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Chi-Squared Q-Q plots to Assess Multivariate Normality

Suppose X;, X,,..., X, is a random sample from a p-dimensional multivariate distribution with

population (true) mean M and covariance matrix Z.

Let dj2 = (x;- |.1)'Z'1(xj - M), j = 1,...n, be the generalized squared distances of the data points

from Y. The quantities {d,? d,? ..., d,*} are independent and all have the same distribution so
they constitute a random. You can use them to assess the multivariate normality of x.

When x is N, (K,Z) (p-dimensional multivariate normal with mean M and covariance matrix
3), d*>= (x- W'Z(x - W) has the )(p2 distribution (chi-squared on p-degrees of freedom).

j’
Np(u,Z), dlz, dzz, ey dn2 are a random sample from a sz distribution.

Putting these together, you can conclude that, when the x;’s are a random sample from

Suppose you know W and Z. Then you can test Hj: "x is multivariate normal" by any test of
the goodness-of-fit of {djz} to the sz distribution, that is a test of Hy: d* = (x - W)'Z'(x - W) is sz_
If the sample of djz’s fails such a test, that is you reject H;, then you must also reject the null
hypothesis you're really interested in, namely H,: x is N,(1,Z). However, if the test fails to
reject, this does not necessarily imply that x is not N,(H,2).

A chi-squared Q-Q plot is one useful way informally to assess whether d” is distributed as
sz- It is similar to a normal scores plot that is often used to assess univariate normality. It
consists of two steps:

(@) Order the calculated djz’s in increasing order d(l)2 < d(z)2 <...< d(n)2 (parenthesized
subscripts are a standard notation to indicate that values are ordered). In MacAnova,
you can order the djz’s using sort ().

(b) Plot the d(j)z’s against the chi-squared probability points )(pz(l-q]-), j=12,...,n, where the q
are equally spaced probabilities between 0 and 1, say q; = (j-.5)/n,j =1, 2,..., n. Here xpz(O()
is the upper a-th probability point of sz (chi-squared) on p degrees of freedom. You
could also use g; = j/(n+1) spaced by 1/(n+1) on the probability side, but for consistency I
will use q; = (j—5)/n, spaced by 1/n.

In MacAnova you can compute q;, q, ..., q, by i nvchi ((run(n)-.5)/n, p). Because the

d(j)z’s are ordered, a Q-Q plot always increases to the right. If the data are multivariate normal

alnd d21 is in fact XPZ, the plot should be approximately a straight line through the origin with

slope 1.

You should always include the origin (0,0) in the plot. You do this by including xm n: 0,
ym n: 0 as arguments to the plotting command

In most cases, a plot of dj, =V {d(j)z} against v {xpz(l-qj)} is preferable since there is less piling up
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of points at the lower end. This also should be a straight line through the origin with slope 1
and its straightness is usually easier to judge than the plot of d(j)z.

This would be straightforward if you did know M and Z. Unfortunately, except in rare cases,
you don’t know M and Z and can’t compute d(j)z. However, you can estimate p and Z by [i =

X and 2 =S, where S is the unbiased estimate of Z,. You can then compute 61(1)2 < 61(2)2 <...
< a(nf, where the 61(]-)2 are the ordered values of the estimated squared generalized distances
d?=(x-%)'S7(x - X).

Although the ajz’s are not distributed exactly as Xp2 under the null hypotheses of

multivariate normality, and are not fully independent, a )(p2 Q-QplotoraV (sz) Q-Q plot
based on them should still be approximately linear when x is N, at least when n is not too
small.

When x in multivariate normal, so is any subset of variables. So you can sometimes get
further insight by testing the multivariate normality of one or more subsets of q < p of the

variables in x. If q > 1 you can make )(q2 orV (qu) Q-Q plots. If q = 1, you can assess marginal
univariate normality by making a normal scores plot, computing normal scores by
MacAnova function ranki t s() .

When your analysis involves a multivariate regression (p > 1 dependent variables) or
multivariate analysis of variance (MANOVA), you can assess normality by any of these

procedures applied to the residuals from the model fit. x> Q-Q plots of residuals generalize
to the multivariate case the common use of normal scores plots of univariate residuals.

The following MacAnova output illustrates the use of a Q-Q plot to examine the
multivariate normality of the Fisher iris data from Table 11.5 on p. 566 of Johnson &
Wichern. These consist of four measurements, x; = sepal width, x, = sepal length, x; = petal
width, and x, = petal length, on 50 flowers from each of three varieties of iris, 1. setosa, I.
versacolor, and I. virginica. The MacAnova session makes use of macro di st conp() in
the standard macro file Mulvar.mac. di st conp() .

Omd> y <-read(","t11_05") #read from JWDatab.txt

) Data from Table 11.5 p. 657-658 in

) Applied Miulivariate Statistical Analysis, 5th Edition

) by Richard A Johnson and Dean W Wchern, Prentice Hall, 2002

) These data were edited fromfile T11-5. DAT on di sk from book

) The variety nunber was noved to colum 1

) Measurenents on petals of 4 varieties of Iris. Oiginally published
n

) R A Fisher, The use of mtiple nmeasurenents in taxonom c probl ens,
) Annals of Eugenics, 7 (1936) 179-198
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= 1. set osa, 2 = 1. versicolor,
= 1. virginica)
i S setosa

is versicolor in
s virginica in
: St at 5401F04: Dat a: JWbat a5. t xt ™

setosa <- y[varieties==1,-1] # last 4 cols for variety 1

4

REAL matrix y with no M SSI NG val ues

d12 <- distcomp(setosa[,vector(1,2)])# distances based on x1, x2
n <- nrows(setosa) # number cases is 1st dimension of setosa

) Col. 1: variety nunber (1
) 3
) Col. 2: x1 = sepal length
) Col. 3: x2 = sepal width
) Col. 4: x3 = petal length
) Col. 5: x4 = petal wdth
) Rows 1-50: group 1 = |
) Rows 51-100: group 2 = |
) Rows 101-150: group 3 = |
Read fromfile "TP1: St at 540
Crd> varieties <- y[,1]

Cd>

Crd> dim(setosa) # dimensions

(1) 50

Crd> usage(distcomp)

di stconp(y),

Cd>

Cd>

Crd> g <- ncols(setosa) # 2

Crd>

X <- invchi((run(n)-.5)/n,q) # chi-squared prob points
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Crd> # Now make a plot make plot with diamond symbol

Ond> # Characters like " L A N T N ¥ - A N - A W A
Crd> # give diamond, plus, square, cross, triangle, asterisk, dot
Crd> plot(x,D12:sort(d12),symbols:" \ 1", xmin:0,ymin:0,\

title:"Setosa Petals QQ-plot" xlab:"Chi square 2 Probability points™)
Setosa Petals QOQ-plot
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Chi square 2 Probability points
Crd> # Square root gamma plot is often easer to see patterns in

Note the use of xm n: 0, ym n: O to ensure that the point (0,0) is in the plot.
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Crd> plot(sqgrt(x),sqrt(sort(d12)),symbols:"\5",ylab:"Sqgrt(D12)", \
xlab:"Sqrt(Chi square 2 Probability points)”, \
title:"Setosa petals square root QQ-plot",xmin:0,ymin:0)

Setosa petals square root QQ-plot
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Sgrt(Chi =gquare 2 Prohahility points)

Plotting square roots avoids the crowding of points at the lower end so you can see better
what is going on.
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Now do the same using all four variables.

Crd> d1234 <- distcomp(setosa) # distances based on x1, x2, X3, x4
CGrd> p <- ncols(setosa); x <- invchi((run(n)-.5)/n,p) #p=4

Crd> plot(x,D1234:sort(d1234),symbols:" \ 107, \
title:"Setosa petals & sepals Q-Q plot, p = 4", \
xlab:"Chi square 4 Probability points",xmin:0,ymin:0)

Setosa petals & sepals Q-0 plot, p = 4

Ordinary };i Q0 plot ®
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Crd> # Now make square root gamma plot using asterisk

Crd> plot(sqrt(x),sqrt(sort(d1234)),symbols:" \ 6", \
title:"Setosa petals & sepals square root Q-Q plot, p = 4", \
xlab:"sqrt(Chi square 4 Probability points)”, \

ylab:"Sgrt D1234",xmin:0,ymin:0)
Setosa petals & sepals square root -0 plokt, p = 4
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Examining the Q-Q plot does not constitute a true significance test. However, you can base a
formal significance test on it. By analogy with the correlation test of univariate normality (a
close relative of the Wilk-Shapiro test), a possible test is the correlation r between the ordered
probability points (horizontal axis in the plots) and the ordered distances (vertical axis int he
plots. You reject normality when r is small enough since this indicates departure from a
straight line.

Cmd> r<- cor(sort(sqrt(d1234)) sqrt(x))[1,2]; r

(1,1) 0. 990
This seems pretty high and thus possibly non-significant, but critical values or a P-value you
can’t tell that it’s not significantly low. However, you can use simulation to estimate the P-
value. Using a computer, you can (a) generate M multivariate normal samples, where M is
large and (b) compute r ffrom each sample. You can then estimate the P-value by computing
the proportion that are smaller than .99086 which estimates the the probability of a value
smaller than .99086. Here’s how to do it in MacAnova.

Crd> M <- 10000;R <- rep(0,M) # place to put simulated r's

Crd> for(i,1,M¥{ # compute M correlations
R[i] <- cor(sgrt(sort(distcomp(matrix(rnorm(n*p),n)))),\
sart(x))[1,2];:}
Crd> min(R)# minimum
(1) 0. 94608
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Crd> hist(R,vector(.94,.001),\
title:"Histogram of Correlations”,xlab:"Correlation”, show:F)

Crd> addlines(rep(r,2),vector(0,110),linetype:2) #line at observed r

Hiztogram of Correlations
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The dashed line marks the observed value .9909. You can compute an estimated P-value by

Crd> sum(R <=r)/M # estimated P-val ue
(1,1) 0. 5102

This shows no evidence of non-normality. sun{R <= r) counts the number of elements of
R less than or equal to the observed value.

Incidentally, since the simulation used exactly multivariate normal data, this does not
assume that the distances are a random sample from sz.

Also, although the simulation generated multivariate normal data with population variance
matrix I, there is no loss of generality. From a multivariate normal vector x with variance
matrix I, you can generate multivariate vector y with any covariance matrix 2 as y = A'x

where A satisfies A'A = Z, and it is always possible to find such a matrix A. But the distances
computed from y;, y,, ..., ¥, are identical to those computed from x,, x,, ..., x,. Thus the

distribution of the distances does not depend on Z.



