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Estimation of Factor Scores

Sometimes one of the purposes of factor analysis is to find the scores f;

(values) of each factor for each case. This might be to use them in
further analysis, either as predictor variables or response variables.
Unfortunately, it is generally impossible to actually find the factor
scores, even when the factor loadings £, and unique variances {; are

perfectly known. So the most you can hope for are estimates fAj that
should be close to the true fj.

If the factors have been rotated so that each factor has a clear interpre-
tation, estimating the scores provides a way to characterize each case
(individual) in terms of the values of the common factors for that case.
Even if no rotation is done, outlying values of estimated factor score
vectors f; may indicate unusual individuals.

There are two common approaches to factor score estimation, the
regression method and the weighted least squares method. Both are
based on the factor analysis model. To simplify, I am limiting it to the
case of orthogonal (uncorrelated) factors.

The factor analysis model
The setup 1s that you have a random sample of multivariate data satis-
fying the m-factor orthogonal factor analysis model

xi :E[Xi]*'l.fi + Ei,i: 1,..., N
Here X; = [Xi1, Xj2, ..., X;pl"is p by 1, L = [23]is p by mand f; =
[fH ..... fim]' ism bg 1.
In matrix terms, if X = [X;,X5,...,X\]" 1s the data matrix, you can write X
as:

X = E[X] + FL' + €,

where F = [f,,....f\]' is an N by m matrix of factor scores. Normally E[X] =
Tyl but might have the form E[X] = ZB, where Z is a matrix of predictor
or dummy variables, and B = [$;] = is a matrix of coefficients. In the

latter case, factor analysis will be based on the residual covariance
matrix S = (fo"!)E or on the correlation matrix of the residuals.

Row i of F is ;" = [fi;,....,f;], the vector of scores (values) of the m
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common factors for the case 1. To say that the model is orthogonal
means that VIf;] = I,,, that is, the common factors are uncorrelated.

L = [2c] is a p by m loading matrix where ;. is the loading of variable j
on factor k

Row 1 of the N by p matrix € is €;' the uncorrelated unique factor scores
for case i, with V[g;] = ¥ = diagly,, Yp,.... Ypl.

Whether E[X] = 1yu' or E[X] = ZB, it is important that all cases have the
same variance matrix .

The methods below are for estimating factor scores when you know L and
V. In the more realistic situation when all you have are estimates L and
¥, you "plug” L and ¥ into formulas involving L and ¥. The estimates
turn out to be linear in the elements of X.

Regression Method

The regression method starts from the fact that a vector f = [fq,....f ]
of unknown factor scores is correlated with the observation vector

X = [Xq, ..., Xp]" = W+ LT + [gq,...e,]". The joint (p+m) by (p+m) variance
matrix of x and f is (assuming V(f) = 1)

x] [z L } [LL'MV L }
): =
f L, L’ I

When x and f are jointly multivariate normal, the conditional mean of f
given x is linear in x, that is, E[f|x] = Breg' (X - W), where

V(

Breg = VIXI'TCovix, 1= £°1L = (LL" + W)~ T L.

This is simply the matrix of coefficients for the multivariate linear
regression of f on X.

Even when you can't assume multivariate normality, freq = Breg'(X - M)
minimizes VIf - f.o4] among all linear functions of x. The difference
f - freqg =T - Breg' (X - EIXD] is the error incurred in estimating f.

The variance matrix of an estimated score vector is
VIfregl = Iy - (Iy + A)71, where A = L'¥-TL.
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[f you know L and V¥, you can estimate the matrix F of factor scores for
all cases by

Freg = (X - Ty)Breg = (X - Ty 1L = (X - T\yu)(LL + )T L.

Since you don't know M, L, and ¥, you use estimates Ji, L, and ¥. The
estimated matrix of factor score coefficients is then

Brog = £10= (00 + ®)11.

The estimated mean is [ = X, and the vector of estimated factor scores
corresponding to response vector X is

A~

freg = Breg (x - x) = C(CC + ¥)77 (x - X).

Note that this is linear in the elements of X - X.

~

You compute the entire N by m matrix Freq = [f7,....fy]" of estimated
scores as

~ ~ —_— ~

Freg = XE1L = (X - 1\ (L « ¥) 1
where .
X = X - 14X’ = matrix of residuals from mean

Since the sample variance matrix S is also an estimate of Z, an alternate
estimate for B, is Ereg = S-'U ,with corresponding estimated factor
score matrix F = XS-TL.

when ¥ and L are fully converged maximum likelihood estimates, mathe-

AA

matics shows that ['S™T = L'$-7 = L'(LL" + ¥)-" and hence F = Freg.

Using the identity (CL" + ¥)-1 = -1 - ¥-10(1, « A)-'"¥-1, where
A = C'V-1[, another expression for $oq is

Breg = V-1, + A)T.

Weighted least squares method

Factor scores estimated by the weighted least squares method are
chosen in such a way as to result in small estimates € = x - Lf of the
unique factor scores €. What is actually minimized is the weighted sum
of squares ¥ i<i<,¥;'€2, using weights inversely proportional to the
estimated uniquenesses ; = VIg;].
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The weighted least squares estimated coefficients are
SLS = V1A = 3reg(lm + A1),

The matrix of estimated factor scores is

fLS = 5\('\1}_1 LAA, X = X - 1N7

When A = "P-"L is large, as will be the case when all {J; are small, 8
= Breg and the two approaches lead to essentially the same estimated
factor scores.

When factor analysis is based on a correlation matrix rather than a
covariance matrix, you need to standardize each variable x; (x; »

(x; - x;)/+/si;) before computing scores. Alternatively, you can make a
coefficient matrix $ (8o or §.s) derived from a correlation matrix
applicable directly to unstandardized x's by the transformation

$ - diagl1/y/sq1...1/4/spp18.

Here 1s MacAnova output illustrating factor score computation for the
matrix bonedat a in file cbbones. t xt .

Cmd> y <-read(","bonedata") # read from cbbones.txt

bonedat a 276 6 for mat | abel s
) Bone neasurenents on n = 276 outbred femal e chickens, all in nm
Col. 1: skull length
) Col. 2: skull breadth
) Col. 3: femur length (leg bone)
) Col. 4: tibia length (leg bone)
) Col. 5: humerus length (W ng bone)
Col. 6: ul na | ength (wi ng bone)
Read fromfile "TP1l: St at 5401: Dat a: cbbones. t xt"
Cd> n <- nrows(y); r <- cor(y) # sample size and correlatiOn matrix
Crd> print(r,format:"9.6f")
r:
Skl Lngth Skl Brdth Fenmingth TibLngth Hunbngth U nLngth
Skl Lngth 1.000000 0.583009 0.569111 0.602259 0.621119 0.602334
Skl Brdth 0.583009 1.000000 O0.515310 0.547599 0.583552 0.524505
FenmLngth 0.569111 0.515310 1.000000 0.926105 0.877221 0.877453
Ti bLngth 0.602259 0.547599 0.926105 1.000000 0.873628 0.893610
Hunmbngth 0.621119 0.583552 0.877221 0.873628 1.000000 0.936879
U nLngth 0.602334 0.524505 0.877453 0.893610 0.936879 1.000000
Ond> results <- facanal(r,2,method:"mle") # 2 factor MLE estraction
Convergence in 20 iterations by criterion 2
esti mat ed uni quenesses:
Skl Lngt h Skl Br dt h Fenlngt h Ti bLngt h Hunlngt h U nLngt h
0. 59902 0. 65349 0.12138 0.0028552 0.00015955 0.098034
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unrotated estimated | oadi ngs:

Factor 1 Factor 2
Skl Lngt h 0. 6239 0. 10827
Skl Brdt h 0. 58523 0. 063435
Fenmlngt h 0. 8848 0. 30942
Ti bLngt h 0. 88481 0. 46287
HunLngt h 0. 99964 - 0. 023485
U nLngt h 0. 94034 0. 13315
mnimzed me criterion:
(1) 0. 15079

facanal () creates side effect variables LOADI NGS, PSI and CRI TERI ON
which match the output.

Ond> | i st (LOADI NGS, PSI, CRI TERI ON)
1

CRI TERI ON REAL
LQADI NGS REAL 6 2 (1 abel s)
PSI REAL 6 (1 abel s)

Cmd> rhohat <- LOADINGS %*% LOADINGS' + dmat(PSI)
Cnd> betahat reg <- solve(rhohat,LOADINGS) # regression method coeffs
Cmd> betahat_reg # estimated regression methodcoefficients

Factor 1 Factor 2
Skl Lngt h 0. 00015889 0. 0022456 Conmput ed using rhohat as
Skl Brdt h 0. 00013662 0. 001206 estimated correlation matriXx
Fenlngt h 0. 0011121 0. 031671
Ti bLngt h 0. 047277 2.0141 Mai nly determ ned
Huningt h 0. 95582 -1. 8287 by x4 and x5
U nLngt h 0. 0014633 0. 016874

Now use r rather than rhohat as estimated correlation matrix. You get
the same coefficients because you are using fully converged MLE.

Crd> solve(r, LOADINGS)

Factor 1 Factor 2
Skl Lngth  0.00015889 0. 0022456 Conmputed using r as
Skl Br dt h 0. 00013662 0. 001206 estimated correlation matriXx
Feningt h 0. 0011121 0. 031671
Ti bLngt h 0.047277 2.0141
Hunmingt h 0. 95582 -1. 8287
U nLngt h 0. 0014633 0. 016874

Crd> # Standardize y since model estimated from correlation matrix

CGrd> x <- standardize(y) # standardized y;s

Crd> # The covariance matrix of these standardized variates is r

CGrd> f_reg <- x %*% betahat_reg # Compute scores by regression methods
Crd> # Now compute weighted least squares estimates of scores

Ond> deltahat <- LOADINGS' %*% dmat(1/PSl) %*% LOADINGS

Crd> deltahat

Factor 1 Factor 2
Factor 1 6554 -7.8132e-15 Note the | arge diagonal
Factor 2 -1.1713e-14 79. 492
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Crd> betahat_|s <- dmat(1/PSI) %*% LOADINGS %*% solve(deltahat)

Crd> betahat_Is
Factor 1 Factor 2

(1) 0. 00015891 0. 0022738 Weighted LS factor score coeffs

(2) 0. 00013664 0.0012211 They are very close to reg. nethod
(3) 0. 0011122 0.032069 scores because the diagonal elenents
(4) 0. 047284 2.0394 of deltahat are |arge

(5) 0. 95596 -1. 8517

(6) 0. 0014635 0. 017086

Crd> f_Is <- x %*% betahat_Is # compute weighted least squares scores
Crd> list(f_reg,f_Is) # sizes of matrices of factor scores

f Is REAL 276 2 (1 abel s)
f reg REAL 276 2 (1 abel s)
Crd> tabs(f_reg,covar:T)

(1,1 0.99985 2.0739%e-16

(2,1) 2.0739%e- 16 0. 98758

Crd> tabs(f_Is,covar:T)

(1,1 1.0002 1.0234e-16

(2,1) 1. 0234e- 16 1.0126

You can see that both sets of estimated scores have sample variances
close to 1 and sample correlation = O.

Crd> cor(f_reg,f | Is)[run(2) -run(2)]
(1,1) -4.7873e-17
(2,1) 3. 822e- 16 1

For these data, the two sets of scores are perfectly correlated with one
another. Scatter plots will be identical:

Crd> # Scatter plots of scores computed by both methods

Crd> plot(Factor_1:f reg[,1],Factor_2:f reg[,2],symbols:" \ 170\
title:"ML regression method Factor scores")
Crd> plot(Factor_1:f Is[,1], Factor_2:f Is[,2],symbols:" \ 170\

title:"ML weighted LS method Factor scores")

ML regression method unrotated Faneotor soores PMLoweighted IS method unrotzted Faotor soores
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Faotor_1 Faotor_1
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The two plots are indistinguishable. And both show an outlier.

Let's see how well the estimated factor scores predicted the actual bone
sizes when weighted by the loadings and rescaled back to the original
units.

Crd> ybar <- describe(y,mean:T); sd <- describe(y,stddev:T)
Cnd> yhat <- ybar'+ (f_reg %*% LOADINGS') * sd'

Crd> labels <- vector("Skull length”,"Skull breadth”,"Femur length",
"Tibia length","Humerus length","Ulna length")

Cd> for(i,run(2)){ Skull length and breadth
plot(y[,i], yhat[,i], symbols:" V170
xlab:labels[i],ylab:"Predicted value" title: \

paste("Predicted”,labels[i],"vs",labels[i]))
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Cmd> for(i,run(3,4)1§ Femur and Tinbia
plot(y[.i], yhat[,i], symbols:" _ \1" 0\
xlab:labels[i],ylab:"Predicted value" title: \

paste("Predicted",labels[i],"vs",labels[i]))
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Cd> for(i,run(5,6)){ Hunerus and Ul na
plot(y[.i], yhat[,i], symbols:" _ V170
xlab:labels]i],ylab:"Predicted value" title: \
paste("Predicted",labels][i],"vs",|abels[i]))}
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It appears that both tibia length (x4) and humerus length (xs) are almost
perfectly predicted by the two factors. This is exactly what you should
expect because J, = 0.00286 and Jis = 0.00016. Moreover, from the
coefficients used to compute the factor scores (bet ahat _reg and

bet ahat | s, see above), it is clear the most important variables in
computing these scores are x4 and Xs.



