Reading

Week of September 26 - September 30: J\&W Chapter 5, 6.1-6.2
Week of October 3-7: J\&W Sec. 6.3-6.9
Written Assignment (due in class Monday, October 3):
Here is a listing (edited here to save space) of file scores.txt. There is a link to scores.txt on the web page http://www.stat.umn.edu/~kb/classes/5401/datafiles.html.
Click with the right button (Windows) or click and hold (Macintosh) to bring up a menu. Choose Save As or Save Target to save it to your disk.

You can read the data in MacAnova by

```
Cmd> scores <- read("","readmath") # read scores.txt
```

The data were obtained in an experiment intended to compare a new "reading and mathematics" curriculum with a standard (control) curriculum. Out of 20 children participating in the study, 10 were randomly assigned for a semester to a class with the new curriculum and the remaining 10 to the standard curriculum. Thus the experimenter used a completely randomized design.
Each child was given a standardized test for Reading (R) and and a standardized test for Math (M) at the start of the semester (pre-test) and again at the end of the semester, after the program (post-test). Tests R and M were intended to measure reading proficiency and mathematics skills, respectively.

Thus there were four variables (test scores) measured for each child:

$$
\begin{array}{ll}
\mathrm{R}_{1}=\text { pre-program reading score } & \mathrm{M}_{1}=\text { pre-program math score } \\
\mathrm{R}_{2}=\text { post-program reading score } & \mathrm{M}_{2}=\text { post-program math score }
\end{array}
$$

This is an example of a repeated measures design. As always, you should routinely check for non-normality. If you find evidence, comment on it but attempt no remedial action.

1. (a) For the control group, use Hotelling's T^{2} to test the null hypothesis that the population mean R and M scores did not change during the semester, that is, that $E\left[R_{2}-R_{1}\right]$ and $E\left[M_{2}-M_{1}\right]$ are both zero in this group. State the null hypothesis symbolically in terms of the population mean vector for the control group. Use $\alpha=.05$.

Note: Probably the most straightforward way to compute T^{2} is to construct the 10 by 2 matrix consisting of the post minus pre differences and then compute a one sample T^{2} statistic to test the hypothesis that the means are zero. Alternatively, if you compute a 4 by 1 column vector $\overline{\mathbf{x}}$ and a 4 by 4 unbiased covariance matrix \mathbf{S} from the 10 by 4 group 1
data, you can compute the T^{2} for H_{0} : $\mathbf{L}^{\prime} \boldsymbol{\mu}=0$, where $\mathbf{L}=\left[\begin{array}{cc}-1 & 0 \\ 1 & 0 \\ 0 & -1 \\ 0 & 1\end{array}\right]$ as
$\mathrm{T}^{2}=n(\mathbf{L} \overline{\mathbf{x}})^{\prime}\left(\mathbf{L}^{\prime} \mathbf{S L}\right)^{-1}(\mathbf{L} \overline{\mathbf{x}})$ using the fact that $\hat{\mathrm{V}}\left[\mathbf{L}^{\prime} \mathbf{x}\right]=\mathbf{\mathbf { L } ^ { \prime }} \mathbf{S L}$ and hence $\hat{\mathrm{V}}\left[\mathbf{L}^{\prime} \overline{\mathbf{x}}\right]=n^{-1} \mathbf{L}^{\prime} \mathbf{S L}$. This is not very different from the first method, since $\mathbf{y}=\mathbf{L}^{\prime} \mathbf{x}$ is simply the 2 by 1 vector of post minus pre differences.

1. (b) Plot a 95% confidence ellipse for the expected change (post - pre) in the scores for the control group. You can do this by hand or by using one of the representations such as the following, for the boundary of the ellipse.
Note: When $\mathrm{p}=2$, the boundary of the ellipse (in the $\mathrm{w}_{1}-\mathrm{w}_{2}$ plane) defined by

$$
\left\{\mathbf{w} \mid\left(\mathbf{w}-\mathbf{w}_{0}\right)^{\prime} \mathbf{A}^{-1}\left(\mathbf{w}-\mathbf{w}_{0}\right)=\mathrm{c}^{2}\right\}, \mathbf{w}_{0}=\left[\mathrm{w}_{10}, \mathrm{w}_{20}\right]^{\prime}, \mathbf{A}=\left[\mathrm{a}_{\mathrm{ij}}\right], \text { a } 2 \text { by } 2 \text { matrix }
$$

consists of points $\mathbf{w}=\left[\mathrm{w}_{1}, \mathrm{w}_{2}\right]$, where w_{2} satisfies

$$
\mathrm{w}_{2}=\mathrm{w}_{20}+\left\{\mathrm{a}_{12}\left(\mathrm{w}_{1}-\mathrm{w}_{10}\right) \pm \mathrm{c}\left\{\left(\mathrm{a}_{11} \mathrm{a}_{22}-\mathrm{a}_{12}{ }^{2}\right)\left(\mathrm{a}_{11}-\left(\mathrm{w}_{1}-\mathrm{w}_{10}\right)^{2} / \mathrm{c}^{2}\right)\right\}^{1 / 2}\right\} / \mathrm{a}_{11} .
$$

What are $\mathbf{A}, \mathbf{w}_{0}$, and c^{2} for this problem?
See also the handouts on The Shapes of Ellipses and Ellipsoids and Drawing Ellipses in MacAnova. Macro ellipse () distributed with MacAnova provides an easier way based on one of the methods discussed in the handout. Type
help (ellipse:vector("usage", "plotting"))
to get a summary of how it is used.

Remark: Notation such as "\{ $\mathbf{w} \mid$ conditions on $\boldsymbol{w}\}$ " is short hand for "the set of all \mathbf{w} satisfying the conditions on w. ." Thus $\left\{\mathbf{x} \mid\|\mathbf{x}\|^{2}=1, x_{1} \geq 0\right\}$ means the set of all \mathbf{x} 's with $\|x\|^{2}=1$ and $x_{1} \geq 0$.

1. (continued)
(c) Find 95% simultaneous confidence intervals for the R and M post-pre means in two ways, using the Bonferroni inequality and intervals based on the ellipsoid.
2. (a) Use a two-sample Hotelling's T^{2} to test the hypothesis that the effect of the new curriculum was not different from the effect of the standard curriculum. Should this be based only on the post-program scores $\left(R_{2}\right.$ and $\left.M_{2}\right)$ or on a comparison between the two groups of the mean \{post - pre\} scores $\left(R_{2}-R_{2}\right.$ and $\left.M_{2}-M_{1}\right)$? Justify your choice.
3. (b) Test the same hypothesis as in (a) using Bonferronized univariate t tests. What specific advantage is there in examining these t-statistics that T^{2} does not possess?
4. Do problem 5.20 on pp. 268 of J\&W. The data are in matrix T05_12 in file JWData5.txt.
