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The Shapes of Ellipses and Ellipsoids
An ellipse centered at (w;g, Wog) in the plane with coordinates (wq, wy)
consists of all points (w;, w,) such that
g (wWi-wig)2 + 2q2(Wq-Wio)(Wo-Wpp) + G22(Wp-Wpg)? = K2,
Here q'", q'2, and q22 are constants that determine the shape of the
ellipse, and K2 is a constant that determines the size of the ellipse.

The entire ellipse, including its interior, is the set of points such that
g (W 1-Wq0)2 + 2q"2(Wy-W ) (Wo-Wpo) + G22(Wp-Wpo)? < K2
For these equations to define an ellipse, the qil must satisfy
q'" > 0,422 >0 and q'1q?2 > (q'2)2.

The inequalities q'! > 0, q22 > 0 and q''q?2 > (q'2)? are equivalent to the
condition that the matrix

[ a1 @21 T a'' ¢ 7
Q = | | = | |
I Ji2 Q22 ] I ql2 q%2 ]
and its inverse Q- are positive definite.

You can generalize the concept of an ellipse to p > 2 dimensions. Suppose
Q=Q = [qij] is a p by p positive definite symmetric matrix and Wq =
[Wig.....Wpol" is a p-vector. Then the set of p-dimensional vectors

W | (W - wg)aT(w - wp) = K2}
is an p-dimensional ellipsoid with center wy.
The set of points

E={w | (W-wg)Q(w - wy) <K2} (1)
consists of the ellipsoid and the points inside it.

This handout explores different ways of defining and describing ellipsoids
and their shapes.



The Shapes of Ellipsoids

An ellipse is a two dimensional ellipsoid. You can check that q'! = q,,/D,
q'? = -q;,/D, and %2 = q;;/D, where D = qy1qz; - G122

You can explicitly compute w, as a function of w; on the boundary as

Wy = Wpo + [Q1o(Wqi-Wqg) % \/D\/{Q11K2 - (Wy-wq0)2H/qyy, (2)

where the + and - signs go with the upper and lower halves of the ellipse.
This is one way to find points on the boundary if you want to draw an
ellipse. If you change every 1 subscript to 2 and every 2 subscript to 1 you
get a similar equation that expresses w; in terms of w,.

[ncidentally, because you can’t take the square root of a negative number,
W, is defined only when q;;K? - (W;-w;g)2 > 0, that is, when

(Wi-Wq9)2 < q;1K2. This implies that if w = [w;,w,]" is onor in £ it must
always be the case that

‘K\/QH S Wi-Wyg < K\/CIH

But this means that
Wo1 - K\/CIH < Wy < Wqq ¢+ K\/QH-

Similarly, reversing the roles of w; and w,, if w = [w;,w,]" is onor in E,
Woo - Kv/Gop < Wy < Wop + Ki/dos

[n p dimensions, there are similar inequalities for every component w; of

Woi - Kv/Qii < Wi < Woi + Ky/qij, 1= 1,..,p (3)

These are particular cases of an important, more general family of
inequalities:

For any p-vector & z 0 and any W in E,
L'wo - K/(1°QR) < 'w < L'wgy + K/(R°QY) (4)
When 2 =e; =[00...0 10 ..], where the 1 is in the it" position, 2'w =

Wi, £'Wg = Wo; and £'QR = q;; and equation (4) reduces to equation (3).
Another way to express (4) is

| 2w - L'wg| = [ 2w - wo)| < KJ/(2'QR) (4")
Eq. (4) and (4’') apply to every w in E, and any p-dimensional .
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Just as important is the converse:

For any w that is not in E, there is at least one 2 z O for which eq. (4)
is not satisfied. This means means that another definition for E is the
set

F={w|2'wo-K/(2°Q0) < &'w < L'wy + K4/(2°QQ) for every & = 0} (5)
Note that equation (5) involves Q itself and not Q-'.

For a point w to be on the boundary of E, there must be a & z 0 such that
L'w = L'wg + KJ/('QR) or &'w = L'wg - K /(R'QL.

[n fact, such points are
W = Wy + KQL//(2°'QR) or w = wy - KQL/,/(2'QQ)

For given &, two sets
fw|2'w=2'wg-KJ/(2'Q0)} and {w | 2'w = L'wy + K/(2'QL)]}

are parallel lines (p = 2) or planes (p = 3) or hyper-planes (p > 3) that are
tangent to £. That is, they touch E only at the two boundary points wg +
KQL/./(2'QL) on opposite sides of £E. These are the only two points on
the tangent lines or planes that are actually in £. The rest of these
tangent lines or planes are outside E.

If you consider & to be a vector from the origin (w = 0), it determines a
direction and these tangent lines or planes are perpendicular to that
direction.

What equation S says is that an ellipsoid is defined as the set of all points
between every pair of parallel tangent lines or planes. Thinking
geometrically, this makes intuitive sense.



The Shapes of Ellipsoids

Here is an example of an ellipse centered at (20,20) with a number of pairs
of parallel tangent lines drawn. The double headed arrows indicate some of
the pairs of tangent lines
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Because there is a tangent line or plane at every point on the boundary to
E, every point w on the boundary can be expressed as W = Wg +

KQL/,/(2'QQ) for some L. In fact, since QL/,/(2'Q4) is unchanged if we
replace & by the unit vector u = /121, every point w on the boundary can
be expressed as W = Wq + KQu/,/(u'Qu) for some vector u with nui = 1.

When p = 2, by varying &, 0 < & < 27T, you can get all unit vectors as u =
[cos&, sing]'. Thus you can compute coordinates of points on an ellipse by
Wor + K (qy; cos@ + qy, sing)/,/G(2),

Woo + K (qy5 Sing + gy, cOsB)/,/G(2),

W
)

where & varies between -7C to Tt or 0 to 27t and

= (qqq + Qp2)/2 + [(qy7 - qp)/2]xC0s28 + qq,5in22.

This provides another way to compute points for plotting an ellipse, quite
easy to do in MacAnova.
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Suppose T is a "square root” of Q, that is a p by p matrix satisfying T'T =
Q. Then Q' = T-I(T’)-". Then, every point of the form w = wy + KT'u
where u is a unit vector (|Ju] = 1) satisfies

(W - Wg)'Q (W - Wg)' = K2u'T(T-1(T")"")T'u = K2u'u = K2,
and is therefore on the boundary of the ellipsoid. Another way to describe
W is to note that w - wy = KT'u. When p = 2, this provides still another

way to compute points W = Wy + KT'u on an ellipse, where again you get all
unit vectors as u = [cos&, sing].

There are many matrices satisfying T_'T| = Q. In particular, T can be
chosen to be upper triangular (p;; = 0 for i > j) with positive diagonal (p;;
>0,j=1,.,p). Inthis case the representation T,'T, = Q is the well known
Cholesky decomposition of Q. It can be computed in MacAnova by tL <-

chol esky(q) ortL <- matsqrt(q).

When p = 2, the upper triangular square root of Q is

[Van G127y Q11 ]
T = | |1DZQ11Q22'Q122-

This provides another way to compute points on the ellipse as
Wi = Wop +4/Q11COSB, Wy = Woy + (g3 cos® + /D sing)//qy;

and letting & vary over -1t to 7t or O to 27t. This is also easy to do in
MacAnova.
Another important square root of Q is the symmetric square root Tg which

you can compute in MacAnova by tS <- matsqrt(q, symetric:T). Briefly,
T5 has the same eigenvectors as Q, but its eigenvalues are the square roots

of the eigenvalues of Q.

When p = 2, there is no simple expression for Tg except in terms of the
eigenvalues and vectors of Q.

The distance from the center of the ellipse Wy to the point w = wg + KTg'u
on the boundary and the opposite point w = wg + KTg'(-u) is
IW - Woll = /{(W - Wg)'(W - W)} =
KJ/{uTsTg'ul = K/fu'TgTgu} = K4/{u'Qu}.
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Eigenvectors and eigenvectors have important properties related to the
extremes of u'Qu for unit vectors u. In particular, recalling that by
convention the eigenvalues are numbered in decreasing order,

MaX,y=1U'QU = U;'QuUy = Xy and min,y,-1u'QU = u,’Qu, = X, (6)

Now you can express every point w on the boundary as w = Wy + KTg'u = Wy
+ KTgu for some unit vector u, and we have just seen that the distance of
such a point from Wg is K,/{u’Qu}. Thus the points on the boundary that
are furthest from wg are Wo + KTgu; = Wo + Ky/\ju; at distance Ky/X\;, and
the closest points to the center are wy + Ky/X,u, at distance Ky/X, from
Wo. (Tsu; = /AU because u; is an eigenvector of Tg with eigenvalue /);.)

The p lines connecting the opposite points Wq - Ky/X\iu; = and Wg + Ky/\u;,
1=1,.., p are the principal axes of the ellipsoid. Each goes through the
center Wy and has length 2K\/X;. The first such line is the major axis and
its length is the longest distance between opposite points on the surface of

the ellipsoid. The pt" line is the minor axis of the ellipsoid and its
length is the shortest distance between opposite points. The principal axes
are all mutually orthogonal (perpendicular).

Let Q; and Q, be positive definite and £, and £, be ellipsoids centered at
Wg1 and Wq, defined by

Ei = {w | (W - WOi)'Qi_1(W - WOi) < Ki2}, i=1, 2,

For the moment assume, K; = K,. Then when Q; and Q, have the same
eigenvalues, E; and E, have the same size and shape, in the sense that
E, can be obtained from E; by moving it so that wg; coincides with wg,

and then possibly rotating it so that the corresponding principal axes of the
two ellipsoids are the same. Rotation is needed to make them coincide if
and only if the eigenvectors of Q; and Q, differ. Thus when the

eigenvectors differ, the ellipses have different orientations. If the
eigenvalues are the same, but K; > K,, E; and E, have the same shape, but

different sizes, with E; larger than E,.

When the eigenvalues {\{;} and {\,} of Q; and Q, differ, then E; and £,

have different shapes except in the case when the eigenvalues are
proportional, that is \;» = c\;; for some c > 0. It this case, the ellipsoids

have the same shapes, but different sizes unless K, = cK;.
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Thus the eigenvalues of Q, or, more accurately, their ratios, are
descriptive of the shapes of ellipsoids, and the eigenvectors are descriptive
of their orientation.

Below is a graph of an ellipse centered at wgy = [-3, 51" with

2.5 -1
Q = :
-1 1.5
with eigenvectors u; = [0.85065, -0.52573]" and u, = [0.52573, 0.85065],

at angles 121.72° and 31.72°, respectively, with the w, axis. The

eigenvalues of Q are Ay = 3.118 = 1.7662 and X\, = 0.8820 =0.93912 and
hence the lengths of the major and minor axes are 2,/X; = 3.532 and
1.878, respectively. If you rotate the ellipse and move it to a different
position, the shape would be the same. It would be described by different
Q and Wg, say Q and wq but the eigenvalues of Q would always be the
same as those of Q. The eigenvectors of Q would define the directions of
the principal axes or the rotated ellipse.

wl = (-3,3), g = matrix(vector(2.5,-1,-1,1.57,27 K =1
| ] ] ] ] 1 ] ] |
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Application to statistics
Many confidence regions in statistics are ellipsoids that may be expressed
in the form

R=1{8| (8 - 6)'(VI6]) (6 - 6) < K2},
where 8 = [8¢, 65,..., 841" is a vector of g parameters, 8 is an estimator for

8, V[6] is the estimated variance/covariance matrix of 8, and K2 is a
critical value. In large samples, K? is often X, 1.42. This is an ellipsoid of
the form of (1) with Q = V[8] centered at wq = 6.

Here are two possibly familiar examples:
(i) A confidence region for the vector of least squares regression

coefficients B = [Bg, B4, . .., B ] in a univariate multiple regression of y
on X = [1,Xq,....x.]" is

R =1B| (B - BYX'X(B - B)/s2 < (k+1) Fiuy oyt (1-00)}
= {B] (B - BYX'X(B - B) < 52(k+1) Fiuq nyq (1-00},

where X = [X;,X,,....X,]" is n by k+1 and s2 is the residual mean square
error. Recall that V[8] = s2(X'X)-". In terms of the definition in eq. (1), Q
= (X'X)T.
(ii) A confidence region for the mean vector of a p-dimensional
multivariate normal population mean U based on a random sample [Yi,....4y, ]’
is

R={p | (u-ygri/nsI(p - y) < (p(n-1)/(n-p))Fy np(1-00}.

The preceding discussion provides a basis for describing such confidence
intervals. Here Q = (1/n)Sl.

The shapes and orientations of these regions are determined by the
eigenvalues and eigenvectors of V[6]. Moreover, the quantity corresponding
to 2'QQ is 2'V[61Q = V[L'8], the variance of a linear combination of the
parameters. Thus, for any © in R, 2'6 must satisfy

2'6 - KJ/VIL'8l<2'®< '8 +K,\/V[LE],
and 8 is in Ronly if this is satisfied for every L. Thus, the probability
that these inequalities are satisfied for all £ is 1 - «« = P(R contains

true 8). They therefore constitute a set of simultaneous confidence
intervals for all linear combinations of the elements of 8. It is
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noteworthy that every interval is of the same form as an ordinary
confidence interval, for which K might be z;_.,, or t; ;_4/».

In particular, when & = e;, £'V[6]L = V[6;] is the estimated variance of the
estimate of the ith parameter, and the minimum and maximum values of 8;
for any ©; in R are 6; - K/V[6;]1and 6; + K,/VI6;]. These intervals are

very conservative simultaneous confidence intervals for the individual
elements of 8. If you need simultaneous intervals for just &, ..., 84, those
based on the Bonferroni inequality using K' = zy_(o/q)/2 OF t1-(w/q)/2 INstead
of K will be much shorter.

For example (i), the eigenvectors of V[8] are fixed (not random) and are
just the eigenvectors of Q = (X'X)™'; the eigenvalues are s?X;, where
X1,..., N\, are the eigenvalues of Q. Thus the orientation and shape of R is

depends only on the independent variables; its center is § and its size is
proportional to s.

The minimum and maximum values for 8; for any B in the confidence region
Rare B; + K/VIBi]l = Bi + Ksy/cij, where K = /{(k+1) Fy,1 n1(1-00} and c;;
is the ith diagonal element of Q. They constitute very conservative
simultaneous confidence limits for all the individual elements of B. The
Bonferronized limits re preferable to these. They are computed the same
way using
K* = Thok-1,1- (a(k+1))72

instead of K. Simultaneous limits for all linear combinations are

'8 = U8 + Ks/{L(X'X) T 2},
the so-called Scheffe confidence limits.
For example (ii), the eigenvectors are the same as the eigenvectors of the
random matrix S and the eigenvalues are 1/n times the eigenvalues of S.
Thus both the orientation and shape of the confidence ellipsoid depends on
the sample variance matrix and will vary from sample to sample.

The minimum and maximum values for j; for any W in confidence region R
are y; + Ky/VIy;] = y; + K+/(s41/n), where K = /{p(n-1)F_opnp/(n-p)}. These
are very conservative simultaneous confidence limits for py, ..., H,.
Bonferroni based limits using K" = t_1 1_ (w/p)/2 @re much shorter.
Simultaneous confidence intervals for all linear combinations 2'j are given

by 2'u K /{2'SL'/n}. Only if you are interested in a very large number
of different B’'s will these intervals be shorter than Bonferronized limits.
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