THE UNIVERSITY OF MINNESOTA

Statistics 5401

November 14, 2005

Estimation of Factor Scores

Sometimes one of the purposes of factor analysis is to find the scores f_j (values) of each factor for each case. This might be to use them in further analysis, either as predictor variables or response variables. Unfortunately, it is generally impossible to actually find the factor scores, even when the factor loadings ℓ_{jk} and unique variances ψ_i are perfectly known. So the most you can hope for are estimates $\hat{f_j}$ that should be close to the true f_i .

If the factors have been rotated so that each factor has a clear interpretation, estimating the scores provides a way to characterize each case (individual) in terms of the values of the common factors for that case. Even if no rotation is done, outlying values of estimated factor score vectors $\hat{\mathbf{f}}_i$ may indicate unusual individuals.

There are two common approaches to factor score estimation, the regression method and the weighted least squares method. Both are based on the factor analysis model. To simplify, I am limiting it to the case of orthogonal (uncorrelated) factors.

The factor analysis model

The setup is that you have a random sample of multivariate data satisfying the m-factor orthogonal factor analysis model

$$\mathbf{x}_i = \mathbf{E}[\mathbf{x}_i] + \mathbf{L}\mathbf{f}_i + \mathbf{\epsilon}_i, i = 1,...,N.$$

Here $\mathbf{x}_i = [x_{i1}, x_{i2}, ..., x_{ip}]'$ is p by 1, $\mathbf{L} = [\ell_{jk}]$ is p by m and $\mathbf{f}_i = [f_{i1}, ..., f_{im}]'$ is m by 1.

In matrix terms, if $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N]'$ is the data matrix, you can write \mathbf{X} as:

$$X = E[X] + FL' + \varepsilon$$

where $\mathbf{F} = [\mathbf{f}_1, ..., \mathbf{f}_N]'$ is an N by m matrix of factor scores. Normally $\mathbf{E}[\mathbf{X}] = \mathbf{1}_N \boldsymbol{\mu}'$ but might have the form $\mathbf{E}[\mathbf{X}] = \mathbf{Z}\mathbf{B}$, where \mathbf{Z} is a matrix of predictor or dummy variables, and $\mathbf{B} = [\beta_{jk}] = \mathbf{i}\mathbf{s}$ a matrix of coefficients. In the latter case, factor analysis will be based on the *residual* covariance matrix $\mathbf{S} = (\mathbf{f}_e^{-1})\mathbf{E}$ or on the correlation matrix of the residuals.

Row i of \mathbf{F} is \mathbf{f}_{i} ' = $[f_{i1},...,f_{im}]$, the vector of scores (values) of the m

common factors for the case i. To say that the model is orthogonal means that $V[\mathbf{f}_i] = \mathbf{I}_m$, that is, the common factors are uncorrelated.

 \mathbf{L} = [ℓ_{jk}] is a p by m *loading matrix* where ℓ_{jk} is the loading of variable j on factor k

Row i of the N by p matrix $\mathbf{\epsilon}$ is $\mathbf{\epsilon}_i$, the uncorrelated *unique factor* scores for case i, with $V[\mathbf{\epsilon}_i] = \mathbf{\Psi} = \text{diag}[\psi_1, \psi_2, ..., \psi_p]$.

Whether $E[X] = \mathbf{1}_N \mu'$ or E[X] = ZB, it is important that all cases have the same variance matrix Σ .

The methods below are for estimating factor scores when you know L and Ψ . In the more realistic situation when all you have are estimates \hat{L} and $\hat{\Psi}$, you "plug" \hat{L} and $\hat{\Psi}$ into formulas involving L and Ψ . The estimates turn out to be linear in the elements of x.

Regression Method

The regression method starts from the fact that a vector $\mathbf{f} = [f_1,...,f_m]'$ of unknown factor scores is correlated with the observation vector $\mathbf{x} = [x_1, ..., x_p]' = \boldsymbol{\mu} + \mathbf{L}\mathbf{f} + [\epsilon_1,...,\epsilon_p]'$. The joint (p+m) by (p+m) variance matrix of \mathbf{x} and \mathbf{f} is (assuming $V(\mathbf{f}) = \mathbf{I}_n$)

$$\bigvee \left(\begin{array}{c} \mathbf{X} \\ \mathbf{f} \end{array} \right) = \begin{bmatrix} \mathbf{\Sigma} & \mathbf{L} \\ \mathbf{L}' & \mathbf{I}_{\mathbf{m}} \end{bmatrix} = \begin{bmatrix} \mathbf{L}\mathbf{L}' + \mathbf{\Psi} & \mathbf{L} \\ \mathbf{L}' & \mathbf{I}_{\mathbf{m}} \end{bmatrix}$$

When x and f are jointly multivariate normal, the conditional mean of f given x is linear in x, that is, $E[f \mid x] = \beta_{reg}'(x - \mu)$, where

$$\beta_{\text{req}} = V[x]^{-1} \text{Cov}[x, f] = \Sigma^{-1} L = (LL' + \Psi)^{-1} L.$$

This is simply the matrix of coefficients for the multivariate linear regression of ${\bf f}$ on ${\bf x}$.

Even when you can't assume multivariate normality, $f_{\text{reg}} = \beta_{\text{reg}}$ ' $(x - \mu)$ minimizes $V[f - f_{\text{reg}}]$ among all linear functions of x. The difference $f - f_{\text{reg}} \equiv f - \beta_{\text{reg}}$ '(x - E[x])] is the error incurred in estimating f.

The variance matrix of an estimated score vector is

$$V[\mathbf{f}_{reg}] = \mathbf{I}_{m} - (\mathbf{I}_{m} + \Delta)^{-1}$$
, where $\Delta = \mathbf{L}' \Psi^{-1} \mathbf{L}$.

If you know ${\bf L}$ and ${\bf \Psi}$, you can estimate the matrix ${\bf F}$ of factor scores for all cases by

$$F_{\text{reg}} = (X - 1_N \mu') \beta_{\text{reg}} = (X - 1_N \mu') \Sigma^{-1} L = (X - 1_N \mu') (LL' + \Psi)^{-1} L.$$

Since you don't know μ , L, and Ψ , you use estimates $\hat{\mu}$, \hat{L} , and $\hat{\Psi}$. The estimated matrix of factor score coefficients is then

$$\hat{\beta}_{\text{req}} = \hat{\Sigma}^{-1} \hat{L} = (\hat{LL}, + \hat{\Psi})^{-1} \hat{L}.$$

The estimated mean is $\hat{\mu} = \overline{\mathbf{x}}$, and the vector of estimated factor scores corresponding to response vector \mathbf{x} is

$$\widehat{\mathbf{f}}_{\text{req}} \ \equiv \ \widehat{\boldsymbol{\beta}}_{\text{req}} \ '(\boldsymbol{x} \ - \ \overline{\boldsymbol{x}}) \ = \ \widehat{\boldsymbol{L}}'(\widehat{\boldsymbol{L}}\widehat{\boldsymbol{L}}' \ + \ \widehat{\boldsymbol{\Psi}})^{-1} \ (\boldsymbol{x} \ - \ \overline{\boldsymbol{x}}).$$

Note that this is linear in the elements of $\mathbf{x} - \overline{\mathbf{x}}$.

You compute the entire N by m matrix $\hat{\mathbf{f}}_{reg} = [\hat{\mathbf{f}}_1, ..., \hat{\mathbf{f}}_N]'$ of estimated scores as

$$\widehat{F}_{\text{req}} = \widehat{X} \widehat{\Sigma}^{-1} \widehat{L} = (X - 1_N \overline{X'}) (\widehat{LL'} + \widehat{\Psi})^{-1} \widehat{L}$$

where

$$\widetilde{X} = X - 1_N \overline{x'} = \text{matrix of residuals from mean}$$

Since the sample variance matrix S is also an estimate of Σ , an alternate estimate for β_{reg} is $\widetilde{\beta}_{reg} \equiv S^{-1}\widehat{L}$, with corresponding estimated factor score matrix $\widetilde{F} = \widetilde{X}S^{-1}\widehat{L}$.

When $\hat{\Psi}$ and $\hat{\mathbf{L}}$ are fully converged <u>maximum likelihood</u> estimates, mathematics shows that $\hat{\mathbf{L}}'\mathbf{S}^{-1} = \hat{\mathbf{L}}'(\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\boldsymbol{\Psi}})^{-1}$ and hence $\hat{\mathbf{F}} = \hat{\mathbf{F}}_{req}$.

Using the identity $(\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\mathbf{\Psi}})^{-1} = \hat{\mathbf{\Psi}}^{-1} - \hat{\mathbf{\Psi}}^{-1}\hat{\mathbf{L}}(\mathbf{I}_m + \hat{\boldsymbol{\Delta}})^{-1}\hat{\mathbf{L}}'\hat{\mathbf{\Psi}}^{-1}$, where $\hat{\boldsymbol{\Delta}} = \hat{\mathbf{L}}'\hat{\mathbf{\Psi}}^{-1}\hat{\mathbf{L}}$, another expression for $\hat{\boldsymbol{\beta}}_{\text{reg}}$ is

$$\hat{\boldsymbol{\beta}}_{\text{reg}} = \hat{\boldsymbol{\Psi}}^{-1} \hat{\boldsymbol{L}} (\boldsymbol{I}_{\text{m}} + \hat{\boldsymbol{\Delta}})^{-1}.$$

Weighted least squares method

Factor scores estimated by the weighted least squares method are chosen in such a way as to result in small estimates $\hat{\boldsymbol{\varepsilon}} = \boldsymbol{x} - \hat{\boldsymbol{Lf}}$ of the unique factor scores $\boldsymbol{\varepsilon}$. What is actually minimized is the <u>weighted</u> sum of squares $\sum_{1 \leq i \leq n} \hat{\psi}_i^{-1} \hat{\varepsilon}_i^2$, using weights inversely proportional to the estimated uniquenesses $\hat{\psi}_i = \hat{V}[\varepsilon_i]$.

The weighted least squares estimated coefficients are

$$\beta_{LS} = \hat{\Psi}^{-1} \hat{L} \hat{\Delta}^{-1} = \beta_{req} (I_m + \hat{\Delta}^{-1}),$$

The matrix of estimated factor scores is

$$\hat{F}_{LS} = \hat{X}\hat{\Psi}^{-1}\hat{L}\hat{\Delta}, \hat{X} = X - 1_N \overline{X'}$$

When $\hat{\Delta} = \hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}}$ is large, as will be the case when all $\hat{\psi}_i$ are small, $\hat{\boldsymbol{\beta}}_{LS} \approx \hat{\boldsymbol{\beta}}_{reg}$ and the two approaches lead to essentially the same estimated factor scores.

When factor analysis is based on a correlation matrix rather than a covariance matrix, you need to standardize each variable x_i ($x_i \rightarrow (x_i - \overline{x_i})/\sqrt{s_{ii}}$) before computing scores. Alternatively, you can make a coefficient matrix β (β_{reg} or β_{LS}) derived from a correlation matrix applicable directly to unstandardized x's by the transformation

$$\beta \rightarrow \text{diag}[1/\sqrt{s_{11}},...,1/\sqrt{s_{pp}}]\beta$$
.

Here is MacAnova output illustrating factor score computation for the matrix bonedata in file cbbones.txt.

```
Cmd> y <- read("","bonedata") # read from cbbones.txt</pre>
                       6 format labels
bonedata
              276
) Bone measurements on n = 276 outbred female chickens, all in mm.
          skull length
) Col. 1:
) Col. 2:
          skull breadth
) Col. 3: femur length (leg bone)
) Col. 4: tibia length (leg bone)
) Col. 5: humerus length (wing bone)
) Col. 6: ulna length (wing bone)
Read from file "TP1:Stat5401:Data:cbbones.txt"
Cmd> n \leftarrow nrows(y); r \leftarrow cor(y) # sample size and correlation matrix
Cmd> print(r,format:"9.6f")
          SklLngth SklBrdth
                              FemLngth TibLngth HumLngth UlnLngth
```

```
SklLngth 1.000000 0.583009 0.569111 0.602259
                                               0.621119
                                                        0.602334
SklBrdth 0.583009
                  1.000000 0.515310 0.547599
                                               0.583552
                                                        0.524505
FemLngth 0.569111
                  0.515310 1.000000 0.926105
                                               0.877221
                                                        0.877453
TibLngth 0.602259 0.547599 0.926105 1.000000
                                               0.873628
                                                        0.893610
HumLngth 0.621119
                  0.583552 0.877221
                                     0.873628
                                               1.000000
                                                        0.936879
UlnLngth 0.602334 0.524505 0.877453 0.893610
                                               0.936879
                                                        1.000000
```

Cmd> results <- facanal(r,2,method:"mle") # 2 factor MLE estraction
Convergence in 20 iterations by criterion 2
estimated uniquenesses:</pre>

SklLngth SklBrdth FemLngth TibLngth HumLngth UlnLngth 0.59902 0.65349 0.12138 0.0028552 0.00015955 0.098034

unrotated estimated loadings:

```
Factor 1
                         Factor 2
              0.6239
                          0.10827
SklLngth
SklBrdth
             0.58523
                          0.063435
FemLnath
              0.8848
                          0.30942
TibLngth
             0.88481
                          0.46287
HumLngth
             0.99964
                         -0.023485
UlnLngth
             0.94034
                           0.13315
minimized mle criterion:
         0.15079
(1)
```

facanal() creates side effect variables LOADINGS, PSI and CRITERION which match the output.

Cmd> list(LOADINGS,PSI,CRITERION)

CRITERION REAL 1

LOADINGS REAL 6 2 (labels)

PSI REAL 6 (labels)

Cmd> rhohat <- LOADINGS %*% LOADINGS' + dmat(PSI)</pre>

Cmd> betahat_reg <- solve(rhohat,LOADINGS) # regression method coeffs</pre>

Cmd> betahat_reg # estimated regression methodcoefficients

	Factor 2	Factor 1	
Computed using rhohat as	0.0022456	0.00015889	SklLngth
estimated correlation matrix	0.001206	0.00013662	SklBrdth
	0.031671	0.0011121	FemLngth
Mainly determined	2.0141	0.047277	TibLngth
by x4 and x5	-1.8287	0.95582	HumLngth
	0.016874	0.0014633	UlnLngth

Now use r rather than rhohat as estimated correlation matrix. You get the same coefficients because you are using fully converged MLE.

```
Cmd> solve(r, LOADINGS)
            Factor 1
                       Factor 2
          0.00015889
SklLngth
                       0.0022456
                                    Computed using r as
SklBrdth 0.00013662
                       0.001206
                                    estimated correlation matrix
FemLngth 0.0011121
                        0.031671
TibLngth
          0.047277
                          2.0141
             0.95582
                         -1.8287
HumLnath
           0.0014633
                        0.016874
UlnLngth
```

Cmd> # Standardize y since model estimated from correlation matrix

Cmd> x <- standardize(y) # standardized y;s</pre>

Cmd> # The covariance matrix of these standardized variates is r

Cmd> f_reg <- x *** betahat_reg # Compute scores by regression methods

Cmd> # Now compute weighted least squares estimates of scores

Cmd> deltahat <- LOADINGS' %*% dmat(1/PSI) %*% LOADINGS

Cmd> deltahat

Factor 1 Factor 2 Factor 1 6554 -7.8132e-15 Note the large diagonal Factor 2 -1.1713e-14 79.492

Cmd> betahat_ls <- dmat(1/PSI) %*% LOADINGS %*% solve(deltahat)</pre>

```
Cmd> betahat_ls
       Factor 1
                    Factor 2
     0.00015891
                   0.0022738
                             Weighted LS factor score coeffs
(1)
(2)
     0.00013664
                   0.0012211 They are very close to req. method
(3)
      0.0011122
                    0.032069
                              scores because the diagonal elements
(4)
       0.047284
                      2.0394 of deltahat are large
(5)
        0.95596
                     -1.8517
                    0.017086
(6)
      0.0014635
```

Cmd> f_ls <- x %*% betahat_ls # compute weighted least squares scores

```
Cmd> list(f_reg,f_ls) # sizes of matrices of factor scores
f_ls
                 REAL
                        276
                              2
                                     (labels)
f_reg
                 REAL
                        276
                              2
                                     (labels)
Cmd> tabs(f_reg,covar:T)
(1,1)
           0.99985
                      2.0739e-16
        2.0739e-16
(2,1)
                         0.98758
Cmd> tabs(f_ls,covar:T)
```

(1,1) 1.0002 1.0234e-16 (2,1) 1.0234e-16 1.0126

You can see that both sets of estimated scores have sample variances close to 1 and sample correlation = 0.

```
Cmd> cor(f_reg, f_ls)[run(2), -run(2)]
(1,1) 1 -4.7873e-17
(2,1) 3.822e-16 1
```

For these data, the two sets of scores are perfectly correlated with one another. Scatter plots will be identical:

Cmd> # Scatter plots of scores computed by both methods

The two plots are indistinguishable. And both show an outlier.

Let's see how well the estimated factor scores predicted the actual bone sizes when weighted by the loadings and rescaled back to the original units.

```
Cmd> ybar <- describe(y,mean:T); sd <- describe(y,stddev:T)</pre>
  Cmd> yhat <- ybar'+ (f_reg %*% LOADINGS') * sd'
  Cmd> labels <- vector("Skull length", "Skull breadth", "Femur length", \
  "Tibia length", "Humerus length", "Ulna length")
  Cmd> for(i,run(2)){
                                     Skull length and breadth
          plot(y[,i], yhat[,i], symbols:"\1",\
xlab:labels[i],ylab:"Predicted value",title:\
          paste("Predicted", labels[i], "vs", labels[i]))
                                               Predicted Skull breadth vs Skull breadth
      Predicted Skull length vs Skull length
                                             31.5
postoropous
                                              31
                                           adicted
   40
                                             30.5
                                              30
   39
                                             29.5
ě
V
V
V
   38
                                              29
   37
                                             28.5
                                              28
   36
                                                                               32
                  Skull length
                                                             Skull breadth
  Cmd> for(i,run(3,4)){
                                     Femur and Timbia
          plot(y[,i], yhat[,i], symbols:"\1",\
          xlab:labels[i],ylab:"Predicted value",title:\
          paste("Predicted", labels[i], "vs", labels[i]))
      Predicted Femur length vs Femur length
                                                Predicted Tibia length vs Tibia length
                                             130
   85
Predicted Velue
                                           Postoropoug
                                             125
                                             120
   80
                                             115
   75
                                           Š
                                             110
                                             105
   70
                                             100
            70
                                                                             125
     65
                                    85
                                                  100
                                                        105
                                                             110
                                                                  115
                                                            Tibia length
                 Femur length
```


It appears that both tibia length (x_4) and humerus length (x_5) are almost perfectly predicted by the two factors. This is exactly what you should expect because $\hat{\psi}_4$ = 0.00286 and $\hat{\psi}_5$ = 0.00016. Moreover, from the coefficients used to compute the factor scores (betahat_reg and betahat_ls, see above), it is clear the most important variables in computing these scores are x_4 and x_5 .