in power tend to be on the

order of 0.02, an amount insignificant compared to the uncertainty arising
from the inexactness of guesses for a value for §2.

Roy’'s maximum root test is different. When you think the appropriate
alternative hypothesis has rank 1 in the sense that M'Q,M has rank 1 or

X1 >0, X =0,j>1,o0r almost of rank 1 (X; >> X; > X3 > ...), Roy's
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maximum root test using only X; = X, is probably to be preferred,

focussing as it does on the single largest sample eigenvalue. Some of the
power that the other tests implicitly expend on testing for non-zero X,,

Az, etc. is "wasted” in this case. Conversely, if several \'s are non-zero,
without \; being dominant, Roy's test may fail to reject Hy because it
ignores the values of Xj, ] > 1. If it is expected that M'QyM has rank 2
with both A; and X\, large, a test based on X,, X; + X, or log(1 + X;) +
log(1 + X,) might be even better.
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