
THE UNIVERSITY OF MINNESOTA
Statistics 5401                                                                                                    November 14, 2005

Assignment Sheet No. 6

Reading

Week of October 31 - November 4: J&W, Chapter 8
Week of November 7 - 11: J&W Sec 9.1 - 9.6
Week of November 14 - 18; J&W, Chapter 10
Week of November 21 - 23; J&W, Sec. 11.1 - 11.4
Week of November 28 - December 2; remainder of Chapter 11, Sec. 12.1-12.3
Week of December 5 - 9 J&W, Chapter 12

Written Assignment (due in class Friday, November 18)
Files cbspots.txt  and cbbones.txt  are available on the class web page.

1.  Here some lines excerpted from matrix spots  on file cbspots.txt

spots          50     20 format labels ended
) Density measurements on 19 identifiable spots on each of 50 auto-
) radiographs, each spot corresponding to a particular (probably
) unknown) protein.
)
) The data in each row was derived from the blood of a rat subjected to
) a treatment expected to affect its thyroid hormones.
) There were 10 treatments in all, including a control (treatment 2).
)
) Col. 1: trt = treatment number (1-10)
) Col. 2-20: density measurements on spots 1-19.
)
) A 50 by 10 matrix of indicator dummy variables can be computed in
) MacAnova by
)  Cmd> dummys <- 1*(spots[,1] == run(10)')
) A 50 by 9 matrix of contrast dummy variables (values 1, 0 or -1)
) comparing each group with group 10 can be computed from dummys by
)  Cmd> design <- dummys[,-10] - dummys[,10]
) This contrast matrix is also available in this file as matrix 'design'
) You can read it by
)  Cmd> design <- matread("cbspots.txt","design")
 1   0   0   0   0  448  29  20 65  12    0  892 491 122 399  58  0 140 195 396
 1   0   6   6   0  683  43   3 49  12   16  928 434 126 324  63  0 171 214 472
 1   0   5   0   4  387  50  11 22  36   22  875 231 128 378  28  7 109 160 343
 1   0   8   7   0  558  63   7 46  56   36  925 207 245 304  75  0  62 175 408
 2 214  96  44 262  323 178 181  7 106 2482  515 179  55 164  37  0  41 137 125
 2 259 198  48 202  596 160 182 11 194 2589  498 204 124 225  49  0 118 175 174
 2 247 182  53 224  663 140 192 19 131 2678  610 112 111 176  50  0  61 208 172
 2 274 148  50 217  704 208 134  8  70 2669  635  45  54 251  57  0  76 240 137
 2 270 149  33 230  694 164 154 30  70 1866  558 201  65 155  46  0  76 227 218
 2 242 188  36 220  724 202 138 29  72 2110  482 106  53 287  36  0  53 219 137
 2 293  97  43 213  687 188 137 37  71 2138  446 127  47 311  46  0  58 239 151
 2 189 208  30 203  735 203 162 25 167 2053  674 123  50 217  50  0  92 201 191
 2 263 211  58 212  714 217 142 25 164 1916  535 118 108 249  73  0 136 254 199
 2 219 200  51 215  683 169 133 12 171 2390  554  59 143 256  63  3 117 166 180
 2 208 203  64 196  691 206 145 12  86 1930  511  93  58 152  56  0  97 186 163
 3 180  69  22 188  659 130 138 21   2  632 1110 443 381 339  51  0  67  97 253
 . ... ...  .. ...  ... ... ... .. ... .... .... ... ... ...  .. ..  .. ... ...
 . ... ...  .. ...  ... ... ... .. ... .... .... ... ... ...  .. ..  .. ... ...
 9 349 204  88 244  186 328 130 38  79 1147  256  54  36 387  75  0  52 202 161
10 215 468 124 134  101 477 202  9 688 1151  363 141  28 124  55  0 100 298 191

1



STAT 5401 Assignment Sheet No. 6

10 317 437 150 147  119 659 131  7 527 1745  393 134  37 107  48  0  70 219 155
10 311 285 158 122  110 365 180 13 639  966  306 127  51 109  45  0  94 167 113
10 283 368 106 150  144 682 159  4 703 1202  274 117  42  92  77  0  74 211 183

The data arose in a endocrinology study of the effects of 9 treatments on the blood proteins
of rats.  Each of the p = 19 variables is proportional to to the density of a spot on an
autoradiogram.  Treatment 2 corresponds to a control group which received no treatment.
The interest was in seeing how well the variables could distinguish among the treatments
and to determine which were the more important proteins (spots) from this point of view.

The data should be analyzed in terms of the scale log(y+1) so as to stabilize variances.

(a)  Test the hypothesis that the 10 treatment groups have the same spot densities using
sequential F tests in the order the responses appear in the file.  You can use macro seqF()
in the revised Mulvar.mac  macro file to check your results, but you should compute the
first 3 sequential F’s using anova()  as illustrated in Lecture  21 (10/25/04) even if fewer
would allow you to determine whether the hypothesis could be rejected.

(b)  By an analysis of covariance, test the hypothesis that spots 10 through 19 do not
differentiate among the treatment groups after adjusting for spots 1 – 9.

(c)  Compute the first 3 MANOVA canonical variables z1, z2, and z3, for these data and make
scatter plots of z2 vs z1, z3 vs z1, and z3 vs z2.

2.  In file cbbones.txt  are all of the data described in J&W Example 9.14 on p. 558.  They
consist of 6 bone measurements on 276 White Leghorn chickens.  Here is a listing of the
header on the matrix and the first three lines of data:

bonedata      276      6 format labels
) Bone measurements on n = 276 outbred female chickens, all in mm.
) Col. 1:  skull length
) Col. 2:  skull breadth
) Col. 3:  femur length (leg bone)
) Col. 4:  tibia length (leg bone)
) Col. 5:  humerus length (wing bone)
) Col. 6:  ulna length (wing bone)
)"3x%lf %lf %lf %lf %lf %lf"
(3x,3f5.1,f6.1,2f5.1)
  3 40.3 31.0 80.3 116.5 78.6 73.8
219 41.0 31.0 77.4 119.0 74.7 70.8
147 40.3 30.3 84.5 125.5 79.3 73.6

 . . . . . . . . . . . . . . . .
The data have been reordered in random order.  The first item on each data line (which is
omitted by read() ) is the original case number.

An error in the original data has been corrected.

(a)  Use appropriate techniques to identify any remaining outliers.  This can involve
bivariate plots, rankit plots, and chi-squared Q-Q plots.  So that subsequent analyses are
consistent, do not eliminate the outliers.

(b)  Use the singular value decomposition of the data matrix with means subtracted to find
the best rank 2 approximation to the data matrix.  Print out only the first 10 and last 10 rows
of the approximation.  Also print out the first and last 10 rows of t1L1 and t2L2 (tj the
singular values and Lj the left singular vectors). Make plots against case number of the
residuals from the approximation for each variable similar to those in Lecture 24, and a plot
against case number of the sum of squared residuals for each case.
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(c)  Determine two sets of principal components, one set based on the sample variance
matrix and the other on the sample correlation matrix.  Rescale the coefficients of the latter
so that they may be directly applied to the original measurements.  That is, find vectors v1 =
[v11,...,v61]', v2 = [v12,...,v62]', ... of coefficients vij such that the jth principal component is vj'y

= ∑1≤i≤6vijyi.  Print out only the first 10 and last 10 rows of each set of principal components. 

Hint:  The eigenvectors of the sample correlation matrix R are the coefficients of the

normalized variables yi√sii, not of yi.

(d)  For both sets of principal components determined in (c), make scatter plots of the first
two principal components against each other.

(e)  Find that best rank 2 approximations  to the sample variance matrix S and sample
correlation matrix R.  Compare the rank 2 approximation to S to the sample variance
matrix of the best rank 2 approximation to the data matrix found in (b).

MacAnova note

Here’s one way to compute a lower rank approximation to a matrix X along with residuals
using the SVD of the matrix after subtracting the mean vector.  X contained artificial data
having nothing to do with the bone data.

Cmd> list(X) # n = 20, p = 5
X               REAL   20    5    

Cmd> xbar <- sum(X)/nrows(X) # mean vector as a row vector

Cmd> svdX <- svd(X - xbar,all:T) # compute singular value decomposition

Cmd> left <- svdX$leftvectors # columns are left singular vectors

Cmd> vals <- dmat(svdX$values) # diagonal matrix of singular values 

Cmd> right <- svdX$rightvectors # columns are right singular vectors

Cmd> m <- 2 # Number of singular vectors to use

Cmd> J <- run(m) # selector subscript

Cmd> X2 <- xbar + left[,J] %*% vals[J,J] %*% right[,J]' # Approximation

Cmd> resids <- X - X2 # residuals

Cmd> list(X2,resids) # both have same dimensions as X
resids          REAL   20    5    
X2              REAL   20    5    

Cmd> sum(vector(resids^2)) # sum of squared residuals
(1)       306.16

Cmd> sum(diag(vals)[-J]^2) #sum of squares of left out sing. values
(1)       306.16

Cmd> rowss <- vector(sum(resids'^2)) # row sums of squared residuals

Cmd> list(rowss) # an element for every row
rowss           REAL   20  
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