Statistics 5401
Drawing ellipses in MacAnova
September 25, 2005

There are several ways to draw ellipses in MacAnova.
The defining equation for an ellipse centered at $\mathbf{x}_{0}=\left[x_{10}, x_{20}\right]$ ' and with shape matrix $\mathbf{Q}=\left[\begin{array}{ll}q_{11} & q_{12} \\ q_{12} & q_{22}\end{array}\right]$ is

$$
q^{11}\left(x_{1}-x_{10}\right)^{2}+2 q^{12}\left(x_{1}-x_{10}\right)\left(x_{2}-x_{20}\right)+q^{22}\left(x_{2}-x_{20}\right)^{2}=K^{2}
$$

where $q^{\text {jk }}$ are the elements of \mathbf{Q}^{-1}.
When you solve for x_{2} in terms of x_{1}, you get the following equation:

$$
x_{2}=x_{20}-q^{12}\left(x_{1}-x_{10}\right) / q^{22} \pm\left\{K^{2} / q^{22}-\left(q^{11} q^{22}-\left(q^{12}\right)^{2}\right)\left(x_{1}-x_{10}\right)^{2} /\left(q^{22}\right)^{2}\right\}^{1 / 2} .
$$

The + and - signs go with the top and bottom halves of the ellipse, respectively.
This works only when the expression in $\{\ldots\}$ is nonnegative. This us the case only when $x_{10}-K \sqrt{ } q_{11} \leq x_{1} \leq x_{10}+K \sqrt{ } q_{11}$, that is $\left|x_{1}-x_{10}\right| \leq K \sqrt{ } q_{11}$. When $\left|x_{1}-x_{10}\right|>$ $K \sqrt{ } q_{11}$, no real number x_{2} satisfies the equation.

Similarly, you can express x_{1} in terms of x_{2} by

$$
x_{1}=x_{10}-q^{12}\left(x_{2}-x_{20}\right) / q^{11} \pm\left\{K^{2} / q^{11}-\left(q^{11} q^{22}-\left(q^{12}\right)^{2} /\left(q^{11}\right)^{2}\right\}^{1 / 2}\right.
$$

For this to be meaningful, x_{2} must satisfy $x_{20}-K \sqrt{ } q_{22} \leq x_{2} \leq x_{20}+K \sqrt{ } q_{22}$, that is $\left|x_{2}-x_{20}\right| \leq K \sqrt{ } q_{22}$.

Here I apply this in MacAnova:

```
Cmd> Q <- matrix(vector(25,10.5,10.5,9),2); Q
    (1,1) 10.5 Positive definite symmetric matrix
    Cmd> x0 <- vector(30,40) # center
    Cmd> K <- sqrt(invchi(.95, 2)); K # constant defining size
    (1) 2.4477
    Cmd> Qinv <- solve(Q)
    Cmd> xlmin <- x0[1] - K*sqrt(Q[1,1]) # minimum possible value for xl
    Cmd> xlmax <- x0[1] + K*sqrt(Q[1,1]) # maximum possible value for xl
```


Drawing ellipses in MacAnova

```
Cmd> x1 <- x1min + (x1max - x1min)*run(0,100)/100 #values for x1
```

x 1 now contains 101 equally spaced values from x 1 min to x 1 max . Now I computed x_{2} values for the top and bottom of the ellipse.

```
Cmd> x2top <- x0[2] - Qinv[1,2]*(x1 - x0[1])/Qinv[2,2] + \
    sqrt(K^2/Qinv[2,2] -\
    (Qinv[1,1]*Qinv[2,2] - Qinv[1,2]^2)*(x1 - x0[1])^2/Qinv[2,2]^2)
Cmd> x2bottom <- x0[2] - Qinv[1,2]*(x1 - x0[1])/Qinv[2,2] - \
    sqrt (K^2/Qinv[2,2] -\
    (Qinv[1,1]*Qinv[2,2] - Qinv[1,2]^2)*(x1 - x0[1])^2/Qinv[2,2]^2)
```

Vectors x 2 top and x 2 bottom now contain the x_{2} coordinates for the top and bottom halves of the ellipse.
Cmd> lineplot(x1,x2top, show:F) \# draw but don't show top half
Cmd> addlines(x1,x2bottom,ymin:?,title:"Ellipse", xlab:"x1",ylab:"x2")

Drawing ellipses in MacAnova

Its much easier to do this using macro ellipse.
Cmd> help(ellipse:vector("usage","plotting_ellipse"))
Subtopic 'usage' of help on 'ellipse'
You can use ellipse() to compute and optionally draw an ellipse with shape defined by a specified positive definite matrix and centered at a specified point
ellipse(K, Q [,x0] [,graphics keywords]) computes xvals and yvals, the x - and y-coordinates of points on the ellipse defined by the equation
$(x-x 0) ' \% * \%$ solve $(Q) \% \star \%(x-x 0)=K^{\wedge} 2$
The value returned is structure(x:xvals,y:yvals [,graphics keywords]).
$K>0$ must be a REAL scalar and Q must be a 2 by 2 REAL positive definite symmetric matrix. If $x 0$ is an argument, it must be a REAL vector of length 2. Otherwise, rep $(0,2)$ is used for $x 0$.
Subtopic 'plotting_ellipse' of help on 'ellipse'
The ellipse can be plotted by
Cmd> result <- ellipse(K, Q [,x0] [,graphics keywords])
Cmd> lineplot (keys:result)
ellipse(K, Q [,x0], draw:T [,graphics keywords]) draws the ellipse directly and doesn't return the coordinates as a value. If the ellipse is to be added to an existing graph, include add:T as an argument.
So lets use ellipse():
Cmd> coords <- ellipse $(K, Q, x 0)$ \# compute coordinates for ellipse
coords is a structure with two components, x and y :
Cmd> compnames (coords) \# coords includes both x and y
(1) "x"
(2) "y"

Cmd> lineplot (coords\$x, coords\$y,title:"Ellipse", xlab:"x1",ylab:"x2")

You can actually just use coords itself instead of its x and y components separately. The following produces the identical plot.

Cmd> lineplot (coords,title:"Ellipse",xlab:"x1",ylab:"x2")
With keyword phrase draw: T and other graphics keyword phrases, ellipse () will draw the ellipse itself. The following single command will reproduce the preceding plot:

Cmd> ellipse($K, Q, x 0$, title:"Ellipse",xlab:"x1",ylab:"x2",draw:T)
By including add: T , you can add the ellipse to an existing plot. In the following lines, I generated and made a scatter plot of a bivariate normal sample with $\boldsymbol{\mu}=\mathbf{x}_{0}$ and $\boldsymbol{\Sigma}=\mathbf{Q}$, and then drew the following contour of the normal distribution:

$$
\sigma^{11}\left(x_{1}-\mu_{1}\right)^{2}+2 \sigma^{12}\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)+\sigma^{22}\left(x_{2}-\mu_{2}\right)^{2}=K^{2}
$$

where σ^{ij} are elements of $\boldsymbol{\Sigma}^{-1}$, and $K^{2}=\chi_{2}{ }^{2}(.95)=5.991$ is a probability point of χ^{2} on 2 degrees of freedom. With this value of K, the contour encloses 95% of the population.

Cmd> sigma <- Q; mu <- x0
Cmd> $n<-100 ; y<-r m v n o r m(n, ~ s i g m a, ~ m u) ~ \# ~ N _2(m u, ~ s i g m a) ~ s a m p l e ~$ rmvnorm(n, sigma, mu) computes a multivariate normal sample of size n, variance matrix sigma and mean vector mu. Look at the help for full details.

Cmd> plot (y[,1],y[,2],symbol:"\1",title:"Bivariate normal sample",
xlab:"y1", ylab:"y2", show:F) \# make scatter plot but don't show it
Cmd> ellipse(K, sigma, mu,draw:T, add:T, xmin:?,xmax:?,ymin:?,ymax:?, \}
title:"Bivariate normal sample and contour",xlab:"x1",ylab:"x2")

Bivariate normal sample and contour

Keyword phrases xmin:?,xmax:?,ymin:? and ymax:? ensure the limits of the graph includes all the points and the contour. Without them, you might find some of the the contour was cut off by the frame.

