Hotelling's T^{2} Examples

This handout contains examples of a two-sample Hotelling's T^{2} and a one-sample paired Hotelling's T^{2}. We work with the Fisher iris data in data set T11_05. The variables are $\mathrm{x}_{1}=$ sepal length, $\mathrm{x}_{2}=$ sepal width, $\mathrm{x}_{3}=$ petal length, $\mathrm{x}_{4}=$ petal width.
Two-sample \mathbf{T}^{2}
We first test the hypothesis that the population mean flower measurements are the same for I. setosa and I. versicolor, that is, the average petal and sepal dimensions are the same for the two varieties. Thus we are comparing two populations - a two sample situation. We assume that both varieties have the same variance matrix $\boldsymbol{\Sigma}$.

```
Cmd> fisher <- read("","t11_05") # read from JWData5.txt
) Data from Table 11.5 p. 657-658 in
) Applied Mulivariate Statistical Analysis, 5th Edition
) by Richard A. Johnson and Dean W. Wichern, Prentice Hall, }200
) These data were edited from file T11-5.DAT on disk from book
) The variety number was moved to column 1
) Measurements on petals of 4 varieties of Iris. Originally published
in
) R. A. Fisher, The use of mltiple measurements in taxonomic problems,
) Annals of Eugenics, 7 (1936) 179-198
) Col. 1: variety number (1 = I. setosa, 2 = I. versicolor,
) 3 = I. virginica)
) Col. 2: x1 = sepal length
) Col. 3: x2 = sepal width
) Col. 4: x3 = petal length
) Col. 5: x4 = petal width
) Rows 1-50: group 1 = Iris setosa
) Rows 51-100: group 2 = Iris versicolor
) Rows 101-150: group 3 = Iris virginica
Read from file "TP1:Stat5401:Data:JWData5.txt"
Cmd> varieties <- fisher[,1]
Cmd> setosa <- fisher[varieties == 1,-1]
Cmd> versicolor <- fisher[varieties == 2,-1]
Cmd> virginica <- fisher[varieties == 3,-1 ]
Cmd> stuffl <- tabs(setosa, mean:T, covar:T)
Cmd> compnames(stuffl) #components of stats computed by tabs()
(1) "mean"
(2) "covar"
Cmd> stuff2 <- tabs(versicolor,mean:T, covar:T)
Cmd> xbarl <- stuffl$mean # col vector
Cmd> xbar2 <- stuff2$mean # col vector
Cmd> sl <- stuffl$covar # setosa variance matrix (4 x 4)
Cmd> s2 <- stuff2$covar # versicolor variance matrix
```


Hotelling's T² Example

Cmd> print (xbarl,sl) \# setosa statistics xbar1:

(1)	5.006	3.428	1.462	0.0 .246
s1:				
$(1,1)$	0.12425	0.099216	0.016355	0.010331
$(2,1)$	0.099216	0.14369	0.011698	0.009298
$(3,1)$	0.016355	0.011698	0.030159	0.0060694
$(4,1)$	0.010331	0.009298	0.0060694	0.011106

Cmd> print (xbar2, s2) xbar2:

(1)	5.936	2.77	4.26	1.326
s2:				
$(1,1)$	0.26643	0.085184	0.1829	0.05578
$(2,1)$	0.085184	0.098469	0.082653	0.041204
$(3,1)$	0.1829	0.082653	0.22082	0.073102
$(4,1)$	0.05578	0.041204	0.073102	0.039106

Cmd> n1 <- nrows (setosa); n2 <- nrows (versicolor) \# sample sizes
Cmd> df1 <- n1 - 1; df2 <- n2 - 1 \# degrees of freedom in s1 \& s2
Cmd> vector (df1,df2) \# error degrees of freedom in each sample
(1)

49
49
Cmd> dfpooled <- df1 + df2; spooled <- (df1*s1 + df2*s2)/dfpooled
Cmd> print(dfpooled, spooled) dfpooled:
pooled degrees of freedom

(1)	98			
spooled:		pooled	variance	matrix
$(1,1)$	0.19534	0.0922	0.099627	0.033055
$(2,1)$	0.0922	0.12108	0.047176	0.025251
$(3,1)$	0.099627	0.047176	0.12549	0.039586
$(4,1)$	0.033055	0.025251	0.039586	0.025106

Cmd> vhat $<-(1 / n 1+1 / n 2)$ * spooled; print (vhat)
vhat: estimated var matrix of xbar1-xbar2

$(1,1)$	0.0078136	0.003688	0.0039851	0.0013222
$(2,1)$	0.003688	0.0048432	0.001887	0.00101
$(3,1)$	0.0039851	0.001887	0.0050195	0.0015834
$(4,1)$	0.0013222	0.00101	0.0015834	0.0010042

Cmd> diff <- xbar1 - xbar2 \# difference of mean vectors
Cmd> se <- sqrt (diag(vhat)) \# univariate standard errors
Cmd> \# Note that se is a plain (column) vector
Cmd> print (diff,se) \# differences of means and standard errors diff:
(1)
-0.93
0.658
-2.798
-1.08
se:
(1)
0.088395
0.069593
0.070849
0.03169

Cmd> tstats <- diff/se;print(tstats) \# univariate t-statistics
t七:
(1)
9.455
-39.493
-34.08

Hotelling's T ${ }^{2}$ Example

```
Cmd> t_sq_12 <- diff' %*% (solve(vhat) %*% diff); write (t_sq_12)
t_sq_12:
(1,1) 2580.83855
Cmd> diff' %%*% solve(vhat, diff) # alternate use of solve()
(1,1) 2580.8
Cmd> diff' %*% (vhat %\% diff) # equivalent to preceding
(1,1) 2580.8
Cmd> p <- ncols(setosa); print(p) # number of variables
p:
(1)
                            4
Cmd> fe <- dfpooled; f <- (fe - p + l)*t_sq_12/(fe*p); print(f)
f: F-statistic form of T^2
(1,1) 625.46
```

```
Cmd> # f on 4 and 98 - 4 + 1 = 95 df, the Null distribution
```

Cmd> \# f on 4 and 98 - 4 + 1 = 95 df, the Null distribution
Cmd> cumF (f,p,fe-p+1,upper:T) \# P-value = P(F(4,95) > 625.5)
Cmd> cumF (f,p,fe-p+1,upper:T) \# P-value = P(F(4,95) > 625.5)
(1,1) 2.6649e-67

```
(1,1) 2.6649e-67
```

There is a black box way to find T^{2} and its associated P-value using macro hotell2val ():

```
Cmd> usage(hotell2val)
```

hotell2val(x1, x2 [, pval:T]), REAL matrices $x 1$ and $x 2$ with no MISSING
elements and ncols(x1) $=$ ncols (x2)
Cmd> hotell2val (setosa, versicolor, pval:T)
WARNING: searching for unrecognized macro hotell2val near
hotell2val(
component: hotelling
(1,1) 2580.8
component: pvalue
$(1,1)$

Paired T^{2} Next we consider the question as to whether the I. setosa sepal and petal lengths differ from the sepal and petal widths. This asks a question about the shape of the flowers. The hypothesis to be tested can be stated as

$$
\mathrm{H}_{0}: \mu_{1}=\mu_{2} \text { and } \mu_{3}=\mu_{4}
$$

where μ_{i} is the population mean of x_{i} for I. setosa.
This is a comparison of the means of two variables measured on the same flower and is sometimes called a "within-subject" comparison. It should be viewed as a bivariate paired comparison of length and width, that is of $\mathbf{y}_{1}=\left[x_{1}, x_{3}\right]^{\prime}$ and $\mathbf{y}_{2}=\left[x_{2}, x_{4}\right]^{\prime}$. The comparison reduces to testing the hypothesis that $E[\mathbf{d}]=0$, where $\mathbf{d}=\mathbf{y}_{1}-\mathbf{y}_{2}=\mathbf{C x}$, where

$$
\mathbf{C}=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1
\end{array}\right]
$$

Hotelling's T ${ }^{2}$ Example

Rather than computing explicitly the vector of differences, $\mathbf{d}=\left(x_{1}-x_{2}, x_{3}-x_{4}\right)^{\prime}$, we compute the sample mean vector and variance matrix of the differences by transforming the I. Setosa mean vector and variance matrix using the matrix \mathbf{C} with $\bar{d}=\mathbf{C} \bar{x}$ and $\mathbf{S}_{\mathrm{d}}=\mathrm{CSC}^{\prime}$.

Cmd> c <- matrix(vector (1,-1, 0, 0, 0, 0, 1, -1), 4)';print (c) c:

$(1,1)$	1	-1	0	0
$(2,1)$	0	0	1	-1

Cmd> sd <-c $c * * s 1 \% * \% C^{\prime}$; print (sd) sd:
$(1,1) \quad 0.069506 \quad 0.0036245$
$(2,1) \quad 0.0036245 \quad 0.029127$
Cmd> dbar <- c \%*\% xbarl; print (dbar)
dbar:

$(1,1)$	1.578
$(2,1)$	1.216

Cmd> vhatdbar <- (1/n1) * sd ; print (vhatdbar)
vhatdbar:
$(1,1) \quad 0.0013901 \quad 7.249 \mathrm{e}-05$
$(2,1) \quad 7.249 \mathrm{e}-05 \quad 0.00058253$
Cmd> t2d <- dbar' 응* (vhatdbar 응으 dbar); print(t2d)
t2d:

```
(1,1) 4012.1
```

Cmd> $p<-2 ; ~ f e<-n 1-1 ; f<-(f e-p+1) * t 2 d /(f e * p)$
Cmd> f \# 1\% critical value $=5.077$
(1,1) 1965.1

Cmd> CumF ($f, p, f e-p+1$, upper: T)
(1,1) 9.0628e-47 < .01, therefore reject H_0
Cmd> hotellval(setosa \%*\% c'rpval:T) \# black box using hotellval() component: hotelling $(1,1) \quad 4012.1$ component: pvalue $(1,1)$

