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Here 1s how you might compute

_ 7 T\ . oY
Bp = Z1EJSQDJ(XJ - X p)(xj - X

for the Day-Fisher data with all p. = 1/6.

[ started by computing the needed statis-
tics using groupcovar ().

Omd> stats <- groupcovar(place,y); stats
conponent: n

Sanpl e sizes

(1) 5 5 3 3 8 5
conponent: means Rows correspond to places

(1,1) 724.2 261 300. 4 277.6 704 1046. 4
(2,1) 731.8 303 249. 2 370.4 804. 8 1050. 4
(3,1) 688. 67 335 238 508. 67 1006. 3 1090
(4,1) 683. 33 388. 33 40 525 1063 1018
(5,1) 659. 62 217.88 118 368. 25 761. 25 958. 38
(6,1) 658. 6 198 131.8 268. 2 702. 2 1009. 8
conponent: covari ance Pool ed variance matrix = E/fe

(1, 1) 3300. 7 958. 53 1440 615.11 -687.86 172. 99
(2,1) 958. 53 3033.9 -409.91 1610.5 2246.3 -479.11
(3,1) 1440  -409.91 6733.9 -67.496 -340.55 1689. 7
(4,1) 615. 11 1610.5 -67.496 4720. 8 3722.7 886. 28
(5,1) -687.86 2246. 3 - 340. 55 3722.7 5521.2 -159. 75
(6,1) 172.99 -479.11 1689. 7 886.28 -159.75 1943.9

Take transpose so means for each group
are in the columns of neans.

Ond> means <- stats$means' # sample means are now columns
Ond> spooled <- stats$covariance # pooled variance matrix
Qrd> prior <- rep(1/6,6) # equal prior probabilities

Ord> ybar_p <- vector(means %*% prior) #weighted sum of cols

QOrd> ybar_p # grand mean
(1) 691. 04 283. 87 179. 57 386. 35 840. 26 1028.8
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Ord> d <- means - ybar_p # deviations from grand mean
Ord> b_p <- d %*% dmat(prior) %*% d'; b_p

(1,1) 810. 87 658. 97 1877.6  -202.28 -185.62 705. 13
(2,1) 658. 97 4357.5 -809.74 5710 8544.5 1381. 8
(3,1) 1877.6  -809.74 8069.2 -3282.8 -4809.6 2326. 3
(4,1) -202.28 5710 -3282.8 10092 14054 1208. 2
(5,1) -185.62 8544.5  -4809. 6 14054 20387 2130. 2
(6,1) 705. 13 1381. 8 2326.3 1208. 2 2130. 2 1659. 8

Find 2 relative eigenvectors of B rela-
tive to S, to get coefficients for z,, Z,:

Ond> eigs <- releigen(b_p,spooled); eigs$valuestrel eigenvalues
(1) 5. 1663 1.7575 0.57115 0.22092 0.013968 6.4263e-16

Ond> u_p <- eigs$vectors[,run(2)] # extract 1st 2 eigenvectors

Ond> z <-y %*% u_p # two classification canonical variables

Now find the linear discriminant function
that uses the columns of z as classifiers.

Ond> discrimfnz <- discrim(place, z); discrimfnz

conponent: coefs

pl acel pl ace2 pl ace3 pl ace4 pl ace5 pl ace6
(1) 33. 502 34. 946 37. 809 38. 882 32.894 33. 649
(2) 21.888 21.215 20. 766 19. 087 17.961 19. 847
conponent: addcon

pl acel pl ace2 pl ace3 pl ace4 pl ace5 pl ace6
(1) -800.71 -835.67 -930.37 -938.06 -702.31 -763.07

Find scores and posterior probabilities.
Ond> d <- z %*% discrimfnz$coefs + discrimfnz$addcon # scores
Omd> kx<-d[,1]
QOmd> post <- exp(d- kx)/sum(exp(d- kx)")' # posterior probs
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Omd> placez <- vector(grade(post',down:T)[1,]) # Guesses
Ord> print(format:"5.3f",hconcat(post,placez,place))
5

MATRI X: 1 2

(1,1) 0.859 0
(2.1) 0.860 O.
(3,1) 0.880 0.
(4,1) 0.261 0.
(5.1) 0.274 0.
(6,1) 0.402 0.
(7.1) 0.345 0.
(8,1) 0.208 0.
(9,1) 0.033 0.
(10, 1) 0.035 O.
(11,1) 0.017 O.
(12, 1) 0.000 O.
(13,1) 0.000 O.
(14, 1) 0.000 O.
(15, 1) 0.000 O.
(16,1) 0.000 O.
(17,1) 0.002 O.
(18,1) 0.010 O.
(19, 1) 0.007 O.
(20, 1) 0.000 O.
(21,1) 0.000 O.
(22,1) 0.000 O.
(23,1) 0.027 O.
(24,1) 0.000 O.
(25,1) 0.384 0.
(26,1) 0.067 O.
(27,1) 0.184 0
(28,1) 0.012 0
(29,1) 0.014 0

. 043

135
065
375
574
549
635
428
644
200
451
030
000
000
000
000
000
016
002
000
000
000
202
000
116
044

. 438
. 005
. 338

Omd> N <- nrows(place)

OCOO0OOCOOOOOCOOOOOOOOOOOOOOOOOOO0O

3

. 000
. 000
. 000
. 001
. 003
. 002
. 009
. 001
. 299
. 002
. 522
. 905
. 193
. 116
. 173
. 086
. 000
. 000
. 000
. 000
. 000
. 000
. 003
. 000
. 000
. 000
. 002
. 000
. 036

Omd> sum(placez != place)/N

(1,1)  0.27586
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. 000

000
000
000
000
000
000
000
003
000
005
065
807
884
827
914
000
000
000
000
000
000
000
000
000
000
000
000
005

APER

OO0 00000000000000000000000000

. 001

000
000
006
001
000
000
006
000
091
000
000
000
000
000
000
857
469
680
971
981
997
101
934
019
190
007
574
064

OO0 00000000000000000000000000
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6 guessed true

. 097

005
055
358
148
047
012
357
020
672
006
000
000
000
000
000
141
505
311
029
019
003
667
065
481
700
369
409
542

DPUINDONDNNNUNONABARWWOINNNNNNE R

. 000

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

POPPONNNANUNNNURBBRWONNNNNE R

000
000
000
000 *
000 *
000
000
000
000
000 *
000
000
000 *
000
000
000
000
000 *
000
000
000
000
000 *
000
000
000
000 *
000

. 000

There are 7 errors, a worse APER (and
worse estimated TPM) than using all the

variables.



Statistics 5401 Lecture 39 December 9, 2005

Of course, this is is the result of ap-
plying TT to the training sample, which
we know gives biased estimates of TPM.

Using j ackkni fe() with the canonical

variables as data ought to be better:
Qmd> probs <- jackknife(place, z)

Omd> sum(place != probs[,7])/N
(1,1)  0.44828 APER_JK

But this isn’'t really doing the leave-one-
out thing, since the canonical variables
are computed from all the cases.

To do 1t right, you need to compute
different canonical variables for each
case. It could be done by brute force, but
[ didn't try.
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di scrinfnz$coefs are coefficients for z
and z,. For actual use you would want
coefficients that apply directly to x.

The 6 vectors (one for each place) of
coefficients to multiply x,, x_, ..., X, are
linear combinations of the first two
relative eigenvectors, weighted with the
columns of di scri nfnz$coefs. The add-
itive constants are the same.

Omd> coeffs <- u_p %*% discrimfnz$coefs; coeffs
pl acel pl ace2 pl ace3 pl ace4 pl ace5 pl ace6

(1) 0.37894 0.39108 0.41743 0.42337 0.36289 0.37505
(2) 0.1572 0.14827 0.13915 0.12106 0.12004 0.13712
(3) -0.14449 -0.15786 -0.18046 -0.1956 -0.15747 -0.15456
(4) -0.68642 -0.69531 -0.72424 -0.71573 -0.62874 -0.66206
(5) 0.76134 0.79022 0.84962 0.86818 0.73891 0.75946
(6) 0.94031 0.95309 0.99358 0.98282 0.86261 0.90773
Ord> d[run(2),}# scores computed above from canonical variables

pl acel pl ace2 pl ace3 pl ace4 pl aceb pl ace6
(1) 759. 15 756. 16 744. 07 734. 36 752. 16 756. 97
(2) 845. 56 843.7 835. 29 824.53 831.35 840. 34
Ord> y[run(2),] %*% coeffs + discrimfnz$addcon # from data

pl acel pl ace2 pl ace3 pl ace4 pl ace5 pl ace6
(1) 759. 15 756. 16 744. 07 734. 36 752. 16 756. 97
(2) 845. 56 843.7 835. 29 824. 53 831. 35 840. 34

The scores are the same whether com-
puted from z or using coeffs to compute
linear combinations of columns of y.
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Statement of the clustering problem

Data: Information on N “objects” O, ...,

O, that determines

e d., a measure of how different or
dissimilar are O, and O, or

e s, a measure of how similar they are.

Goal: Group the objects into a "small”
number of “clusters” -- groupings of
“similar” objects.

Fisher Iris Daka
£ B
yib %‘?éixx 3

L

W

XX

Petliid

Petlen

I i vk

seplid Note: The points are

not labelled by group

Seplen Sepfid Petlen

There is clear bunching of points, but
how many clusters are there?

7

Statistics 5401 Lecture 39 December 9, 2005

Contrast with classification

[n classification, you have known number
g of "clusters”, the known groups or
populations. At both the training and
validation stages, you know g and which
group 7T, each object belongs to.

Here are the same data, with each variety
indicated by a unique symbol.

Fisher Tris Data

PetWid

PetLlen

5epid (i, 'he points are

labelled by group

Sepfid Fetlen

[s it possible to get a plot like this from
data without variety information?

[t may be, but you can never be sure it's
right.
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Mixture Model
When data consist of x,, X, ..., X, one

possible model is that they are a random
sample from a mixture of populations
T, ...n TC WItH

1
e mixture proportions (prior probab-
ilities, prevalences)

Py -oes P,

December 9, 2005

e distributions
f,(x), 1,(x), ..., f.(x),

1 2

so that the distribution of X is
f(X) - Z1iﬂigprQ(x)

Goals of cluster analysis might include

e Determine g = correct # of clusters

» Allocate each x to a cluster, all or
most of whose members were sampled
from the same 7T

Possibly

e Estimate f (x)andp,, & =1, ..., g

9
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Example: Suppose you know each f(X) is
N (H.Z). In that case p,...., P My s K
and ¥ would be unknown parameters to
estimate from the sample.

This may be very hard to do.

Particular case withp =1, g = 4.

Mixture of 4 normals, p = (.22%, 124, 501, 153), mu=(10,14,17,19)
- " . r = . = " —

Even if you knew f(x) (heavy line) it
would not be obvious this is a mixture of
g = 4 populations.

10
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Here are two representations of a sample
of size N = 200 from this distribution.

2 0.z

' '
[
T T T

0 12 14 16 18 20 22 8 10 12 14 16 18 20 22
[n the plot on the left, [ "jittered” the
data by adding random noise in the

vertical direction. Only the left-right

position is real data.

Jittering can be useful when there are
many points that would otherwise overlap
each other.

Even though there were g = 4 populations,
it is very hard to see more that two
clusters in either plot.

More usually, cluster analysis is explor-
atory, not based on an explicit model.

11
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Plot of bivariate (p=2) data from mixture

Sample from mixture distribution

g
¢ How manhy clusters?
s} = -2 i 2 4

How many clusters? 27 37 47 17

Sample from mizxture nliist.ri]:-ut.ic\n with grounps I:i.dent.i.fied
i &

X1

Actually a mixture of g = 4 populations.

12
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Types of Data

e Data consists of x, ..., X, used to
compute dissimilarities or distances
d, = d(x.Xx),
or similarities
s. = s(x,X)

ij i’
where d(x,x ) or s(x,x) is a specific
function such as d(x,x,) = X, - XII.

Data is an N by N matrix D = [d ] of
dissimilarity coefficients between
all pairs of N objects, without data
pertaining to an individual object. In
some cases d, z d, and/or d,, =z 0.

Data is an N by N matrix S = [s, ] of
similarity coefficients between all

pairs of N objects. Higher s, means
more similar. It can happen that s =z
s, Often |s | <1 withs =1.

13
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When S or D is not symmetric (s, z s or
d, zd), one way to proceed is t0 sym-
metrize and use S = (S + §')/2 (s, = s, =
(s,+s)/2)or D= (D +D')/2(d, =d, =
(d,+d )/2).

Example
A non expert tries to identify Morse en-

coded letters and numerals, 36 in all.

Suppose m, = # of 1dentifications of
symbol 1 as ], and n, = number trials with
symbol 1 used. Then

Ss. =m./n
ij ij i

Is one measure of how easy it is to
confuse the codes for symbols i and j,
that is, how similar they are.

Here 1t can happen that s, z s and s, =
1.

14
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Examples of distance measures
e Euclidean

d(x,.x) = 1x - x 1 = /{(x - x)'(x - x)}

= \/{Zlgkgp(xki - ij)2}
This 1s highly dependent scales of the
X,'S.

e Standardized Euclidean
d(x,, X) = X=X "1

W here
S _ , _ 'V
xi - [ZH‘ Zip] AN (xik - xk)/\/skk
S . _ —
x*=1lz, . ..z1 z =, -%X)s,

are standardized versions of X, and X

using the same standard deviations /s,

for all cases.

15
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Generalized distance
d(x,.x) = /{(x-x)'A'(x-x)}, for some
positive definite pxp A.

Some choices for A are A = S, where S
Is an overall variance matrix, or A =

S e Where S . 1s pooled covariance
matrix based on a preliminary clus-
tering.

City block
d(x,Xx) = ¥

ki ij|

1<k<p

d(x,Xx) =3 +2=05
IX-X 1 = +/13 = 3.61

X

e Standardized city block (better)

d(xi’xj) = Z1 X = Xy |/\/Skk

<k<p

16
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 Minkowsky distance
d(x,.X,) = {2

Several others are special cases of
Minkowsky distance:

1/
X,— ij|m} m

1<k<p ki

m = 1 means city block.
m = 2 means Euclidean:
M = © means max, | X = Xy
X, X
d(x.,x.) d(x.,x.)
dix, ) 131 31 J
%1 B xm“dx.ymc] B

o Standardized Minkowsky
d(X,U) = {Z X - ij|m/skkm/2}1/m

ki

1<k<p

17
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Clustering Variables
The data consist of N-dimensional vec-

tors X, ..., X to be divided into several
sets, with each set consisting of
"similar” variables.

December 9, 2005

Measures of similarity:
* s(X,Y) = r  (Pearson correlation)
SEDNCEIITENZVAIACTIBVAACEE
=1 - X, - Y ?/(2(N-1))
where X, and Y_ are standardized ver-
sions of X and Y.

« s(X.Y) = |rxu| is often more approp-
riate
r, 1s equivalent to the distance measure

d(X.Y) = X, - Y = /{2(N-1)(1 - r )}
r

By analogy, d(X,Y) = /{201 - |r |)}
would also be a natural distance measure.

18
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For other purposes, you might evaluate
dissimilarity in terms of how different
their means and standard deviations
were, say

d(X,Y) = /{(x - §)* + (log s,/s )’}
=/1(x - §)° + (log s, - log s, )’}

You can always change a similarity coef-
ficient into a dissimilarity coefficient,
and vice versa, but not in a unique way:
Example: When an object is most similar
to itself and has similarity 1 with itself,
that is, max, s, = s, both

dij = 1/5ij -1 =(1 - sij)/s.‘

1]

and

satisfy
d, =0,d,>0,12]
and might be used as dissimilarities.

19

Statistics 5401 Lecture 39 December 9, 2005

Dissimilarities d, may be "true dis-
tances” satisfying

e d,=d, (symmetry)

e d =0

> 0,12 ]

< d, + d,, (triangle inequality)
Triangle inequality
means it's always
shorter to go dir-

ectly to j from i
than to go via k.

These are valid for Minkowsky distance
and d, = v/{(x;-x )’A"(x,-x)}. Hence they
are valid for Euclidean and city block
distances.

Note: You can do informative cluster

analyses with dissimilarities that are
not distances in this sense.

20
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There are at least 3 general approaches
to clustering.

1. Agglomerative or combining

e Start with a large number of "clus-
ters”, usually N, each consisting of a
single object.

e Repeatedly merge “similar” or "neigh-
boring” clusters, reducing the number
of clusters after each merge.

Divisive or dividing up

e Start with a small number of clusters,

often 1, consisting of all cases.

e Repeatedly split clusters into sub-
clusters which are as dissimilar or
distant as possible.

21
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3. Targeted number of clusters:

e Specify in advance a number k of
clusters and make an initial assign-
ment of each case to a cluster.

e Repeatedly reassign objects from one
cluster to another so that objects in
each cluster become more similar and
clusters become more different.

To start, you might partition case on the
value of one variable or principal comp-
onent, or just divide the objects arbit-
rarily in g equal parts. An example of
this approach is k-means clustering
(MacAnova function kneans() ).

4. Estimation of mixture model

e Postulate a parametric model for the
different distributions, say MVN,
possibly with some restriction on the
¥'s and use parametric estimation.
You might get starting values from an
initial non-parametric clustering.

22
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