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Variable Selection
This is usually based on sequential F
statistics and is very similar to step-
wise variable selection in regression.

Forward selection: At any stage there
are
e "In" variables to be used to classify

e “out” variables that may not be used.

All variables start "out”. You then bring
in "out” variables one after another.

1. The first variable (say, x') brought
"in” has the largest among-groups F.

2. The next variable "in” (say, x'”) has the
largest among-groups F® in ANACOVA
with x as covariate.

k. Next variable "in” (say, x*) has largest
among-groups F* in ANACOVA with x",
x? ... x*"as covariates.
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Choosing variables or features for
classification

e Some variables may have a lot of in-
formation on differences between the
groups and hence useful in selection

e Other variables may have little or no
information and hence not useful.

Using unneeded variables adds "noise”
that can worsen performance.

You can sometimes improve things:

e Select a subset of variables, or
equivalently, omit some variables.

e Find q < p new variables which are
linear combinations of the original
variables and which do as good or
better a job at discrimination. One
approach is closely related to MANOVA
canonical variables.

e Seek non-linear functions of one or
more variables to use in classification.
This is harder and is not pursued here.
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The process is simple and should remind
you of sequential F tests in MANOVA

It differs from sequential F-tests
because the order is not pre-determined
but is guided by the data.

When should you stop?
Naive approach: Stop when the largest F

is not "significant” by a conventional F-
test.

When x is to be selected there are
already j-1 covariates, reducing the
original f_=N - gby j - 1. So the naive
person would stop when F” < F_ )
or its P-value > «.

-1,N-g-j+1(

This cannot be appropriate because FY is
the largest of several F-statistics and
doesn’'t have the F-distribution. Yet this
is what some computer programs do.
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You need to modify the procedure to
reflect that you are selecting the largest
of the p - J + 1 F-statistics associated
with the p - (j - 1) "out variables”.

A natural way out is to Bonferronize by
K=p-7]+ 1. This leads to the stopping
rule:

Stop the first time
F? < F (at/K) = F

g-1.N-g-j+1

or, Bonferronizing P-values,

(x/(p-j+1))

g-1.N-g-j+1

Stop the first time
(p-j+1)*cunF(F_j,g-1, Ng-j, upper:T) >
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You can use macros dast epset up(),
daent ervar () and darenovevar () for
forward and backward variable selection.

Use dast epset up() to initialize things.

Ond> dast epsetup("y=pl ace") # Specify a manova() nodel
Model : "y=pl ace”
No variables are "in""

F(5,23) to enter
X1

All are out
One value for each out variable
X5 X6

F 1.634 7.106 6. 167 9. 4871 15. 955 5.5159
P 0.19092 0.00037799 0.00091664 5.1538e-05 8.0816e-07 0.0017625

The variable with the largest F is X5. _
After Bonferronizing by 6, its P-value =
5x107° so it should be brought "in” using
daent ervar () :

Ovd> daentervar(5) # or daentervar (X5)

Model : "y=pl ace"”
F(5,23) to delete
x5

One "in" variable for each F to delete
The "in" variable

F 15. 955 F and P to delete are same as F and P
P 8. 0816e-07 to enter on previous step
F(5,22) to enter There are now five "Outs'
X1 X2 X3 X4 X6
F 1.706 2,287 5.4726 1. 3002 4. 8554

P 0.1751 0.081141 0.002023

The largest F is for X3. After Bonferron-
izing by S, the P-value is 5x0.002023 =
.01046. With « = .05, X3 comes in; with
« = .01, you stop here.

0.29983 0. 0038356
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Backwards stepwise
This starts with all variables "in” and
changes an "in” variable to an "out”
variable on each step.

At each step, do the following:

December 7, 2005

For each "in” x,, compute the F-statis-
tic you would get in an ANACOVA of x,

with all the other "in” variables as
covariates.

When the smallest such F is "small
enough”, make the corresponding
variable an "out” variable.

When do you stop?

This is less clear than for forward vari-
able selection.

However, to avoid moving “out” a variable
that forward selection would move in
once it was out, you should Bonferronize
F-tests by K = j + 1, when there j "out”
variables.
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Let’s go on and bring X3 in.

Ond> daent er var ( X3)
Model : "y=pl ace"
F(5,22) to delete
X3 X5
F 5. 4726 14. 447
P 0.002023 2.5221e- 06

F(5,21) to enter
X1

X2 X4 X6
F 0.70758 1.7741 1.2383 2.1025
P 0.62428 0.1619 0.32667 0.10531

The largest F is for X6, but even without
Bonferronizing, its P-value (.10531) is
too large to go on.

Thus this is where we stop, ending up
with x, and x. as the the variables to use

in classifying.
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You initialize backward selection with
dast epsetup(allin:T).

Ord> dast epsetup(allin:T)
Model : "y = 1+pl ace"

F(5,18) to delete All are "in"

X1 X2 X3 X4 X5 X6
F 0.80459 0.80661 2.8089 3.7369 3. 6682 4.9204
P 0.5611 0.55981 0.047934 0.017008 0.018304 0.0051716

Al variables are "in"

The smallest F-to-remove is .80459 with
(Bonferronized by 0 + 1 = 1) P-value =
.5611 > .05 so you should remove X1

Ond> darenovevar (1) # so renove it

Model : "y = 1+pl ace"

F(5,19) to delete
X2 X3 X4 X5 X6 "Ins"”

F 1. 9659 2.2635 2.9273 2.882 4.3208

P 0.13036 0.089633 0.040006 0.042206 0.0085525

F(5,18) to enter
X1

"Oout"
F 0.80459
P 0.5611

F and P to enter are same as F and P
to delete at previous stage

Bonferronize the largest P-value by 2

am> 2*0. 13036
(1) 0.26072

0.26072 > .05 so remove X2.
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Ord> darenovevar (X4) # so renove it

Model : "y = 1+pl ace”

F(5,22) to delete
X5 X6 "Ins"

F 14. 406 4. 8554

P 2.581e-06 0.0038356

F(5,21) to enter
X1

X2 X3 X4
F 1. 0206 2.2905 2.5229 2.8035
P 0.43069 0.082553 0.061331 0.043112

"Quts"

The smallest F to delete is for X6. Its
Bonferronized P-value is 5x.00383 =
0.0192 < .05, so, with « = .05 you should

not remove X6 but should stop.

Like forward selection, this ends up with
two variables. However, this pair is not
the same as the pair X3 and X5 selected
by the forward method. They do have X5
in common.
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Ond> dar enovevar (X2) # Renove X2
Model : "y = 1+pl ace"
F(5,20) to delete
X3 X4 X5 X6 "Ins"
F 2.6173 2.8936 5.1838 3.9891
P 0.056115 0.040017 0.0032763 0.011318

F(5,19) to enter
X1

X2
F 1.9633 1. 9659
P 0.1308 0.13036 "Outs"

The smallest F to delete is for X3. Its
Bonferronized P-value is 3x.056 = 0.17 >
.05, so you should remove X3

Cmd> darenovevar (X3) # so renove it

Model : "y = 1+pl ace”

F(5,21) to delete
X4 X5 X6 "Ins"

F 2. 8035 5. 2554 7.1715

P 0.043112 0.0027692 0.00046944

F(5,20) to enter
X1

X2 X3
F 1.8017 2.2926 2.6173

P 0.15832 0.084283 0.056115 "Outs"

The smallest F to delete is for X4. Its
Bonferronized P-value is 4x.043 = 0.172
> .05, so you should remove X4.
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Neither forward or backward procedures
will necessarily find the "best” set of
variables.

A variant that may check more subsets
combines forward and backward proce-
dures in an up-down algorithm.

e Start either with all variables "in” or
all variables "out”.

e Use forward or backwards steps to add
or delete two variables, if you can.

e Subsequently, at every stage check the
smallest F-to-delete to see if a var-
lable can be removed.

[f so, remove the variable with
smallest F.

[f not, check the largest F-to-enter. If
it indicates a variable should be added,
bring that variable "in".

Otherwise, stop.

12
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There is a "black box” macro

dast epsel ect () that automates forward,
backward and up-down stepwise variable
selection. You have to specify «.

Ond> dast epsel ect ("y=pl ace",.05) # .05 is al pha (required)
Entering X5. Bonferronized P-val ue-to-enter = 4.849e-06
Entering X3. Bonferronized P-val ue-to-enter = 0.010115
Snal | est Bonferronized P-val ue-to-enter = 0.42123 > 0.05
Vari abl es sel ected: X3, X5

Ond> dast epsel ect ("y=pl ace",.05,allin:T) # backward
Rerovi ng X1. Bonferroni zed P-val ue-to-renmove = 0.5611
Renovi ng X2. Bonferroni zed P-val ue-to-renove = 0.26072
Renovi ng X3. Bonferroni zed P-val ue-to-renove = 0.16834
Renovi ng X4. Bonferroni zed P-val ue-to-renove = 0.17245
Largest Bonferroni zed P-val ue-to-renmove = 0.019178 < 0. 05
Vari abl es sel ected: X5, X6

Omd> dast epsel ect ("y=pl ace", . 05, updown: T) # up-down, start up
Entering X5. Bonferronized P-val ue-to-enter = 4.849e-06
Entering X3. Bonferroni zed P-val ue-to-enter = 0.010115
Largest Bonferroni zed P-val ue-to-renove = 0.010115 < 0. 05
Snal | est Bonferronized P-val ue-to-enter = 0.42123 > 0.05

Vari abl es sel ected: X3, X5 Selects same as forward

Ovd> dast epsel ect ("y=pl ace", .05, updown: T,al lin:T) # start back
Renovi ng X1. Bonferroni zed P-val ue-to-renove = 0.5611

Renovi ng X2. Bonferroni zed P-val ue-to-renove = 0.26072
Renoving X3. Bonferroni zed P-val ue-to-renmove = 0.16834

Rerovi ng X4. Bonferroni zed P-val ue-to-renmove = 0.17245

Largest Bonferronized P-val ue-to-renmove = 0.019178 < 0.05

Smal | est Bonferroni zed P-val ue-to-enter = 0.17245 > 0.05
Vari abl es sel ected: X5, X6 Selects same as backward

By default dast epsel ect () Bonferronizes,
but you can suppress that by bonf: F.

You must use the new version of
mul var . mac. t xt .
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The first is like picking the best subset
of regression predictor variables on the
basis of the F-statistic for testing that
the coefficients of the remaining
variables are all 0. In that case it is
generally agreed you need a penalty which
takes into account the number of
variables, as in C_or AIC.

In general, for a model with k parameters
AIC = -2 log L + 2xK
In this problem

e | = likelihood computed under the
restriction that the means of the "out”
variables "adjusted” for the variables
that are "in” by ANACOVA are the same
in each groups.

e k =p(p+1)/2 + p + (g-1)q where q =
number of "in” variables”

We will see this doesn’t appear to work
well and a better criterion is needed.
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Finding a "Best” subset

Similar to regression methods, such as
screen() 1n MacAnova, that find the
"best” out of all subsets of predictors,
you might want to find the "best” out of
all subsets of variables for classifying.

Before you can even consider this, you
need to define what you mean by "best”.

Two possibilities:

e The best subset x = [x",....x"] is the
one with the least significant value of
a MANOVA test statistic whether the
remaining variables add information
beyond that provided by X about
violation of H: W, = W, = ... = p, that
is a MANACOVA test for the remaining
variables adjusted for X.

e The best subset is the one yielding the
smallest estimated TPM or ECM.
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Let I ={i,, i, ... 1} be q"in" variable
numbers, let J be the corresponding list
of "out” variable numbers so that
together 1U J = {1, 2, ..., p}.

As usual let H and E be the MANOVA
hypothesis and error matrices.
Let E,, and (H + E) , be the matrices

consisting of rows I and columns 1 of E
and H + E, with similar definitions for

Lecture 38 December 7, 2005

E.,. E, . E,,
Define
e E,,, =E - E“E“4Ehy
e (H+E),,, =
(H+E),, - (H+E), (H+E) "'(H+E) |,
Facts:

det(E) = det(E, )xdet(E, )
det(H+E) = det((H+E), )xdet((H+E)

J,J.I)
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Fact: Except for an additive constant that
doesn’t depend on q,
-2 log L =
N{log(det(E, ) + log(det((H+E), )} =
N{log(det(E,,)) +
log(det(H+E)) - log(det((H+E), )}

The number of parameters is
k = p(p+1)/2 + p + (g-1)g
e p(p+1)/2 = number of parameters in &

e p = number of parameters in grand
mean

e (g-1)q = number of parameters to
characterize all contrasts of group
means in the q "in" variables.
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Macro dascreen() in the new version of
mul var . mac. t xt computes the modified
AIC

N{log(det(E, ) - log(det((H+E) ))} + 2k

for each of the 2° - 1 non-empty sets I
and returns the best subsets and the
modified AIC criterion.

Ond> dascreen("y=pl ace")
conponent: subsets

Set 1 Set 2 Set 3 Set 4 Set 5
(1) 2 1 3 2 1
(2) 3 3 4 4 2
(3) 4 4 5 5 3
(4) 5 5 6 6 4
(5) 6 6 0 0 5
(6) 0 0 0 0 6
conponent: criterion
Set 1 Set 2 Set 3 Set 4 Set 5
-2.4976 -2.4843  -0.40562 1. 0535 1. 6527

In the output, 0 is just a filler.

Component criterion contains the AIC
values
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Since log(det(H+E)) does not depend on 1,
the modified AIC

Nflog(det(E,,)) - log(det((H+E) )} + 2k
gives the same ordering.

And, since
det(E,,) = det(E)/det(E

J,J.l)
and

det((H+E),,) = det(H+E)/det((H+E)

J,J.I)

you get the same ordering of models
using

N{log(det((H+E),, ) - log(det(E,, )} + 2k

But log(det((H+E),, ) - log(det(E,, )) is
proportional to Wilk's test in a MANA-
COVA for testing whether the variables
in set J have different means adjusted
for the variables in set I.
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Note that {X3, X5} and {X5, X6} are not
among the S best sets based on AIC. In
fact, they are 13" and 16" in order of
increasing AIC. Probably a heavier
penalty term is needed.
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Another way to proceed, is, for each q =
1,2, ...,0-1, to find the subset of size g
with the largest P-value of the Wilk's
statistic that test the the equality of
‘out” variable adjusted means in a
ANACOVA with the "in" variables as
covariates.

Here are the "best” subsets of size g:

q In Variables P = P-value (°)P

1 X, 1.1078e-08 6.6466e-08
2 X, X, 0. 00018037 0. 0027055
3 X, X, X, 0.0095778  0.19156
4%,X, X, X, 0.15029  2.2544

S X, X, X, X, X, 0.5611 3. 3666

[t is unclear how to Bonferronize P. The
final column multiplies P by the number
of subsets of size q.
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Use of Canonical Variables

Sometimes a small number of linear
combinations of the variables can clas-
sify or discriminate better than the
variables themselves. One way to find
such variables is similar to computing
MANOVA canonical variables.
Recall:
The MANOVA canonical variables are
z = U’x, where U is eigenvector j of
hypothesis matrix H relative to error
matrix E.
e The F from an ANOVA on z, is the larg-

est possible of any linear combination.

e The F from an ANOVA on z, is the

largest for any linear combination
uncorrelated with z. And soon ... .

This is a little similar in spirit to for-
ward stepwise variable selection.
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| used j ackknife() to estimate TPM
assuming equal prior probabilities:

Ins

35 TPM = 0. 44861
TPM = 0. 48472

6 TPM = 0.49722
6 TPM= 0.47361
6 TPM = 0.48472
5 TPM = 0.41944
4 6 TPM = 0. 38611
TPM = 0. 35278

Minimizing TPM suggests {x., x,} which

was not found by any other method. You
can force dast epset up() to start with
these variables in.

Ond> dast epset up("y=pl ace",in:vector(3,4))

Model : "y=pl ace"

F(5,22) to delete
X3

5
4
3
2
3
2
3

AW pbhoaao

X4
F 5. 4483 8. 4852
P 0.0020732 0. 0001352

F(5,21) to enter

X1 X2 X5 X6
F 0. 57596 2.9536 3. 7547 2.7199
P 0.7178 0.035818 0.013841 0.047848

The Bonferronized (by S) P-values to
delete are 0.0104 and 0.0007, too small
to delete. The smallest Bonferronized
(by 4) P-value to enter is 0.0554 > .0S.
So stepwise methods can’t improve on
this choice of variables.

22

Statistics 5401 Lecture 38 December 7, 2005

There are never more than g - 1 non-
trivial (relative eigenvalue X]. > 0)
canonical variables, so whenp > g - 1,
you already have dimension reduction,
with no loss of information.

[t makes some sense to use the first few
MANOVA canonical variables as the basis
for classification, even though their

computation does not use prior probabi-
lities. This is often done.

When there are g groups
H= 3 (X - Y_)(X_J - %)’
where {n} are sample sizes and {X}

sample group mean vectors in the
training sample, and

- -1 - -1 v -
X =N ijixij =N Z1$anxj, N = Zjnj
is the grand mean vector.
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Define pAJ = n/N, the sample proportions,

~ J—

and B =) _.p(X - X)X -X) . then
e H=NB
© X =2 PX

When sampling from a mixture, LTJ s an
estimate of prior probability p..

Let {u} be the relative eigenvectors of B
relative to S = f'E. Then U, = KU,
with K = /{N - g}.

Conclusion

z =U'x = Kz is a multiple of the
MANOVA canonical variable zA] = le‘x, SO
z~j contains the same information about

the differences between groups as is
inz.
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The notation I am using is close to the
notation eq. 11-58 p. 629 of J&W where
they define B, = >°(J, - W(}, - B)" which
includes no weighting by prior probabi-
lities.

Even whenp, =p, =...=p =1/g, B as
defined here differs from B by a factor
of 1/g.
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e B=3 5 (X - XX - X' = H/N

] ]

suggest how to use prior probabilities
{p,} to generate good linear combinations.

For prior probabilities p,, ..., p,, define

X® =3 _.pX (weighted ave. of X's)
_ T _ Ty _ oY

* BD = Z15jsgpj(xj - X p)(xj - X*)

« u® = eigenvector of B relative to S

Then compute linear combinations

pooled

.. = p, = 1/9g are equal,
v Ty . T
p 1$g(xj - X p)(xj - X")

where X® = (1/9)%, X is the average of

the mean vectors (not the average of all
the data). In this case, whenn =n, = ...

~

=n,x” =X, B, =8
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