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Some Methods of Factor Analysis Extraction

The factor analytic model
There are several methods used to estimate factor loadings and communalities
in factor analysis. The assumed model for the observable random vector

X = [Xy, Xg, ..., X,]" is the so-called factor analytic model
X= H+LT+e,

where
X, W= [Wy, Ho, .o, Jpl', and € = [eq, €5, ..., €] are p by 1 vectors;
f=[fy, fy, ..., f;]" is @ m by 1 vector of random unobservable common
factors fj, j =1, .., m;
L = [2;] is a p by m matrix, the loading matrix or matrix of factor
loadings.

The elements €; of € are the unique factors and are uncorrelated, that is, V(g)
= ¥ = diagly;,....¥,] is diagonal. The g;’s are also assumed to be independent of
f.

When V(f) = I,,, the model is the orthogonal factor model. This is assumed
below.

The quantity y; is the uniqueness or specific variance associated with X;. It
measures the contribution to o;; = V(X;) of the unique factor €; "special” to X;
that is not shared by other variables.

The quantity hi2 = oy; - Y; is the communality associated with xi. It measures
the contribution to o;; that is attributable to or explained by the common
factors.

Variance matrices with factor analytic form
The orthogonal factor analytic model implies that £ = V(X) is

=L+ V¥V =V+V,

where the p by p matrix V = LL' has rank m. A variance matrix £ that can be
expressed in this way, that is as the sum of a rank m matrix V with m < p and
a diagonal matrix V¥, is said to have factor analytic form with m factors.
When V(f) =T =z I, V = LTL".
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In summation notation, the factor analytic model is
Xi = Mo+ Z15j§m Qllf] + €4, = 1, .. 4P

This has the appearance of p multiple regressions of the elements of X as
dependent variables on the m factors playing the role of independent variables.
But it is profoundly different from the multiple regression model because the
"Independent variables” are not directly observable.

You can summarize the entire factor analytic form for £ using subscript and
summation notation as

VIXi] = 64 = hi? + i,

hi? = Zrcjem 45 2VIF = 21 cjem 2452,

CoviXi; Xi,l = 2icjem iy i j VI ] = 21 cjem LigjLiypn 11 2 1o

Because of the last line, all the correlation among the variables results from
the factors they have in common. This is closely related to one of the goals of
factor analysis - to explain correlations between variables in terms of common

influences. Moreover, the variance of each X; is split into a part h;2 derived

from the common factors and a part \; that is unique to X;. The larger h;? is
relative to y;, the more completely the behavior of X; can be explained in terms
of the common factors.

Correlation matrices with factor analytic form
Let A = diag[1/4/0qy.....1/4/S ;1. Then the correlation matrix of x is
p=[p1j]:AZA.
When £ has factor analytic form, so does p:
p = LT:' + \T/ = v + \T/
V=0 ¥ - diaglJ ,....Jp]

~

where V = L[ has rank m and ¥ = diag[{y ,....¥,] is diagonal, with

~

L = [’51]] = AL is P bg m Wlth :Q\.IIJ = Qij/\/giii and \’p = A\VA, g]i = B[/i/(jii.

This displays a direct way to go from a factor analytic representation for £ in
terms of L and V¥ to a factor analytic representation for p in terms of [ and V.
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Because
L=A"( and ¥ = A TPAT,
you can just as easily go in the other direction.

The quantities hi2 = 3 ;T;;2 = h;?/c;; and Ji; = Y;/Gy; based on the correlation
matrix are also called communalities and uniquenesses.

Because Y; + h;2 = 1, the communality h;2 measures the proportion of the
variance of X; explainable by the common factors and is a little analogous to a

multiple R? statistic in regression. The element &;; of L is the loading of
standardized variable X;/+/cy; on factor f;.

Factor extraction

The first phase of factor analysis is factor extraction. This has the goal of
finding some L and ¥ such that £ = [ + ¥ is a "good approximation” to the
sample covariance matrix S, or p = L' + ¥ is a "good approximation” to the
sample correlation matrix R.

[t Is more usual in factor analysis to work with R. However, in the following I
will phrase the development in terms of S. The methods can be applied to
approximating p by substituting p and R for £ and S in what follows.

Non-uniqueness of factors or factor loadings

Suppose L* = LH, where H is a non-singular m by m matrix satisfying H'H = HH’
= Im and det(H) = 1, (that is, H is orthogonal, and, because det(H) = 1, is a
rotation matrix).

Then L*L*" = LHH'L' = LL" = V. This provides a factorization L*L*' of V = £ -
V that is different from LL".

There is a corresponding alternative representation of X in terms of factors:
X= H+Lf+€=p+LHHT + €=+ L*f* + €,

where f* = H'f z f is a m by 1 vector of unobservable factors that is not the
same as f. The loading matrix for these factors is L*. A new factor f;* is

linear combination of the original factors fq, ..., f,; with coefficients taken
from column j of H. Since V[f*] = H'V(f)H =H'l,H = I, the new factors are

also orthgonal. This means that the factor analytic decomposition of £ in terms
of ¥ and L (or of x in terms of L, f, and €) is not unique.
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This lack of uniqueness of loadings and factors raises the question as to what,
if anything, is unique about the factor analytic model. The answer, perhaps
disappointingly, is that what is unique about the factor analytic model is the
decomposition £ = V + ¥ as the sum of a rank m matrix and a diagonal matrix.
You can estimate V and ¥ from data in an unambiguous manner, but not L,
unless you introduce some further principles to eliminate the non-uniqueness.

The choice of which of the many factor loading matrices L that satisfy V = LL’
must be based on other considerations. If you consider the p rows of L as
determining p points with coordinates (27, %i5.....%im) in m-dimensional space,
change from L » LH can be interpreted as a rigid rotation of points in that
space. For this reason, the process of determining an H such that a new
loading matrix LH has desirable properties is known as rotation of factor
loadings.

For the purpose of an algorithm to do factor extraction, you can achieve
uniqueness by imposing some purely mathematical constraints on L. The most
usual constraints are

(a) L'L is diagonal (columns of L are orthogonal)
and

(b) L'W¥-TL is diagonal (columns of W!/2L orthogonal)

Neither restriction has any reasonable basis other than mathematical
convenience, but you can use either to determine a specific p by m L which in
turn determines V = L. Once you have determined such a L which satisfies
either (a) or (b), you would normally rotate it by finding a rotation matrix H so
that the estimated loading matrix [* = LH is “interpretable,” a much less
precise constraint than (a) or (b). The choice of H will not be further
discussed in this handout.

Principal Component Factor Extraction
One option in many computer programs for factor analysis is to use principal
component computations to do factor extraction.

Suppose X is a random vector with mean H, and covariance matrix £ whose
eigenvectors are vy, ...,V,, With associated eigenvalues Ay > Xy > ... > X,. Then
the (population) principal components z; = V;’(X - Hy) have zero mean and
covariance matrix &, = diagxy,.... x,l.

You can exactly represent x in terms of the principal components as

X = My *+ 21<i<pZiVj = My + 2i<jem ZjVj * Zme1 <j<pZjVj-
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An individual component X, of X is then
Xi = M+ 2acjamZiVej * Zme1 <j<pZ)Vkj -
Similarly, you can decompose the variance matrix Z as
L= 2acgopMViViT = Zacjem MV Zmer <jepViVy'
If you set L= [/Nqvq....s/ AVl and i = z;74/X;, you get the model

~

x = py+ Lf e, with F=1[f,...f,Tand e = Y.y <2V,
with £ expressible as
s =LC + V[e], VI[e] = Zm+1 Ejip)\jvjvj"

Because V = [L" is a rank m matrix, this model bears a strong resemblance to
the factor analytic model with factors f. However, it is not an example of true
factor analytic form because VI[e] is not a diagonal matrix. Indeed it cannot

be diagonal if L is defined in this way.

None the less, when \n.,q,....A, are all small relative to X\, this is a represen-

tation of £ as a sum of a rank m matrix V and a small matrix V[el. If, in
fact, £ is of factor analytic form with ¥ small compared to V = LL’, then you
would expect that V = V. This is the rationale underlying the so called
principal components method of factor estimation.

The principal components method first computes the eigenvectors \7J- and
elgenvalues XJ-, j =1, ..,pof the sample covariance matrix S (or more usually

the correlation matrix R). For a suitable choice of m (often chosen as the
number of eigenvalues greater than some threshold such as1), the loading
matrix L is estimated as

and then V¥ is estimated as ¥ = diag[S - LL']', that is,

Ui = sii - Zi<jem Lij2 = Zmet <jpdij? 1= 100D
In other words, a diagonal matrix ¥ is chosen so that the diagonal elements of
LL" + ¥ exactly match the diagonal elements of S. The estimated communa-
lities are hi? = si; - i = Xy<j<m £;;2. Because of the of eigenvectors are
orthogonal, the columns of L are orthogonal. In fact, ['L = diag[X;....,X,.

" Notation: If A = [aj;] is square, the notation diag[A] means the diagonal
matrix diaglaqq....,app]
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The advantage of principal component factor extraction is that estimates of
uniquenesses and the unrotated loadings are explicitly given in terms of the
eigenvalues and eigenvectors of S or R. You don’t need any iteration or
optimization.

The disadvantage is that, even in principle, the method is not actually
estimating either ¥ or V = LL'. Even if £ = V + ¥ and somehow S were
exactly equal to Z, the principal component method would not reproduce ¥ and
V although it might be close when Y m.1<i<pXi/21<i<pXi 1S small.

Iterated Principal Factor Extraction

[terated principal factor extraction is an iterative algorithm with each step
rather similar to the principal component method. Here is a sketch of its
rationale.

We first need some notation.

Let £ be an arbitrary variance matrix (not necessarily of factor analytic form)
and let V¥ be a diagonal matrix such that £ - V¥ is positive definite. Define a p
by m "candidate” loading matrix L,;(¥,Z) associated with £ and ¥ as follows.

Suppose U.,...,u, are the (ordinary) eigenvalues and eigenvectors of £ - ¥ with
assocliated eigenvalues 8§; > &, > ... > 8, > 0. As usual, assume the eigenvectors
are scaled so as to be orthonormal (u;'u; = 1, uj'uj; = 0, i =z j).

Then L, (V¥,Z) is the p by m matrix

Lm-l(\y,Z) = [\/8]“1, ...,\/Sm Um].
The columns &; of Ly(V¥,Z) are orthogonal ("% = 0, j = k), with squared
length &' = &5, j = 1,...m.

Now suppose that, in fact, ¥ does have factor analytic form with m factors and
uniqueness matrix W. Then V = ¥ - ¥ has rank m, §,,; = ... =8, =0and V =
2 1<j<mdjuju’j = LL', where L = L, (V¥,Z). In addition L'L = diag[8;,....8,] is

diagonal. In fact, except for changes in the signs of its columns, L = L,(V¥,Z)

s the only p by m matrix satisfying £ = LL" + ¥ such that L'L is diagonal.
Thus we have a method for finding L once we know W. It is unique only by
virtue of satisfying the mathematical condition L’L is diagonal (columns of L
are orthogonal).

This suggests the following iterative approach to estimating L:

suppose ¥ and L) are the current trial values of the estimated uniqueness

6
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and loading matrices, respectively, at iteration i, so that £ = LW+ §) js
the current approximation to S based on these matrices.
Then updated estimates at the (i+1)th iteration are

|:(i+1) - Lm1(\Tj(l) , S)’ \T/(i+1) - dlag[s _ I:(i+1) E(i+1)‘]‘
That is ¥ = Sjj - E1<kemim? J = 1, .... p. The columns of LU+1) are
proportional to the eigenvectors of S - W),
The updated factor analytic estimate of £ is £(+1) = [U+DG1)r o Plis1),

Thus at every stage we act as if ¥() was the true matrix of uniquenesses, find

the corresponding L = LU+1) = L, (¥({) S) from the eigen decomposition of S -
Y1), and then update the uniquenesses so that diag[£!i*1)] = diag[S]. Ideally you
would continue the iteration until it converged, that is, W(+1) » $() or £0+1) -
S In practice, it may converge very slowly.

To get started, you must provide a starting value ¥(© for ¥. Because an
element ; of V¥ is the variance of the unique part of X;, that is, the part that

cannot be explained in terms of the common factors, a natural preliminary
guess for {; is the estimated residual variance of X; in the multiple regression

of X; on all the other X;'s, j z i. It can be shown that the population residual

variance is 1/c'l, where £ = [cll]. Thus a popular choice for starting value is
W) = diag[1/s'!, ..., 1/sPP], where S°! = [sli].

When x is multivariate normal, E[1/s!] = [(fo - p + 1)/fJ(1/01), where Z is
estimated on f, degrees of freedom (f, = n-1 for a random sample). This
suggests that an alternative choice for ¥(0) might be

WO = {f /(fe-p+1)}diag[1/s'", ... ,1/sPP],

although this extra level of sophistication is seldom used. Estimates obtained
by iterating this process process to convergence are known as iterated
principal factor solutions. The next section gives another rationale for them.

Unweighted least squares method (ULS)
Mathematics shows that at each iteration of the principal factor method, the
quantity

U(P® W) = tr(g® - §)2 = Zkzj(gkj(i) - Skj)2
never increases, that is U(W(+1) [G+1)) < g D), In fact, U(TWO L) will

v
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decrease at each step unless it is already at a minimum.

Notation: tr(A) means trace(A) = 3 ;.ipaj; = sum of diagonal elements.

As you can see, U(WW (D) is a sum of squared residuals Gy;{!) - s,; between

the elements of the factor analytic estimator £() of £ and the elements of S,
the unrestricted estimator of £ so that U(W®W (1)) is a possilbe measure of the
goodness of fit of £() to S. This suggests the following objective approach to
estimating L and ¥: Find ¥ and L so as to minimize U(¥,L). This is called the
unweighted least squares method or ULS method.

For any fixed loading matrix L, U(W¥,L) is smallest when ¥ = diaglsqy,...,spp] -
diag[LL'] = diag[si; - 2 1<j<m 2ij2], that is, the diagonal elements of LL" + ¥ are
the same as the diagonal elements of S.

Similarly, for any fixed diagonal uniqueness matrix ¥ such that £ - ¥ is
positive definite, U(W,L) is smallest when L = L{(¥,S), as defined above.

Moreover, if &§; > &, > ... > §, are the eigenvalues of S - ¥
U(W) = min U(W,L) = U(W,Lpy 1 (W,S)) = F et <ipdi?

This quantity depends directly on on ¥ (and S) which ULS method attempts to
minimize over all possible choices of W. Moreover you can find the §;'s, the
eigenvalues of S - ¥. This means, the §;'s and hence U(¥) = 3 .14 <8i2 are
computable functions of the elements y; of W. With proper software, you can
determine ¥ by numerically minimizing the quantity U(V¥) as a function of the
Yi's. Although you cannot express the dependence of > m+1<i<pdi2 ON the Yi's

(and the elements of S) in a simple way, such a minimization can be routinely
accomplished by a suitable computer algorithm for function minimization. Once
¥ has been found, (¥, L) minimizes U(¥ L) where L = L,;(¥,S).

Because the principal factor method decreases U(W()) = U(¥) (1)) at each
iteration, you can view it as an iterative approach to determining the ULS
estimates. It first holds ¥ fixed and minimizes of L (the eigenvector
computation), and then holds L fixed and minimizes over ¥ by setting {; = s;; -

2 1<j<m QUQ . If the principal factor method converges it may reach the

actual ¥ and A that minimize U(¥,L). However, convergence tends to be very
slow and it may take very many iterations, each involving an eigenvector
computation, to approach the actual minimum.

Another danger in using the principal factor method instead of a direct

8
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minimization algorithm is the possibility that at some stage the m-th
eigenvalue 8m < 0, thus making it impossible to compute /8., as required. This

happens when S - W() is not positive definite and is not particularly
uncommon.

One disadvantage of the ULS method is that the ULS estimates obtained from
the variance matrix S and ULS estimates obtained from the correlation matrix
R are not simply related in the same way as their population counterparts are.

That is, if g and ¥g minimize tr(S - £)2 and Lg and ¥g minimize tr(R - p)2
then, in general, ¥g =z A¥gA and Ly = Alg, where A =
diagl1/+4/s11.....1/4/sp,]. Thus the factor structure you estimate depends on
whether you start with S or R.

Generalized least squares method (GLS)

You can overcome the problem of lack of correspondence between covariance-
derived and correlation-derived estimates by minimizing the generalized least
squares criterion

G(W,L) = Gg(W,L) = tr(S (S - £%))2 = tr(l, - 1 £%)2, £* = LL'+V.

When £* is “close” to S, then S-1£* should be "close” to I, and G(V¥,L) will be
small. The quantity Gg(W¥,L) is a sum of squared residuals of the elements of
S-1z* from the elements of I,, and hence is a possible measure of the goodness
of fit of £* = LL" + ¥ to S . The method of estimating ¥ and L by minimizing
G(W,L) is known as the generalized least squares or GLS method.

Suppose you rescale X by x » X = DX, where D is any diagonal matrix with
non-zero elements on the diagonal. Then V[X] = £ = DED and V[x] = § = DSD. If
you define L = DL and ¥ = DW¥D, then £ = [L" + ¥ is of factor analytic form
since ¥ is diagonal. The value of the GLS criterion doesn't change.
Specifically
Gs(V.0) = tr(l, - D°1$-1D-'DED)?2 = tr(l, - D-'S-1£D)?

= tr{D-'(I, - $-'£)D}2 = tr{D-'(I, - §-'£)(I, - S°'%) D}

= tr(l, - S$71£)2 = Gg(V.L).
The next to last equality follows because trAB = trBA for matrices A and B
such that AB is square.

To summarize, G(V¥,L) is unchanged by rescaling X, provided you replace L and
V by appropriately rescaled matrices L and ¥. This means that, when L = I:S
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and ¥ = ¥g minimize Gg(¥ L), then also L = DLg and ¥ = DV¥gD minimize

Gs(V,0).

In particular, this is true if D = A = diagl1/y/sy7,....1/y/sp,] so that § = R.
This means that, if L = [g, and ¥ = ¥ minimize Gs(¥,L) and L = Ly, and ¥ =
¥r minimize Gg(V,L), then Lg = ALg and Wg = A¥gA. The conclusion is that
for GLS estimates, the covariance- and correlation-derived estimates are
related in the same way as their population counterparts.

For any fixed L, G(W¥,L) is smallest when V¥ is such that the diagonal elements
of S-T£*S-1 = S-1(LL" + W¥)S-! are the same as the diagonal elements of S, or
equivalently, diag[lS-"WS-1] = diag[S-! - S"TLL'S-"]. This implies that, given L,
the minimizing elements y;,...,\y, of V¥ satisfy the simultaneous linear equa-
tions

Z15]5P(Sij)2g/j = (S_1 - 5_1 |_|_‘S_1 )ii' 1=1,..., P,
This a system of p linear equations in the p unknown {;’s with coefficients
that are the squares of the elements of S-' and right hand sides the diagonal
elements of S-1 - S-TLL'S"T.
Notation: (S~ - S-TLL’S");; is the it" diagonal element of S-1 - S-TLL'ST,
and S71 = [sU]; 4 j <.
For given diagonal V, define Uy = [Uy,....Up,Ump.1,...,Up] and Ty = diagldy,..., 7],
with &, > &, > ... > ¥, to be the matrices of eigenvectors and eigenvalues of S

relative to V¥ (ordinary eigenvectors and eigenvalues of ¥-'S) As usual, these
relative eigenvectors are normalized so as to satisfy Uy WUy = 1; and Uy 'SUy
=Ty. Then also Uy and Ty - I, = diagld;-1,...,7,-1] are eigenvectors and
eigenvalues of S - W relative to W¥. Provided &, > 1, you can define the p by
m matrix

Loo(W.S) = [T -11Vuy,... /{7, -1}Vu,,]

For any fixed ¥, G(W¥,L) is smallest when L = L,5,(¥,S). [ts minimum value is
G(¥) = G(V, Lo(¥,8)) = Y mar<jopll - 1/3;)2. Since this quantity is
determined from ¥ and S, just as was the case for the ULS method, we have
reduced the problem to minimizing a function of the p variables y,....\y,, a

numerical problem solvable by a suitable computer algorithm. Also, it is easy
to check by substitution

L'\V_1 L = LmQ(\y,S)'\y_1 Lm2(\y,S) = dlag[b’1—1 ..... D/D_1]’

10
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a diagonal matrix. Moreover, L = L;,(¥,S) is the only choice for L (except for
trivial changes of signs of columns) such that this is true.

Formal GLS goodness-of-fit test
When x is Ny(J,Z), and if Z is of factor analytic form, then for large f,

KxG(W,L) = KxG(¥) = KxF .1 <j<p(1-1/81)2 = %42,
K = {fo- (2p+5)/6 - 2m/3} and f = {(p-m)2 - p - m}/2
where & are the eigenvalues of S relative to V.

When £ is not of factor analytic form, the &'s will tend to be much larger
than 1 and G(¥) will be large. Hence comparing this statistic with X2;()
provides a formal goodness of fit test Hy: £ has factor analytic form with m
factors against the alternative Hy: £ does not have factor analytic form with m
factors.

There is an easy to understand but slow iterative method for minimizing G(¥)
that bears the same relationship to GLS as principal factor iteration bears to
ULS.

Let W() be the estimated uniqueness matrix at iteration i and define LUi+1) =

L o(P() S). This choice of L minimizes G(¥() L), holding ¥() fixed. Then
find ¥(+*1) so as to minimize G(¥,LU+1)), holding LU+*") fixed. But W(i*1) can be
found by solving the linear equations given above. Repeat this process until
Yl o ¢ or £0+1) » £ [t {s again reasonable to take as starting value
W) = diag[1/s'",...,1/sPP]. As with the iterated principal factor method, this
method may converge slowly, if at all. However, at each step G(¥(i+1)) =
G(W(+1) [(+1)) decreases. It may also happen that the iteration may fail
because ¥,,(1) < 1, where ¥,,() is the m-th eigenvalue of S relative to ¥,

thus making it impossible to compute /(%) - 1) as required. In that case
the iteration must be abandoned.

Because of the use of L,,(¥()S) at each stage, the iterated GLS estimate of L
satisfies the condition that L'¥-"L is diagonal.
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Maximum likelihood estimation (ML)
When x is Ny(J,Z), S has a Wishart distribution. The general good properties of

maximum likelihood estimates suggest that we attempt to find the maximum
likelihood estimator £ = LL' + ¥ based on this distribution. This can be
shown equivalent to minimizing the quantity

MWL) = tr(E-'S - 1) - log(det[E-18]) > 0, £ = L[ + ¥
Note that if £ = S, that is, S is exactly of the factor analytic form, then
M(¥.,0) = tr O - log(det(l,)) = O - log(1) = 0. Thus, at its minimum, the value
M(¥,[) can be viewed as a measure of the goodness of fit of S to factor
analytic form.

For any fixed L, you can show mathematically that M(¥,L) is smallest when ¥
is such that the diagonal elements of S and LL' + ¥ are the same, that is, V¥ =
diag[S - LL’], just as in the case of the ULS method.

For any ¥ such that § - ¥ is positive definite, let Uy = [Uy,...,.Up Un,q,..0,Up]
and T'y = diag[¥,,....9,] be the matrices of eigenvectors and eigenvalues of §
relative to V¥, with &y > &, > ... > ¥, as in the GLS method. Provided &, >
again define (as for the GLS method)

Lo(W.S) = [V{T-11Vuy,..../{%, -11Vu, .

Then for any fixed ¥, M(V¥,L) is smallest when L = [ = L,,(¥,S). In addition,

the eigenvectors and eigenvalues of £ = [L" + V¥ relative to ¥ are the columns
of Uy and diagonal elements of Ty = diag[%,....%y.1.....1] (same as 'y, with

1's replacing & for j > m). Moreover, the minimized value is
M(W) = M(W L o(¥.S)) = tr(E1S - | p)-1n det(£-19) = > me1<i<plTi-1 - InT;) > 0.

Once again, since the value of M(¥) = M(V,L»(¥,S)) is determined by V¥, we

have reduced the problem of minimizing a function M(¥,L) of both L and ¥ to
one of minimizing a function M(¥) of the p variables yq,..., Y.

Formal ML goodness-of-fit test
When x is multivariate normal, and £ is of factor analytic form, then for large
fe.
KxM(W,L) = KxM(¥) = KxY 001 <jp(1-1/81)2 = X2,
K = {fo- (2p+5)/6 - 2m/3} and f = {(p-m)2 - p - m}/2
where 51 are the eigenvalues of S relative to ¥. As for the GLS method,
you can use this as a test of goodness of fit of the factor analytic model

12
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itself.
There is a simple iteration method associated with ML estimation that is
analogous to the iterated principal factor method. As before, if L = [§,;(V]
and V() are the estimates at the i-th iteration,

L1 - |_m2(\p(i),3)’

\T/(i+1) - dlag[s - |:(i+1)|:(i+1)'] - diag[skk - Z15j5m(gkj(i+”)2]-
That is, we update L so as to minimize M(¥() ) and then choose ¥(i*1) so that
the diag[£(i*1)] = diag[S]. This iteration may converge, albeit often slowly, to
the maximum likelihood solution since it can be shown that M(¥(i+1)) < M(P 1),
As with the GLS method, the solutions using R and S are simply related by Vg
= AVgA and Lg = ALs. Moreover, again L'¥-'L is diagonal.

Summary of factor extraction methods

The principal components method is based on a single eigenvalue/eigen-
vector computation. It is not consistent for the parameters of the factor
analytic model, but is widely used. It is highly scale dependent

The other three basic methods, unweighted least squares (ULS),
generalized least squares (GLS) and maximum likelihood (ML) are similar
in several ways.

e Each seeks to minimize a criterion measuring how good the fit of the
estimated variance matrix £ or correlation matrix p is to the observed
variance matrix S or correlation matrix R.

e For a given uniqueness matrix V¥, it is easy to find an optimal loading
matrix L(¥). This allows the criterion to be expressed purely in terms of
V and effectively reduces the problem to finding ¥ to minimize the
criterion.

13
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Method Criterion Criterion expressed in terms of ¥
ULS tr{(s-£)2} or tr((R-£)2) U(W) = 5.1 <i<p8i? Where 8; > 8, >
28 > 8ma > .. > 8y are
eigenvalues of S - ¥ or R - ¥
GLS |tr{(s-1(s-£))2} or tri(R"1(R-£))?} |G(¥) = S .1<jp1 - 1/77)2, where

T1 28> 028 > Tppug >0 >
¥, are eigenvalues of S relative to
¥ or R relative to ¥

ML

or

tr(£-1S - 1) - log(det[£-" S])

tr(£-'R - 1,) - log(det[£-"R])

M(\T/) = Zm+1515p (b/i"I - 1n51)1
where the ¥'s are as for the GLS
method.

e Iterative methods are required to do the minimization. The handout
describes methods for each, all very similar and all likely to converge

slowly if at all.

The algorithm for ULS is sometimes considered to be a

separate method, the iterated principal factor method.

e For all three, the preferred approach is to use a better minimization
algorithm that uses derivatives of U(V¥), G(¥) or M(¥) with respect to ¥,

..., ¥p. The derivatives can be calculated using an analytic formula or
numerically. This is what MacAnova macro facanal () does.
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