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Chi-Squared Q-Q plots to Assess Multivariate Normality

Suppose x1, x2,..., xn is a random sample from a p-dimensional multivariate distribution with

population (true) mean µµµµ and covariance matrix ΣΣΣΣ.

Let dj
2 ≡ (xj - µµµµ)'ΣΣΣΣ-1(xj - µµµµ), j = 1,...,n, be the generalized squared distances of the data points

from µµµµ.  The quantities {d1
2, d2

2, ..., dn
2} are independent and all have the same distribution so

they constitute a random.  You can use them to assess the multivariate normality of x. 
 
When x is Np(µµµµ,ΣΣΣΣ) (p-dimensional multivariate normal with mean µµµµ and covariance matrix

ΣΣΣΣ), d2 ≡ (x - µµµµ)'ΣΣΣΣ-1(x  - µµµµ) has the χp
2 distribution (chi-squared on p-degrees of freedom).

Putting these together, you can conclude that, when the xj’s are a random sample from

Np(µµµµ,ΣΣΣΣ), d1
2, d2

2, ..., dn
2 are a random sample from a χp

2 distribution.

Suppose you know µµµµ and ΣΣΣΣ.  Then you can test H0: "x is multivariate normal" by any test of

the goodness-of-fit of {dj
2} to the χp

2 distribution, that is a test of H0: d
2 ≡ (x - µµµµ)'ΣΣΣΣ-1(x  - µµµµ) is χp

2.

If the sample of dj
2’s fails such a test, that is you reject H0, then you must also reject the null

hypothesis you’re really interested in, namely H0: x is Np(µµµµ,ΣΣΣΣ).  However, if the test fails to

reject, this does not necessarily imply that x is not Np(µµµµ,ΣΣΣΣ).

A chi-squared Q-Q plot is one useful way informally to assess whether d2 is distributed as

χp
2.  It is similar to a normal scores plot that is often used to assess univariate normality.  It

consists of two steps:

(a) Order the calculated dj
2’s in increasing order d(1)

2 < d(2)
2 < . . . < d(n)

2 (parenthesized
subscripts are a standard notation to indicate that values are ordered).  In MacAnova,

you can order the dj
2’s using sort().

(b) Plot the d(j)
2’s against the chi-squared probability points χp

2(1-qj), j = 1,2,...,n, where the qj

are equally spaced probabilities between 0 and 1, say qj = (j–.5)/n, j = 1, 2,..., n.  Here χp
2(α)

is the upper α-th probability point of χp
2 (chi-squared) on p degrees of freedom.  You

could also use qj = j/(n+1) spaced by 1/(n+1) on the probability side, but for consistency I
will use qj = (j–.5)/n, spaced by 1/n.

In MacAnova you can compute q1, q2, ..., qn by invchi((run(n)-.5)/n,p).  Because the

d(j)
2’s are ordered, a Q-Q plot always increases to the right.  If the data are multivariate normal

and d2 is in fact χp
2, the plot should be approximately a straight line through the origin with

slope 1.

You should always include the origin (0,0) in the plot.  You do this by including xmin:0,
ymin:0 as arguments to the plotting command

In most cases, a plot of d(j) = √{d(j)
2} against √{χp

2(1-qj)} is preferable since there is less piling up
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of points at the lower end.  This also should be a straight line through the origin with slope 1

and its straightness is usually easier to judge than the plot of d(j)
2.  

This would be straightforward if you did know µµµµ and ΣΣΣΣ.  Unfortunately, except in rare cases,

you don’t know µµµµ and ΣΣΣΣ and can’t compute d(j)
2.  However, you can estimate µµµµ and ΣΣΣΣ by   ̂µ  =

  x  and   ̂Σ  = S, where S is the unbiased estimate of ΣΣΣΣ,.  You can then compute   ̂d (1)
2 <   ̂d (2)

2 < . . .

<   ̂d (n)
2, where the   ̂d (j)

2 are the ordered values of the estimated squared generalized distances

  ̂d j
2 = (xj -   x )'S-1(xj -   x ).

Although the   ̂d j
2’s are not distributed exactly as χp

2 under the null hypotheses of

multivariate normality, and are not fully independent, a χp
2 Q-Q plot or a √(χp

2)  Q-Q plot
based on them should still be approximately linear when x is Np, at least when n is not too
small.

When x  in multivariate normal, so is any subset of variables.  So you can sometimes get
further insight by testing the multivariate normality of one or more subsets of q < p of the

variables in x.  If q > 1 you can make χq
2 or √(χq

2) Q-Q plots.  If q = 1, you can assess marginal
univariate normality by making a normal scores plot, computing normal scores by
MacAnova function rankits().

When your analysis involves a multivariate regression (p > 1 dependent variables) or
multivariate analysis of variance (MANOVA), you can assess normality by any of these

procedures applied to the residuals from the model fit.  χ2 Q-Q plots of residuals generalize
to the multivariate case the common use of normal scores plots of univariate residuals.

The following MacAnova output illustrates the use of a Q-Q plot to examine the
multivariate normality of the Fisher iris data from Table 11.5 on p. 566 of Johnson &
Wichern.  These consist of four measurements, x1 = sepal width, x2 = sepal length, x3 =  petal
width, and x4 = petal length, on 50 flowers from each of three varieties of iris, I. setosa, I.
versacolor, and I. virginica.  The MacAnova session makes use of macro distcomp() in
the standard macro file Mulvar.mac.  distcomp().

Cmd> y <- read("","t11_05")  #read from JWData5.txt
) Data from Table 11.5 p. 657-658 in
) Applied Mulivariate Statistical Analysis, 5th Edition
) by Richard A. Johnson and Dean W. Wichern, Prentice Hall, 2002
) These data were edited from file T11-5.DAT on disk from book
) The variety number was moved to column 1
) Measurements on petals of 4 varieties of Iris. Originally published
in
) R. A. Fisher, The use of mltiple measurements in taxonomic problems,
) Annals of Eugenics, 7 (1936) 179-198
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) Col. 1: variety number (1 = I. setosa, 2 = I. versicolor,
)                         3 = I. virginica)
) Col. 2: x1 = sepal length
) Col. 3: x2 = sepal width
) Col. 4: x3 = petal length
) Col. 5: x4 = petal width
) Rows 1-50:    group 1 = Iris setosa
) Rows 51-100:  group 2 = Iris versicolor in
) Rows 101-150: group 3 = Iris virginica in
Read from file "TP1:Stat5401:Stat5401F04:Data:JWData5.txt"

Cmd> varieties <- y[,1]

Cmd> setosa <- y[varieties==1,-1] # last 4 cols for variety 1

Cmd> dim(setosa) # dimensions
(1)           50            4

Cmd> usage(distcomp)
distcomp(y), REAL matrix y with no MISSING values

Cmd> d12 <- distcomp(setosa[,vector(1,2)])# distances based on x1, x2

Cmd> n <- nrows(setosa) # number cases is 1st dimension of setosa

Cmd> q <- ncols(setosa) # 2 

Cmd> x <- invchi((run(n)-.5)/n,q) # chi-squared prob points

3



Chi-Squared Q-Q plots to Assess Multivariate Normality

Cmd> # Now make a plot make plot with diamond symbol

Cmd> # Characters like " \1"," \2"," \3"," \4"," \5", " \6", " \7",

Cmd> # give diamond, plus, square, cross, triangle, asterisk, dot

Cmd> plot(x,D12:sort(d12),symbols:" \1",xmin:0,ymin:0,\
title:"Setosa Petals QQ-plot",xlab:"Chi square 2 Probability points")

Cmd> # Square root gamma plot is often easer to see patterns in

Note the use of xmin:0,ymin:0 to ensure that the point (0,0) is in the plot.
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Cmd> plot(sqrt(x),sqrt(sort(d12)),symbols:"\5",ylab:"Sqrt(D12)", \
xlab:"Sqrt(Chi square 2 Probability points)", \
title:"Setosa petals square root QQ-plot",xmin:0,ymin:0)

Plotting square roots avoids the crowding of points at the lower end so you can see better
what is going on.
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Now do the same using all four variables.

Cmd> d1234 <- distcomp(setosa) # distances based on x1, x2, x3, x4

Cmd> p <- ncols(setosa); x <- invchi((run(n)-.5)/n,p) # p = 4

Cmd> plot(x,D1234:sort(d1234),symbols:" \10", \
title:"Setosa petals & sepals Q-Q plot, p = 4", \
xlab:"Chi square 4 Probability points",xmin:0,ymin:0)
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Cmd> # Now make square root gamma plot using asterisk

Cmd> plot(sqrt(x),sqrt(sort(d1234)),symbols:" \6", \
title:"Setosa petals & sepals square root Q-Q plot, p = 4", \
xlab:"sqrt(Chi square 4 Probability points)", \
ylab:"Sqrt D1234",xmin:0,ymin:0)

Examining the Q-Q plot does not constitute a true significance test.  However, you can base a
formal significance test on it.  By analogy with the correlation test of univariate normality (a
close relative of the Wilk-Shapiro test), a possible test is the correlation r between the ordered
probability points (horizontal axis in the plots) and the ordered distances (vertical axis int he
plots.  You reject normality when r is small enough since this indicates departure from a
straight line.

Cmd> r <- cor(sort(sqrt(d1234)),sqrt(x))[1,2]; r
(1,1)      0.99086

This seems pretty high and thus possibly non-significant, but critical values or a P-value you
can’t tell that it’s not significantly low.  However, you can use simulation to estimate the P-
value.  Using a computer, you can (a) generate M multivariate normal samples, where M is
large and (b) compute r ffrom each sample.  You can then estimate the P-value by computing
the proportion that are smaller than .99086 which estimates the the probability of a value
smaller than .99086.  Here’s how to do it in MacAnova.

Cmd> M <- 10000;R <- rep(0,M) # place to put simulated r's

Cmd> for(i,1,M){ # compute M correlations
R[i] <- cor(sqrt(sort(distcomp(matrix(rnorm(n*p),n)))),\

sqrt(x))[1,2];;}

Cmd> min(R)# minimum
(1)      0.94608
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Cmd> hist(R,vector(.94,.001),\
title:"Histogram of Correlations",xlab:"Correlation", show:F)

Cmd> addlines(rep(r,2),vector(0,110),linetype:2) #line at observed r

The dashed line marks the observed value .9909.  You can compute an estimated P-value by

Cmd> sum(R <= r)/M  # estimated P-value
(1,1)       0.5102

This shows no evidence of non-normality.  sum(R <= r) counts the number of elements of
R less than or equal to the observed value.

Incidentally, since the simulation used exactly multivariate normal data, this does not

assume that the distances are a random sample from χp
2.

Also, although the simulation generated multivariate normal data with population variance
matrix Ip, there is no loss of generality.  From a multivariate normal vector x with variance

matrix Ip you can generate multivariate vector y with any covariance matrix ΣΣΣΣ as y = A'x

where A satisfies A'A = ΣΣΣΣ, and it is always possible to find such a matrix A.  But the distances
computed from y1, y2, ..., yn are identical to those computed from x1, x2, ..., xn.  Thus the

distribution of the distances does not depend on ΣΣΣΣ.
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