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Notes on Classification

The Classification Problem

Suppose you observe a p-dimensional random vector x whose components
represent measurements on an individual known to belong to one of g distinct
groups or populations 7Ty, TTy, ..., T(g, but you don’t know for certain to which

population the individual belongs. How do you use X, together with what you
know about the populations, to guess which population X comes from as
accurately as possible? This is the essence of the classification problem.

You would probably consider a procedure for guessing - a classification
procedure - to be good when the probability of making a mistake, that is
classifying an individual in the wrong population, is small. When some
mistakes are worse than others, you would want the probability of making
expensive mistakes to be small.

Diagnosis

Each population 77 consists of individuals with a particular health condition
from a list of specified conditions, perhaps including "no health problem,” and
the elements of X represent items in the patient’s medical history and/or the
patient’s results from medical diagnostic procedures. The classification
problem is to diagnose the health condition on the basis of these data. To
misdiagnose someone With tuberculosis as having a cold is probably a more
serious mistake than misdiagnosing someone with hay fever as having a cold.

Prediction
Population 77y might consist of individuals who will declare bankruptcy in the

next 12 months, and 7T, consist of individuals that will not declare

bankruptcy. Here g = 2. The components of X might be items in the
individuals credit report as well as demographic information. The

classification problem is the problem of predicting whether or not a
particular individual will declare bankruptcy in the next 12 months.

Identification

The populations are different varieties of a particular type of plant, and the
components of X are measurements on various characteristics such as petal
length and width. The classification problem is now a problem of
identification.
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Prior Probabilities and Misclassification Probabilities

In some cases you may reasonably know or be able to estimate prior
probabilities, p; = P(T(;). p; is the probability that an individual belongs to
population 7T, prior to observing x or when you are ignorant of the value of
X. Since we are assuming that T(;, T(p, ... T(q is an exhaustive set of
possibilities, 3 1<j<gPi= 1.

For medical diagnosis, p; would specify how prevalent medical condition i is,

that is, the probability that a randomly selected patient has medical condition
L.

For predicting bankruptcy, p; = 1 - p, would be the probability that a

randomly selected individual will declare bankruptcy in the next 12 months.
Almost certainly p; would depend on overall economic conditions.

For identifying plant varieties, p; = proportion of plants of variety i out of
all the plants of that type. More realistically, p; might also reflect the
difficulty in finding a specimen of variety variety i.

By an application of Bayes' theorem, once X has been observed, the posterior
probability that it was derived from population Tt; is

P(TT |X) = Difi(x)/{ZBjigpjfj(x)},

where fi(x) is the density of x for an individual in population Tt;. The
denominator is what is needed to make 3 ;<j<sP(TT; |x) = 1.

When you know P(TT; |x) ~ 1, you can be practically certain that x came from
TG When P(TT; |x) ~ 0, then it is very unlikely that x came from 7t;. When
PO, |x) has an intermediate value, you would be quite uncertain as to whether
it did or did not come from population X.

There are many procedures you might use to classify Xx. As a generic symbol
for a classification procedure | use the notation 7t, with 7t(x) signifying the
population the procedure assigns when X is observed. This notation is based
on the idea that the unknown identity of the population is analogous to an
unknown parameter since, once it is known, the distribution of the
observation is determined. When you observe x and select the population to
classify the case into you are "estimating” this parameter. If the procedure
selects 7t; based on data X, we write Tt(x) = T;. The possible "values” for

TUX) are TG, TG, ..., Tl
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We are not yet concerned with the problem of estimating a procedure on the
basis of a sample of data, a so called training sample; we are looking at how
to compare classification methods when we have complete information about
the different populations, not just information about a sample. We assume we
know the prior probabilities pj and the distribution fj(x) of X in population J,
]=1,..4.

Classification probabilities

[ use the notation

PGi[]) = P(RUX) = 1 [ 1)), 1 < i.) < g

to represent the probability of classifying x as coming from population Tg;
when it actually comes from population 7t;. A more complete notation would
be P (i | j) because P(i | j) depends on the particular classification rule TT. |
assume that the classification rule always makes a definite choice so
Z1iiigP(i|j) = 1 for every j.

In this notation, P(]j |j) s the probability of correctly classifying an
individual from 77 and 1 - P(] |j) = 2ijP(i | j) is the probability of
misclassifying an individual from Tg;.

In diagnosis situations, P(] |j) is the probability of making a correct diagnosis
of someone with medical condition j, and 1 - P(j | j) is the probability of
making an incorrect diagnosis.

We can display the classification probabilities P(i | j) ina g by g table:

Pop. | Prior P T, 70, T(3 C. Tl

T P, P(1 1) P(2]1) PG3|1) ... Plg|1)
70, P, P(1|2) P(2]2) P(3]2) ... P(g|2)
TG Ps P(1[3) P(2]3) P(3|3) ... P(g]3)
Tl Pq P(1]g) P(2|g) P(3|g) ... Plglg)

The diagonal elements (underlined) of the table are the probabilities of
correct classification and the off-diagonal elements, P(i | i), izj, are
probabilities of incorrect classification or of errors. There is obviously no
reason to assume the table is symmetric.
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A classification rule might not actually make use of Xx. For example, when p;
>>pj, J=z1, that is, the prior probability of 7t; is much greater than the prior
probability of any other population, a defensible rule might be to ignore x and
always classify any case as belonging to 7t;. Then P(1 | 1) = P(1 |2)

P(1 |g) = 1, and P(] |k) =0, j 2z 1. This would probably not be a good approach
if there was a high cost associated with failing to recognize a rare population
T, j =z 1.

When all mistakes are equally bad, one reasonable way to evaluate a classif-
ication rule Tt is its

TPM =Total Probability of Misclassification = P(wrong selection).

Explicitly, TPM is defined as

TPM = TPM(ﬁ) = Z1<1<9P1{ |1 } - <i§9pi{1 - P(i | 1)}
=1 - Z1<1<gp1 (1|1)

This weights each 1 - P(i | i), the probability of misclassifying an individual
from 7T, by the prior probability p; of 7;. TPM is the probability that an
individual that is randomly selected from a population chosen with probability
p; would be misclassified. The notation TPM(1T) emphasizes that TPM is a

characteristic of the rule 1t. Different classification rules will generally
have different TPM values. For the example, in the preceding paragraph, the
rule that always classifies an individual as 7t; has TPM = 1 - p;.

Costs of Misclassification

Earlier I recognized the possibility that some mistakes might be worse than
others. You can formalize this idea by supposing that there are specific
costs associated with misclassifying an individual. Such costs normally will
depend on both the true population T(; that x comes from and the guessed

population Tt(X). For instance, the cost of misclassifying a poisonous
mushroom as being edible is probably greater than the cost of misclassifying
an edible mushroom as poisonous because the former misclassification can
result in someone’s injury or death.

Let C(j | i) represent the cost incurred when 7i(x) = 7(; when in fact the X
comes from 7(;. We will see below that we can assume, without any loss of

generality, that C(i | i), the cost of correct classification, is zero. However,
for the moment, [ don't make that assumption. Indeed, it is probably
reasonable to assume C(i | i) < 0 (a negative "cost” is a "benefit”). You can

4



Notes on Classification

display values of C(j|i) ina g by g table similar to that for P(j|1i)

Given that x actually comes from Tt;, the expected cost of applying rule 7t is
) = Y 1<j<gP(] |i)C(j | i). Averaging EC(i) over the populations weighting by
prior probabilities p;, the overall expected cost EC of Tt will be

EC = EC() = 51 1<gPiEC(I) = T1i g {141 | DCG | D).

The expected cost EC(i) involved in classifying an individual from population
TG is weighted by the prior probability p; of 71;. Because 31 <j<qP(] |i) =1,
P(i| - 2j=iP( | and a little algebraic manipulation yields

ec = ipfct] D« £,PG e | - e |}
- L)« Sipd T LG [DEG |1}

where
Ci 1) =ci]i) - el
is the penalty for misclassifying as 7(; when 7 is correct.

The second term in the expression for EC is the expected penalty of
misclassification. Because the first term, 5 ;p;C(i | i), does not depend on the
classification rule 7t used, when you select 7t to minimize the expected
penalty of misclassification you also minimize the expected cost (EC) and
vice versa. But the expected penalty has the same form as EC when C(i | i) =
0,1=1,.,9 with C(j|i) replacing C(j|i). This is the basis of the claim that
there is no harm in assuming that all C(i | i) = 0, that is, that there is no cost,
positive or negative, incurred in making a correct classification. With this
assumption C(j |i) = C(] |i) and the expected cost is the ECM = Expected Cost
of Misclassification

ECM(TD) = ECM = 5ipi & 1.iP(i | D)C(j | 1).

For the simple example of always classifying as Tt¢;, ECM = 3,1 p;C(1 |i). Even
when all p; are small, i z 1, when C(1 |i), the cost of misclassifying a member
of 7(; as being a member of 1Ty, is very large, ECM may be unacceptably high.

You can formalize the situation when all mistakes are equally bad by fixing
all C(i]]) to be the same, say, C(i|j) =c, i = j. Then ECM(T0) = cxTPM(7T).

Comparing Classification Rules
When there are identifiable costs of misclassification, it seems reasonable to
prefer 7T, to 1T, when ECM(7T,) < ECM(TT,), that is, when the expected cost of

S
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using 7T, is less than the expected cost of using 7,. From this point of view,
the "best” possible rule would be one with the lowest possible ECM.

When costs are equal or you cannot reasonably specify them, you would prefer
T, to T, when TPM(1T,) < TPM(1T,), that is, when the probability of a
classification error when using 7T, is less than the probability of a
classification error when using 70,. The "best” rule would be one that has the

smallest possible TPM. Since TPM = ECM when C(] |i) =1, ] 21, you can use a
general method for determining the minimum ECM rule to determine the
minimum TPM rule

Two group case
The simplest situation is when g = 2.

Let X(x) = f;(x)/f,(X) be the likelihood ratio. By a variant of the Neyman-

Pearson lemma it can be demonstrated that the minimum ECM rule uses only
the value of A(x) in selecting a population. Large values of \(X) classify a
case as T{; and small values as 7,. The dividing value is of the minimum ECM

rule is (po/p){C(1|2)7C(2]1)}. Specifically the rule is,
When X(x) > (po/p){C(1|2)7C(2| 1)} then Tix) = T,
when X(x) < (po/pp)ic(1[2)7c(2] 1)} then Ti(x) = T0,.

The ratio P(TT, |x)/P(TE2 | X) of posterior probabilities is p;f{(X)/p,fy(X) =
(p;/p2)X(X). Therefore, you can also state the minimum ECM rule as:

When P(Tt; | X)/P(T0, [ x) > C(1[2)/¢(2]1) then TH(x) = 7T
When P(TC, | x)/P(10, | X) < C(1]2)/C(2| 1) then TH(x) = TC,.

In words, when the posterior odds that 71U, is correct exceed the ratio of
misclassification costs, classify in 7(;; otherwise, classify in Tt,.

Another equivalent statement of the rule is
When P(TT; [X)C(2 | 1) > P(71, | X)C(1 | 2) then Ti(x) = T,
when P(TT, [ X)C(1 | 2) > P(1t; [ X)C(2 | 1) then TX(X) = TC,.
Since C(1]1) = C(2]|2) = 0,

PO [ X)C(2] 1) = PO [ x)C(2 | 1) + P(IT, | X)C(2 | 2)
the posterior expected cost of selecting Tt,.

Similarly P(7T, | X)C(1 |2) = posterior expected cost of selecting 1(;. Thus the
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minimum ECM rule can be summarized as "select the population with the
minimum posterior expected misclassification cost.”

By "posterior expected cost” of a population I mean the expected cost of
choosing that population once you know X, the expectation being computed
conditional on the value of Xx. When the value of X makes it almost certain
that 71, is the correct choice, that is, P(T0, | X) = 0, the expected cost is near

zero. When it is a 50-50 proposition, that is, P(Tt2|x) =~ .5, the expected cost
~ .5xC(1 |2)
When the misclassification costs are all equal, the minimum ECM rule is also
the minimum TPM rule and is
When P(T7; | X)/P(TT, | X)
When P(T¢; | X)/P(TT, | X)

> 1 then 7u(x) = 7T,

< 1 then TU(X) = TC,.

In words, this says, "select 11y when the posterior odds favor 1Ty and select 71,
when the posterior odds favor 70,.” Another way to state this rule is

When P(TT; [ x) > P(TL, | X) then 7i(x) = T,
When P(TT, | x) > P(TT, |x) then 1t(x) = 70,.

In words, this is, "select the population with the higher posterior probability
conditional on Xx.”

More than two groups

When g > 2, these optimal classification rules generalize nicely. The
minimum ECM rule is "select the population with the minimum posterior
expected cost,” that is, 7((X) = 7t where the minimum value of

PO [ c ] 1) = {5 Lipt00c | DHAS it 00F, 1= 1.0
occurs when 1 = K.

Since, for given x, the quantity in the denominator, 3 ;p;f;(x), is constant, the
minimum ECM rule can also be stated as "select the population with the
smallest value of 3 j.ip;f;(x)C(i | i)

For the minimum TPM rule (that is, when you assume the costs of
misclassification are equal), this rule becomes "select the population with the
smallest value of 3 ;,;P(TT, | X) =1 - P4 |x)"; equivalently, "select T, with
the largest posterior probability P(Tt, | X) conditional on X."

As when g = 2, you can ignore 3 ;p;fj(x) in the denominator This leads to the
rule "select the population with the largest value of p;fi(x)” or, equivalently,

v
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"select the population with the largest value of log(p;fi(x)) = log(p;) +
log(fi(x)).”

Equal Variance Multivariate Normal Case - Linear Classification

We 1llustrate these rules for the situation where the distribution associated
with population 1; is Ny(;, &), that is, x has density

fi(x) = (210)P/2{det(Z; )} 1/2exp{-(x - p)'E;""(x - p)/2}
and log density
log(fi(x)) = -(p/2)10g(270) - log(det(g;))/2 - (x - P)'E;"1(x - p)/2

The notation exp{. . .} means e(-).

First make the simplifying assumption that all populations have the same
variance matrix, that is £, = ¥, = ... = 5 = L.

When g = 2, the log likelihood ratio is
log(fq(x)/fo(x)) = log(f;(x)) - log(f,(x))
= - ) ET X - )72 - (X - ) EX - p)/2)
= L'(x - (M+M5)/2), where & = Z-T(H; - W),
The minimum ECM rule selects 77, when
L°(x - (My+45)/2) > log(p,/py) + logfC(1]2)/C(2| 1)}

and selects 7(, otherwise. Note that the right hand side (the "cutpoint”) is a
combination of log ratios of prior probabilities and misclassification costs.

Equivalently, the rule selects 77; when

L% > 0°(Hy + Wp)/2 + log(p,/py) + log{C(1]2)/c(2] 1)}
= m + log(p,/pq) + log{C(1 |2)/C(2 | D m= L°(W + 1y)/2,

and selects 7T, otherwise. The left side, £'x = (J; - M,)'E-TX, is Fisher's

linear discriminant function. The right hand side is a constant threshold or
cut-off value that separates values of 2'x favoring Tt; from those favoring

T0,.

The more the prior odds ratio p,/p, favors 7, or the more the error cost
ratio C(1|2)/C(2|1) disadvantages 7(;, the stronger is the evidence provided
by 2'x, required to select 1t;. When py = p, and C(1]2) = C(2| 1), the threshold

8
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is m, the value of 2'x when x lies halfway between H; and M.

The posterior probability of 7t; based on X is (because the factor
(211)-P/2 {det Z}-1/2 cancels out)

PieXP{ -(x-p;)E T (X—}.li)/2}

T[i | X) =
p1expl ~(X-J1) 'S (x-p1)/2} + prexpl ~(x-j1p) ST (x-p,)/2}

You can simplify each exponential:
expi-(x-[;)' =T (x-H;)/2} = exp{-x'=- 1 x/2}xexp{L; x}xexp{-ci},

where &; = £-Tp and ¢y = Pi'E"TW/2 = 8;°1;/2. When you substitute this in
the expression for P(7t |x you can cancel exp(-x'Z-"x/2) to get

e |x) = piexp(Li'x-c;)/{p1exp(Li'x - cy) + poexp(Ly'x - co)}, 1 =1, 2.

Moreover, if you replace &;'x-c; by &;'x-c; - K(x), i = 1,2, where K(x) may
depend on X but not on 1, you multiply both numerator and denominator by
exp(-K(x)) leaving the ratio unchanged.

The minimum TPM classification rule which says “select the population with
the higher P(7T |x " becomes, "select the population with the larger
piexp(;’x-c;),” that is the rule

When 2,'x - ¢; + log(p;) > 2,'X - c, + log(p,) then T,
When &,'X - c; + log(p;) < &,'X - c, + log(p,) then 7T,

When p; = p, = 1/2, this specifies choosing the population with the larger 2;'x
- ¢;. Because the quantities being compared are linear combinations of the
elements of X, the rule is a linear classification rule.

You can assess the strength of the evidence in favor of 7t; or T, by computing
the posterior probabilities P(7T |x i=1,2. When P(1T, |x) is close to 1, you
can confidently classify x as coming from 7¢;. On the other hand, when

P(1t, |x) is not near O or 1, you should be in considerable doubt as to the
correctness of classification.

When g > 2 and ¥, = £, = ... = ¥; = ¥, you can still do minimum TPM

classification using linear functions of X. Exactly as in the preceding
paragraph, the posterior probabilities are
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P(TT; |x) _ PieXP{Qi‘x—ci—K(x)}

Zgjigpjexp{!lj'x - Cj - K(x)}

where &; = &7, andc; = P’ T 0/2 = &,°1,/72, 1 = 1,...,g, and K(X) is an
arbitrary function of x that is the same for all i.

When any &;'X - c; is large you may need some K(X) so as to make
exp{;'x - c; - K(x)} representable in a computer. K(x) = max;{%;'x-c;} is
often a good choice, because all

exp{l;'x - ¢; - K(x)} = exp{®;'x-c;}/max;(exp{;'x-cj}) < 1.
For minimum TPM classification, you compute the g posterior probabilities
P(TT; |x) and select the population with largest P(Ty, |x). Alternatively, you
can select the population with the largest 2;'x - c; + log(p;). That is,
classification amounts to comparing the values of g linear functions. As
always, P(TT |x) measures the strength of the evidence in favor of T(;, i =
1,...9.

In geometrical terms, the minimum TPM rule divides up p-dimensional space
into g regions separated by the (p-1)-dimensional planes. Each region
consists of all the possible values of X that would be classified into a single
population.

10
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Here is an example when p = 2 and g = 4, assuming p; = P, = Pz = p4 and = I,.
x2 (1.4 24 (1.3 (2.3)
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(2.3 (L3 (2.4) (1,4)

Clazzification regi::ns when B = d, p= 2

The circled numbers indicate the four population means (J; = [1,17],

Mo = [2,-17, pz = [-3, 21, M4 = [-4,-1.5]). This gives &; = £ T = y; and (c;,
Co, C3, C4) = (1, 2.5, 6.5, 9.125). A line labeled (i, j) separates the plane into
a part where T(; is preferred and a part where 7t; is preferred. Its equation is
(i - 2j)'x = ¢ - ¢j. The area where a population is preferred has a boundary
(heavy lines) made up of straight lines. The is a feature of linear classifi-
cation.

When p; = py = ... = pg, the minimum TPM rule selects the population with the

largest value of eXp{—(X—j.li)'Z'1 (x—pi)/2}, or the smallest value of

(X-M;)'=-1(x-M;). But the latter is the Mahalanobis or generalized distance
between x and H;. Thus the minimum TPM rule selects the "nearest”
population when distance is the Mahalanobis distance to the mean.
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Normal Unequal Variance Case - Quadratic Classification
When the variance matrices differ, the situation is more complicated.

Start with the case when g = 2 and £, z £,. Then
log(f1(x)) - lag(f,(x)) = -log{ det(£,)/det(£,)} /2
- s T ) - ()= ) Sy T (x - )t/
= log(det(Z,))/2 - log(det(Z))/2 +
(qi(x) + £4°%) - (ga(X) + R5°X) + ¢y - C;
where
qi(X) = -X'Zi_1X/2, Qi = Zi_1j“li' Ci = }11'21_1111/2 = Qi‘JJi/2, 1=1,2
Since q;(x) involves squares and products of the elements of X, g;(x) + ;'X is

a quadratic function of x rather than a linear function like 2;'X.

The minimum ECM rule is now

When d;9(x) - d,2(x) > logic(1|2)7c(2] 1)} then #(x) = T,

When d,9(x) - d,0(x) < log{C(1]2)/c2| 1)} then #(x) = 70,

where d;%(x) = -log(det(£;))/2 + q;(x) + &;'x - ¢; + log(p;), a quadratic
function of x rather than a linear function. This implies that the surface in
p-dimensional space (line when p = 2) that separates values of x that are
favorable to 7T, from values that are favorable to Tt, is curved rather than
flat or straight. In fact, the surface can even be a closed surface like an
ellipsoid, with the inside, say, favoring 7t; and the outside favoring 7t,.

When g > 2, the minimum TPM rule again depends on d;9(x), i = 1,...,g. The
rule is "select 7t; such that d;9(x) is smallest.”

12
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Here is an example of the shape of classifying regions with quadratic
discrimination. There are three populations with means M, = [4,2], M, = [3,1],

and Mz = [1,4], correlations p; = .6, p, = 0 and p3 = O, with all variances the
same.
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The ellipses indicate the shapes and orientations of the countours of bivariate
normal populaions. The dark lines are boundaries of equal preference between
two groups. Note that the area in which population 1 is preferred consists of
two pieces. The same is true for the other populations, although only one
piece shows in the plot.

Classification when the parameters are not known

The discussion so far has been in terms of the true distributions or the
population means and variance matrices. In practice, you never have such
complete information. You have to estimate the distributions from "training
samples” selected from the g populations.

The difference between a training sample and a "target sample”, that is a
sample whose elements you might want to classify, is that in a training
sample you know which population or group each observed X comes from,
while you don’t know that for the target sample. For the types of problems
discussed earlier, training samples might derived from past records of
patients with a definitive diagnosis, from the actual bankruptcy history of a
sample of individuals in the recent past, or from samples of plant specimens
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that have been classified by experts.

In the most general case, when you can’t make any assumptions about the
distributions, you need methods of multivariate density estimation that
directly estimate f;(x). Since that is beyond the scope of this course, I will
look only at the multivariate normal case when you can assume £; = £, = ... =
= L.

We have seen that in this case, optimal discrimination rules are linear with
the rule depending on Wi, i = 1,...,g, and £ (and prior probabilities and costs).
[t seems natural use the "plug in" classification rule. That is, the rule found
by substituting for p; and £, the estimates fi; = X;, i = 1,....g and £ = Spooled =
S = (N-g)-1'5(n;-1)S; = (N-g)-TE, where E is the within-group MANOVA error
matrix. The resulting classification rules are almost certainly not optimal

since they will differ from the rules based on the unknown true values of
parameters.

An important problem is to estimate the TPM or the ECM for the rule. You

might think that all you need to do is to apply the estimated classification
rule to the training data and see how well it does, that is find the apparent
error rate,

APER = (number of x's misclassified by 70)/N

or the apparent cost. Unfortunately, this is almost always optimistic, in the
sense that you can expect the actual error rate or cost incurred when you
apply the rule to a different independent data set to be larger than when it

s applied to the training set. This is because, to some degree, the estimation
procedure customizes the classification rule to peculiarities of the training
samples which will not be present in a different data set. It is, in fact, a
hard problem to use the training sample to estimate the actual error rate of
an empirically derived rule.

Fisher Discriminant Functions

When the populations are multivariate normal with equal variance matrices,
the linear discriminant method given above requires the computation of g
linear functions. Actually you can get by with the f, = g - 1 linear functions
(29 - )%, (R4.7 - R4)'X. However, it may be possible to find a
classification rule based on a smaller number of functions that allows almost
as good classification as the minimum TPM rule. When p < g-1, you can in
fact exactly express the minimum TPM rule in terms of only p linear
functions. The approach is very similar to the determination of MANOVA
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canonical variables.

Let the g populations be Ny(H;, Z), ..., Ny(Hg, E), with prior probabilities py, ...,
Pg- Then H = >ip;H; be the prior expectation of X. For any linear function y =
2'x let pi(y) = Ely |Tti] = L), be its mean and c2(y) = VIy |Tti] = L'EQ be its
variance when x is known to come from 7t(;. Then the prior expectation of y is
Hy) =>"ipiMily) = L1, We start by seeking a single linear function y; = ;X
which maximally separates the populations, in the sense that it has the
largest possible non-centrality parameter

52(y) = Zipi{}ii(g) - F(g)}2/<52(g) = {Xipi (- (- el/ese
= Q'Boﬁ/Q‘ZQ, where BO = Zipi(}li‘m(pi‘m'-
Note By differs from B, in Johnson and Wichern (eq. 11-58 p. 629) which

tacitly assumes equal prior probabilities. Even when p; = py = ... = pq = g,
Bo as defined here differs from Johnson and Wichern's B, by a factor of 1/g.

Now 2'BoR/2°'E£Q is maximized by choosing £ = e;, where e; is the

eigenvector of By relative to £ (eigenvector of £-1By) corresponding to the
largest relative eigenvalue \;. With the usual normalization, e,;'£e; = 1, the

distribution of y;= €;'Xx when X comes from Tt; is Ni(e;’;,12). Hence the
posterior probability of 7t; based only on the value of Yy, is

P(TT |ye) = piexpl-(yy - &1 )2/21/(Z pjexpi-(y; - e'p)2/2}).

When p; = ... = pg, this implies that maximum TPM classification based on only
y; amounts to selecting the population 1t; with the smallest (y; - ;' ;)2 =
(e;’(x - W;))2, the square of the distance from y; to e; J;.

[f you now seek a second linear function, Y, of X, uncorrelated with y,, that

maximally separates the populations, you get y, = e,'X, where e, 1s the
eigenvector of By relative to £ corresponding to the second largest relative

eigenvalue \,. When X comes from T, Yy, is N(e, M;,12). Continuing, you can
find s = min(p, g-1) linear functions y; = €;'X where e; is the eigenvector of

By relative to £ which corresponds to the ith largest relative eigenvalue X;.

The non-centrality parameters of these linear functions are 82(y;) = X;. If p >
g-1, any additional linear functions y; = e;'X uncorrelated with yy,...,ys have

62(y;) = O since E(y; |TIJ-) = €;'}; = €'} does not depend on j. Hence, for i >s
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= min(g-1,p), y; is of no use in classifying X.

Variables y; = e;'X, ..., U5 = €'X are the Fisher discriminant functions and

are linear in X and contain all the linearly extracting information for
classification. They can be thought of as "true” rather than estimated
MANOVA canonical variables.

When g = 2 and s = 1, y; is proportional to &'x, where & = =-1(l; - H,).
The overall Mahalanobis distance of x from H; is
(X=J) & X-15) = Prcies(Ui - €M) + PsrcicplUi - €7 H))?

= Lr<iwslUi ~ €12+ Foi<ip(yi - € H)?
= Q]S(x) + RS'

The second term (R) is either missing (g-1 > p) or does not depend on j (g-1
< p) because e;"H = 0, i > s. Therefore the posterior probabilities given x are
P(T[J | X) = pjexp{—st(x)/2}/Z1<i<g piexp{—QiS(x)}.

Since Qjs(X) = Y 1<i<s(Yi? - 2(e;"W;) €;'X + 2¢y;), where ci; = (e;"[;)?/2, you can
express the posterior probabilities in terms of the s linear functions e;'X, 1 =
1, ..., s. Minimum TPM classification amounts to selecting 7(; with the

215153{(111" ey - Cij} + log(pj).

Note that 3 1.i<s(Ui - € 'H;)? is the squared Euclidean distance between the
vector y = [yy, ..., ys]' and Ely |TEJ-] = [e.....es'H;.

If N7 > X > 0> X >> Xy > ... > Ng >0, that is, the first r relative
eigenvalues are large when compared to the last s - r relative eigenvalues,
then you can expect that classification based on the r < s linear combinations
Ui, Yo, ..., Y alone will do almost as well as classification based on all the

Ui's which is equivalent to classification using all the x;’s.

16



Notes on Classification

The posterior probability of Tt; using only Y, ..., Yr is

P(ﬂj|g1 ..... yr) = piexp{-Q;r (x)72}/(2piexp{-Qi- (x)}),

where Q;r(X) = ¥ << (Yi - €'H1j)? = Z1515r{912 - 2(Hi'ejle;’x + 2Cij}-

P(TIJ- | Ys,....ys) on the data only through the r linear functions y; = e;'x, i =
T,..., r. Selecting the population 7(; with the smallest value of

> 1<i<ri(Jj'€)y; - cij} + log(p;) should be an "almost TPM" classification rule.

In practice, of course, you will need to estimate the unknown parameters.
The sample version of By is

go = ijj(x_j - Y_)(X_J - =)', where X=E ijjx_j.
Note: Johnson and Wichern don’t even try to estimate B,,. Instead they use
B:=H-:- ZJnJ(X_J - _)(X_J - le, where X = ZJnJX_J/N, N = Zjnj,
the among-groups hypothesis matrix from a one-way MANOVA. When p; =
n;/N, B can be considered an estimate of NBy. Whenn; =n; = ... =ng=n, B
can be considered and estimate of nB ;.

Let €;.....65 be the eigenvectors of By relative to S, then the estimated Fisher
discriminant functions are y; = e;'X.

[f you use the observed proportions ij = nj/Nin place of prior probabilities pj,
By becomes H/N = 5 ;(nj/N)(X; - X)(X; - X)". In that case, the estimated Fisher

discriminant functions are proportional to exactly the MANOVA canonical
variables. This is the only case Johnson and Wichern consider.

When you have no idea about the prior probabilities p;, estimating them by p; =
n;/N is sometimes a sensible thing to do. In that case, the estimated Fisher
discriminant functions are yi = €;'X = +/fs Z;, Where z; = ;"X is a MANOVA
canonical variable (; is an eigenvector of H relative to E). This is because
the relative eigenvectors €; of H/N relative to S = E/f, are proportional to the
relative eigenvectors ¥, of H relative to E, specifically e; = v/fo{;.

Using the first r of the estimated Fisher discriminant functions, you would
classify an observation x to the population with the largest value of

~

Z1Siir{(x_j'ei)g] - é}j} + IOQ(DJ), 6ij = (X_j'éi)2/2.
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Since y; = e;'x and ¢;; = (X;'€{)?/2,

Zuigr{(x_j'éi)gi - éij} = X_j‘{Z1gigréiéi'}x - Xj{E < «ei8} X572

= X_j‘M\rx - X_J'M\r_xj/2, where MA] = Z]ﬁiﬁréiéi"
Thus, letting, ¢;* = X;'MX;/2 = 1< Cij and &;" = MX], you would classify
according to the largest value of &;*'x - ¢;*, j = 1,....q.
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