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Now, if H(U, U,,..., U) is the between

groups MANOVA matrix, E(U, U ..., U) +

k

H(U,, U,...., UJ = 2(x, - X)(x, - X)* doesn’t

depend on the clustering. This means the
ideal goal is equivalent to

Find clusters U, U, U,, ..., U so as to
maximize tr(H(U,, U,,..., U))

Such an assignment to clusters is the
maximum likelithood assignment assuming
clusters correspond to populations with
MVN(p, O2lp) distributions, 1 = 1, ..., K.
This suggests the goal is best adapted to

spherical clusters which is in fact the
case.
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K-means clustering
K-means clustering is useful when you
are clustering cases from a N by p data
matrix X and have some idea about the
number K of clusters to find.

The formal ideal goal is the following

Find clusters U, U, U, ..., U that
minimize 3. SSE (U, U,, ..., U) where
SSE (U, U,, U,, ..., U) is the error SS in

an ANOVA of x, using the clusters as
groups.

Another way to state this is:
Find clusters U, U, U,, ..., U that

minimize tr(E(U, U,,..., U)) where E is
the error matrix from a MANOVA
using the clusters as groups
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A simpler goal, that would be satisfied
by a clustering which minimizes
tr(E(U,, U,...., U)) is the following:

k
Divide the N data points into k

clusters U, U, U, ..., U with means
X, X ...,x such that

Ut Moy’

U = x|||x - X1 = minix, - X1}

That is, each cluster consists of all the
points that are nearest to its centroid.
However, a clustering can satisfy this,
but not be the clustering that minimizes
tr(E(U, U,,..., U)).
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Even this condition is almost impossible
to solve by brute force because there are
just too many ways to split into
clusters.

When N is even moderately large, to find
the "best” of all clusterings, using any
criterion, is a tall order since there are
approximately N‘/k! such sets.
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Eventually you will complete a cycle
through x,, X, ..., X, without reallocating

any points. Then you stop.

That is, reallocating any point would put
it closer to another cluster’s centroid
than to the centroid of the other points
in its cluster.

This differs from the description in
Johnson & Wichern. They suggest com-
puting distances

=X =Xl = 1,..K
and reallocating x, to the nearest group,
the group with d. Their method performs
worse as measured by tr E(U ,....U)),.
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The K-means algorithm is an iterative
method for, you hope, coming close to the
optimal.

In the following, for any set of cases V,
X, is the sample mean of the cases in V

e You start with K initial trial clusters
U, ..., U, chosen in some way, possibly

1

randomly, and compute x_*, j = 1,....k.

When x, is not inU, X" = X |
J

When x is inU, X," =X, .
J

Then, repeat the following until there is
no change.
e Examine X,, X,, ..., X, sequentially.

If x, € U, compute the distances

d =X - XM jz L, d, =X - X
e Define J by d, = min{d }.

J
o1t d=z g,
reallocate X, to U, and update means.
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[t's easy to use the distances to the
unadjusted means X, and X, to compute

the distances to the adjusted means x_Uﬁ‘i
and X,

When x € U,
X, = X, 1% = (n,/(n, = 1) - X, 118

and for j =z ¢
X, =X, "% = (n/n + )X, - X, 1I1°

Here n, j = 1,.., K are the cluster sizes at
the point in the algorithm when you
examining X..
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Example of use of kneans() for doing
k-means clustering
Try to cluster the utility company data

using K-means.

Keywords kmax and km n

specify that clustering will first be done

with K

8, followed by K

Omd> stuff <- kmeans(data,kmax:8,kmin:3)

G uster analysis by reallocation of objects using Trace

criterion

Vari abl es are standardi zed before clustering

Initial

allocation is random

k Initial Fi nal Real | ocations

8 112.13 48. 275

8 48. 275 45,473 2

8 45. 473 45. 21 1

8 45. 21 43. 191 2

8 43.191 43.191 0 Criterion
Merging clusters 3 and 7; criterion = 49.35

k Initial Final Real | ocations

7 49. 35 48. 98 1

7 48. 98 48. 98 0 Criterion
Merging clusters 1 and 5; criterion = 58.154

k Initial Final Real | ocations

6 58. 154 58. 154 0 Criterion
Merging clusters 2 and 5; criterion = 67.406

k Initial Final Real | ocations

5 67. 406 67. 406 0 Criterion
Merging clusters 2 and 4; criterion = 80.383

k Initial Final Real |l ocations

4 80. 383 80. 383 0 Criterion
Merging clusters 1 and 3; criterion = 101.71

k Initial Fi nal Real |l ocations

3 101. 71 101.71 0 Criterion

3.

w

for K =8
for K =7
for K =6
for K =5
for K = 4
for K =3

Later clusters start by merging two

clusters.

solution with less effort than with K
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Ond> split(run(22), kmeansclass|,5]) # 4 cluster membership

conponent: conpl Cases in cluster 1

1 1 3
(6) 18 19
conponent: comp2 Cases in cluster 2

1 2 5 7
(6) 17 21
conponent: comp3 Cases in cluster 3

1 4 10 13
conponent: conmp4 Cases in cluster 4
(1) 8 11 16
Ond> split(run(22), avelnkclass[ 3]) # compare w/ aver linkage
conponent : conp Cases in cluster 1

(1) 3 4

(6) 10 13 14
(11) 20 22
conponent: conp2 Cases in cluster 2
(1) 8 11 16
conponent: conmp3 Case in cluster 3

1 5
conponent: conmp4 Cases in cluster 4

1 2 7 12
(6) 21
Ond> tabs(,avelnkclass],3], kmeansclass[ 5]) # confusion matrix
(1,1) 0 5
(2,1) 0 0 0
(3,1) 1 0 0
(4,1) 6 0 0
Omd> tabs(,avelnkclassy,4], kmeansclass[4])#same K=5
(1,1) 7 5
(2,1) 0 0 0
(3,1) 0 0 0
(4,1) 0 5 0
(5,1) 0 1 0

Ond> junk <- kmeans(data,avelnkclass|,3],start:"class")
Quster analysis by reallocation of objects using Trace W

criterion

Vari abl es are standardi zed before clustering

Initial
k Initial
4 88. 734

al l ocation is predefined
Fi nal
88. 734 0

Real | ocat i ons

ooOwo

As you see, they converge to a

8.
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No reallocations, but tr E > K-means tr E
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kmeans() first uses the k-means algor-

1thm for K

8. Then it merges the two

closest clusters using the weighted

distances {ninj/(ni+nj)}||x_i -

x_jn2 This

ensures that tr(E(U, U,,..., U _)) is

minimized over the k(k-1)/2 clusterings
obtainable by merging two clusters.

Cmd> compnames(stuff) # the result is a structure

(1) "classes"

(2) "criterion" vect or of

Ond> kmeansclass <- stuff$classes

N by kmax-km n+l matrix
length k

QOrd> print(kmeansclass,format:"4.0f") # classes

Clusters

PNRRRNONRPRNWORRPONRNRRN R W

MATRI X: 8 7 6 5 4
(1, 1) 5 5 1 1 1
(2,1) 7 6 5 2 2
(3,1) 1 1 1 1 1
(4,1) 3 3 3 3 3
(5,1) 4 4 4 4 2
(6,1) 1 1 1 1 1
(7,1) 6 6 5 2 2
(8,1) 8 7 6 5 4
(9,1 1 1 1 1 1
(10, 1) 3 3 3 3 3
(11,1) 8 7 6 5 4
(12, 1) 6 6 5 2 2
(13,1) 3 3 3 3 3
(14,1) 5 5 1 1 1
(15,1) 6 6 5 2 2
(16, 1) 8 7 6 5 4
(17,1) 2 2 2 2 2
(18,1) 5 5 1 1 1
(19, 1) 5 5 1 1 1
(20, 1) 3 3 3 3 3
(21,1) 6 6 5 2 2
(22,1) 7 3 3 3 3
Note K decreases from left to right.
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Plots of clusters using canonical var-

lables

Ond> for(i,run(6)){plotmatrix(z,symbols:kmeansclass,i], \
upper:T title:paste("Kmeans clusters with",9-i,"clusters”), \

xlab:"Canonical variable",ylab:"Can
Var" xaxis:F,yaxis:F,wind:i)}

Kreans clusters with & clusters

Kmeans clusters with 7 clusters
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By default knmeans() uses random starting

clusters.
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I did 200 kmeans() clustering with K = 4,

each using a different random start.
Omd> M <- 200; CRITERION <- rep(0,M)

December 16, 2005

Q> for(i,run(M)){ # cluster and save criterion
CRITERION][i] <- kmeans(data,kmax:4)$criterion;;}

Ond> unique(round(CRITERION,3)) # 8 different criterion found

(1) 80. 383 92.01 90. 883 91.781 96. 11

(6) 88. 734 99. 207 92.52 Different values found
Ord> sum(round(CRITERION,3) == unique(round(CRITERION,3))")

(1,1) 184 3 3 5

(1,6) 1 1 1 Counts of each value

Most of the time, it found the identical
clustering. 184 times it hit 80.383, and
never was greater than 92.52.

J&W don’t say how they did the cluster-
ing in their example, but it is not opt-
imal. kneans() can improve on it

Ond> junk <- kmeans(data,jwclass,start:"class",kmax:4)

Quster analysis by reallocation of objects using Trace W
criterion

Vari abl es are standardi zed before clustering

Initial allocation is predefined

k Initial Fi nal Reall ocations
4 85. 84 80. 383 4
4 80. 383 80. 383 0

The starting value for the criterion is
85.84, worse than what kneans()
accomplished.
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Example with artificial data set with 4
known “clusters”.

Ord> results <- kmeans(x1,kmax:5,kmin:3) # K-means analysis

Custer analysis by reallocation of objects using Trace W
criterion

Vari abl es are standardi zed before clustering

Initial allocation is random

k Initial Fi nal Reallocations

5 190. 45 45. 582

5 45. 582 35. 884 19

5 35. 884 28. 866 14

5 28. 866 28. 386 5

5 28. 386 28. 386 0
Merging clusters 3 and 5; criterion = 38.985

k Initial Fi nal Real | ocations

4 38. 985 35.321 6

4 35.321 35. 252 1

4 35. 252 35. 252 0
Merging clusters 1 and 4; criterion = 53.093

k Initial Fi nal Real |l ocations

3 53. 093 50. 767 2

3 50. 767 50. 748 1

3 50. 748 50. 748 0

This first found a S group clustering
(kmax: 5), taking four cycles through the
cases before no more points to move on
cycle 5. Then in merged clusters 3 and
S, the pair with the smallest value of
(nn/(n+=n)y, -y’
This minimizes the tr E criterion after
merging.
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| wrote a macro to do J&W type K-means
clustering. It does worse than knmeans() .

Ond> dataS <- standardize(data) # macro does not standardize
Ond> CRITERIONL1 <- rep(0, M)

Cmd> for(i,run(M)){
CRITERION1[i] <- \
reverse(kmeansmacl(dataS,k:4,silent: T)$criterion)[1];;}

Ord> describe(hconcat(CRITERION,CRITERION1),\
mean:T,stddev:T,min:T,max:T,median:T)

conponent: mn M nima from kneans() and and J&W kneans

(1) 80. 383 80. 383

conponent: nedi an Medi ans from kneans() and and J&W kneans
(1) 80. 383 93. 752

conponent : nax Max from kneans() and and J&W kneans

(1) 99. 207 123.7

conponent: nean Maxi ma from kmeans() and and J&W kneans
(1) 81. 354 93. 566

conponent : st ddev

(1) 3.3726 9. 3496

Cmd> min(abs(CRITERION1-85.84)) # never hit 85.84
(1) 0.375

Not once did | get 85.84 and the mean and
median are worse than from kneans() .
Now do K-means clustering of can. vars.
Ord> zclasses <- kmeans(z,kmax:4)$classes
Quster analysis by reallocation of objects using Trace W
criterion

Variabl es are standardized before clustering
Initial allocation is random

k Initial Final Real | ocations
4 57. 628 8.8961 15
4 8. 8961 8. 8961 0

Cmd> @junk <- kmeans(data,zclasses,start:"class")
k Initial Final Real | ocations
4 88.734 88.734 0
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Here is the S cluster solution found

E-means with g =5

Here is the confusion matrix with the
"true” clusters:

Ond> tabs(,groups,results$classes],1])
3 0

(1,1) 0 17 0 Goup 1
(2,1) 20 0 0 2 0 Goup 2
(3,1) 0 24 6 0 0 Goup 3
(4,1) 0 0 9 0 19 Goup 4

Groups 1 and 2 are almost entirely in k-
means clusters 4 and 1, respectively;
group 3 is 75% in k-means cluster 2 and
group 4 is 68% in k-means cluster 5,
with kmeans cluster 3 overlapping both
groups 3 and 4.
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The 4 cluster solution:

KE-means with g =4

(=R

with confusion matrix

Omd> tabs(,groups,results$classes|,2])
0

(1,1) 3 0 17 Goup 1
(2,1) 20 0 0 2 Goup 2
(3,1) 0 29 1 0 Goup 3
(4,1) 0 1 27 0 Goup 4

This does a remarkably good job each
cluster almost coinciding with a sample.
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The three cluster solution merges the
two clusters on the right.

K-means with g = 3

b2

Confusion matrix
Ordi tabs(,grouEi,resuI@cla%ses[,B])

(1,1) 0 Goup 1
(2,1) 22 0 0 Goup 2
(3,1) 0 29 1 Goup 3
(4,1) 0 1 27 Goup 4

By carefully comparing the solutions, you
can verify that this process is not hier-
archical. For example, although the new
cluster 1 is primarily a merging of
clusters 4 and 1, some of cluster 4 ended
up in cluster 2.
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