Statistics 5401

THE UNIVERSITY OF MINNESOTA

September 17, 2005

Chi-Squared Q-Q plots to Assess Multivariate Normality

Suppose \mathbf{x}_1 , \mathbf{x}_2 ,..., \mathbf{x}_n is a random sample from a p-dimensional multivariate distribution with population (true) mean $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$.

Let $d_j^2 \equiv (\mathbf{x}_j - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1}(\mathbf{x}_j - \boldsymbol{\mu})$, j = 1,...,n, be the generalized squared distances of the data points from $\boldsymbol{\mu}$. The quantities $\{d_1^2, d_2^2, ..., d_n^2\}$ are independent and all have the same distribution so they constitute a random. You can use them to assess the multivariate normality of \mathbf{x} .

When **x** is $N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ (p-dimensional multivariate normal with mean $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$), $d^2 \equiv (\mathbf{x} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$ has the χ_p^2 distribution (chi-squared on p-degrees of freedom).

Putting these together, you can conclude that, when the x_j 's are a random sample from $N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, d_1^2 , d_2^2 , ..., d_n^2 are a random sample from a χ_p^2 distribution.

Suppose you know $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$. Then you can test H_0 : " \mathbf{x} is multivariate normal" by any test of the goodness-of-fit of $\{d_j^2\}$ to the χ_p^2 distribution, that is a test of H_0 : $d^2 \equiv (\mathbf{x} - \boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})$ is χ_p^2 . If the sample of d_j^2 's fails such a test, that is you reject H_0 , then you must also reject the null hypothesis you're really interested in, namely H_0 : \mathbf{x} is $N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. However, if the test fails to reject, this does not necessarily imply that \mathbf{x} is not $N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

A chi-squared *Q*-*Q* plot is one useful way informally to assess whether d^2 is distributed as χ_p^2 . It is similar to a *normal scores plot* that is often used to assess *univariate* normality. It consists of two steps:

- (a) Order the calculated $d_j^{2'}s$ in increasing order $d_{(1)}^2 < d_{(2)}^2 < \ldots < d_{(n)}^2$ (parenthesized subscripts are a standard notation to indicate that values are ordered). In MacAnova, you can order the $d_i^{2'}s$ using sort().
- (b) Plot the $d_{(j)}^{2'}s$ against the chi-squared probability points $\chi_p^2(1-q_j)$, j = 1, 2, ..., n, where the q_j are equally spaced probabilities between 0 and 1, say $q_j = (j-.5)/n$, j = 1, 2, ..., n. Here $\chi_p^2(\alpha)$ is the *upper* α -th probability point of χ_p^2 (chi-squared) on p degrees of freedom. You could also use $q_j = j/(n+1)$ spaced by 1/(n+1) on the probability side, but for consistency I will use $q_j = (j-.5)/n$, spaced by 1/n.

In MacAnova you can compute $q_1, q_2, ..., q_n$ by invchi((run(n)-.5)/n,p). Because the $d_{(j)}^{2'}$ s are ordered, a Q-Q plot always increases to the right. If the data are multivariate normal and d^2 is in fact χ_p^2 , the plot should be approximately a straight line through the origin with slope 1.

You should *always* include the origin (0,0) in the plot. You do this by including xmin:0, ymin:0 as arguments to the plotting command

In most cases, a plot of $d_{(j)} = \sqrt{\{d_{(j)}^2\}}$ against $\sqrt{\{\chi_p^2(1-q_j)\}}$ is preferable since there is less piling up

of points at the lower end. This also should be a straight line through the origin with slope 1 and its straightness is usually easier to judge than the plot of $d_{(j)}^2$.

This would be straightforward if you did know $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$. Unfortunately, except in rare cases, you *don't* know $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ and can't compute $d_{(j)}^2$. However, you can estimate $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ by $\hat{\boldsymbol{\mu}} = \overline{\mathbf{x}}$ and $\hat{\boldsymbol{\Sigma}} = \mathbf{S}$, where \mathbf{S} is the unbiased estimate of $\boldsymbol{\Sigma}$,. You can then compute $\hat{d}_{(1)}^2 \leq \hat{d}_{(2)}^2 \leq \ldots \leq \hat{d}_{(n)}^2$, where the $\hat{d}_{(j)}^2$ are the ordered values of the *estimated* squared generalized distances $\hat{d}_j^2 = (\mathbf{x}_j - \overline{\mathbf{x}})'\mathbf{S}^{-1}(\mathbf{x}_j - \overline{\mathbf{x}})$.

Although the $\hat{d}_j^{2'}$ s are not distributed *exactly* as χ_p^2 under the null hypotheses of multivariate normality, and are not fully independent, a χ_p^2 Q-Q plot or a $\sqrt{(\chi_p^2)}$ Q-Q plot based on them should still be approximately linear when **x** is N_p, at least when n is not too small.

When x in multivariate normal, so is any subset of variables. So you can sometimes get further insight by testing the multivariate normality of one or more subsets of q 1 you can make χ_q^2 or $\sqrt{(\chi_q^2)}$ Q-Q plots. If q = 1, you can assess marginal univariate normality by making a **normal scores plot**, computing normal scores by MacAnova function rankits().

When your analysis involves a **multivariate regression** (p > 1 dependent variables) or **multivariate analysis of variance** (MANOVA), you can assess normality by any of these procedures applied to the *residuals* from the model fit. χ^2 Q-Q plots of residuals generalize to the multivariate case the common use of normal scores plots of univariate residuals.

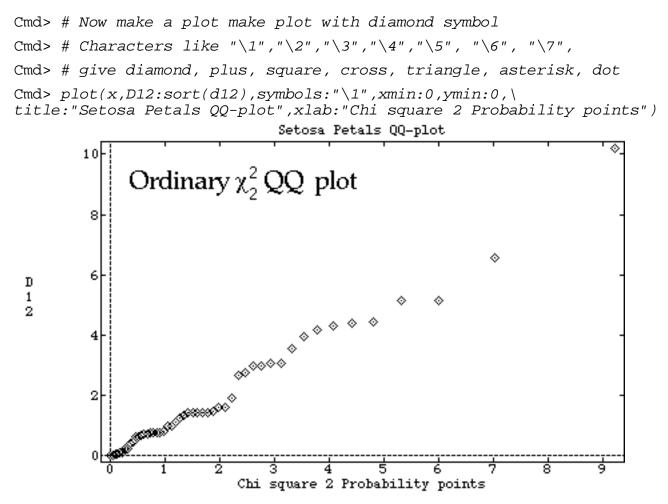
The following MacAnova output illustrates the use of a Q-Q plot to examine the multivariate normality of the Fisher iris data from Table 11.5 on p. 566 of Johnson & Wichern. These consist of four measurements, x_1 = sepal width, x_2 = sepal length, x_3 = petal width, and x_4 = petal length, on 50 flowers from each of three varieties of iris, *I. setosa*, *I. versacolor*, and *I. virginica*. The MacAnova session makes use of macro distcomp() in the standard macro file Mulvar.mac. distcomp().

```
Cmd> y <- read("","t11_05") #read from JWData5.txt
) Data from Table 11.5 p. 657-658 in
) Applied Mulivariate Statistical Analysis, 5th Edition
) by Richard A. Johnson and Dean W. Wichern, Prentice Hall, 2002
) These data were edited from file T11-5.DAT on disk from book
) The variety number was moved to column 1
) Measurements on petals of 4 varieties of Iris. Originally published in
) R. A. Fisher, The use of mltiple measurements in taxonomic problems,
) Annals of Eugenics, 7 (1936) 179-198</pre>
```

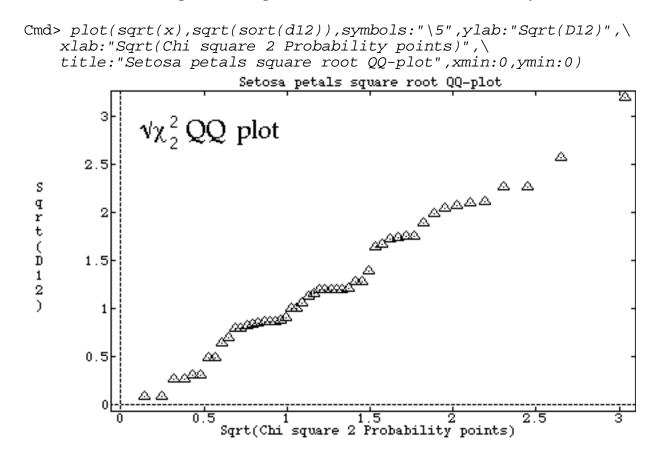
Chi-Squared Q-Q plots to Assess Multivariate Normality

```
) Col. 1: variety number (1 = I. setosa, 2 = I. versicolor,
                           3 = I. virginica)
)
) Col. 2: x1 = sepal length
) Col. 3: x^2 = sepal width
) Col. 4: x3 = petal length
) Col. 5: x4 = petal width
) Rows 1-50:
) Rows 1-50: group 1 = Iris setosa
) Rows 51-100: group 2 = Iris versicolor in
) Rows 101-150: group 3 = Iris virginica in
Read from file "TP1:Stat5401:Stat5401F04:Data:JWData5.txt"
Cmd> varieties <- y[,1]
Cmd> setosa <- y[varieties==1,-1] # last 4 cols for variety 1
Cmd> dim(setosa) # dimensions
(1)
              50
                             4
Cmd> usage(distcomp)
distcomp(y), REAL matrix y with no MISSING values
Cmd > d12 < - distcomp(setosa[,vector(1,2)])# distances based on x1, x2
Cmd> n <- nrows(setosa) # number cases is 1st dimension of setosa
Cmd> q <- ncols(setosa) # 2
Cmd> x <- invchi((run(n)-.5)/n,q) # chi-squared prob points
```

Chi-Squared Q-Q plots to Assess Multivariate Normality



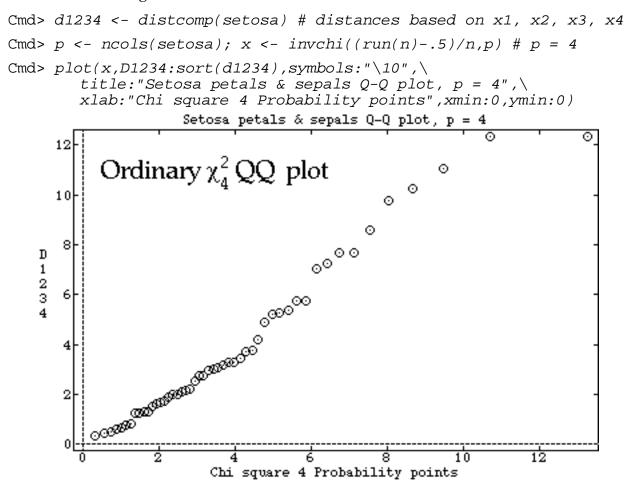
Cmd> # Square root gamma plot is often easer to see patterns in Note the use of xmin:0, ymin:0 to ensure that the point (0,0) is in the plot.

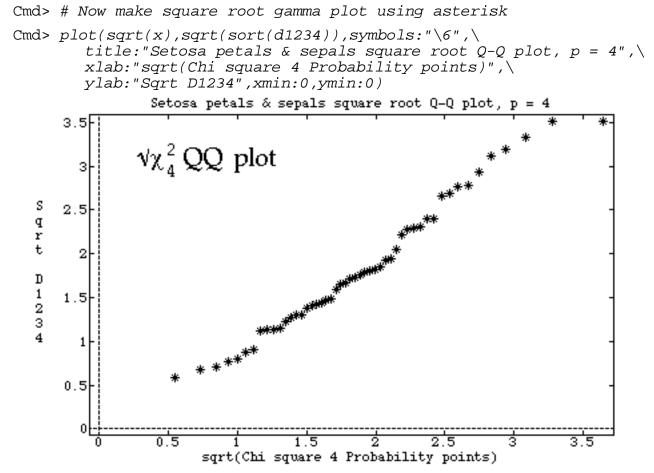


Plotting square roots avoids the crowding of points at the lower end so you can see better what is going on.

Chi-Squared Q-Q plots to Assess Multivariate Normality

Now do the same using all four variables.

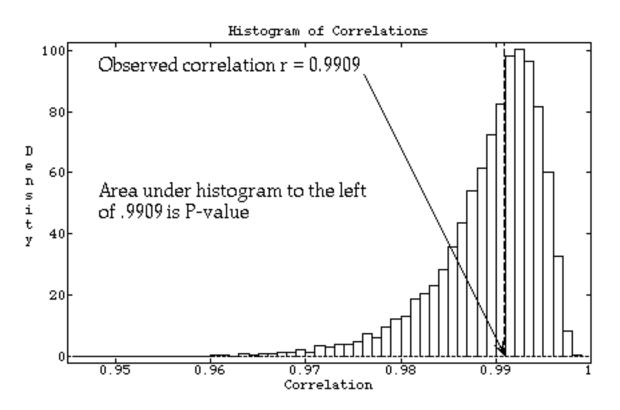




Examining the Q-Q plot does not constitute a true significance test. However, you can base a formal significance test on it. By analogy with the correlation test of univariate normality (a close relative of the Wilk-Shapiro test), a possible test is the correlation r between the ordered probability points (horizontal axis in the plots) and the ordered distances (vertical axis int he plots. You reject normality when r is small enough since this indicates departure from a straight line.

This seems pretty high and thus possibly non-significant, but critical values or a P-value you can't tell that it's not significantly low. However, you can use simulation to *estimate* the P-value. Using a computer, you can (a) generate M multivariate normal samples, where M is large and (b) compute r ffrom each sample. You can then estimate the P-value by computing the proportion that are smaller than .99086 which estimates the the probability of a value smaller than .99086. Here's how to do it in MacAnova.

Cmd> hist(R,vector(.94,.001),\
 title:"Histogram of Correlations",xlab:"Correlation", show:F)
Cmd> addlines(rep(r,2),vector(0,110),linetype:2) #line at observed r



The dashed line marks the observed value .9909. You can compute an estimated P-value by

Cmd> $sum(R \le r)/M$ # estimated P-value (1,1) 0.5102

This shows no evidence of non-normality. $sum(R \le r)$ counts the number of elements of R less than or equal to the observed value.

Incidentally, since the simulation used exactly multivariate normal data, this does not assume that the distances are a random sample from χ_p^2 .

Also, although the simulation generated multivariate normal data with population variance matrix I_p , there is no loss of generality. From a multivariate normal vector **x** with variance matrix I_p you can generate multivariate vector **y** with any covariance matrix Σ as $\mathbf{y} = \mathbf{A}'\mathbf{x}$ where **A** satisfies $\mathbf{A}'\mathbf{A} = \Sigma$, and it is always possible to find such a matrix **A**. But the distances computed from $\mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_n$ are identical to those computed from $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n$. Thus the distribution of the distances does not depend on Σ .