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Statistics 5401 Lecture 37 December 5, 2005

Evaluation of an estimated rule
When you find a classification rule,
whether it’'s based on non-parametric or
parametric estimation of densities from
a training sample, you end up with an
estimated rule Tt(x).

The estimated minimum TPM rule 1s
e TU(x): Select 7T, to maximize p,f (x)

The double "hats” signify that the rule is

~

only an estimate of the optimal T7T.
How good i1s R? That is, how small are

TPM = TPM(TO) = ¥ p 4> PG | 170}

1<i<g

and/or

ECM = ECM(T0) = &°,_.p {5 P(j | is0C(j | i)}
Both TPM and ECM depend on {p .} and
P(j|i; 70, i = j.
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It is presumed the {C(j|i)} are known
quantities.

Usually prior probabilities p. are also
treated as known.

Sometimes you can estimate the p. from
sample proportions p. = n/N, n = number
of cases from 7T in the training sample.

This is possible when you obtain the
training sample by "mixture sampling”

e randomly select Tt with probability p,,
o then select of x using density f.(x))

But you still need estimates of misclass-
ification probabilities P(j|i;70) to esti-
mate either TPM(1T) or ECM(TT).

P(j |i;ﬁ) depends on the densities f (x)
and 1s not known.
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There are two different questions that

might be of interest:

Q, How do you estimate P(j|i;7T) = classi-
fication probabilities for the actual
best TC?

Q,How do you estimate P(] | {;70) = classi-

fication probabilities for 7t the
estimated best T17?

An answer to Q might interest a mathe-
matical statistician.
An answer to Q, is more useful because,

In practice, you will use T to classify
future cases, not Tt.



Lecture 37 December 5, 2005

Statistics 5401

In parametric situations (densities of

known form with parameter vectors @),
P(i|j: 70 = g,(6,.8),

where g, depends of the 8, and 8, that

characterize 7t and 7t

When you can find a mathematical
formula for g (8, 8) = P(i | j; 70) and can
estimate & by 6,1 =1, ..., g, you can
estimate P(i | I; ) consistently by

PG 70 = g,(6,.6), all i, .

Lecture 37

Example of formula
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e g=2,p=2
o x either N,(u.Z) (70) or N(p,,Z) (7T,).
e prior probabilities p, = p, = .5
Then
P(1]2) = P(2] 1) =
g, (M. 1,,8) = g, (M, J,.E) = &(-A/2),

1 2
} j_wxe—z /2C|Z

J{211
A= (H - )2, - )
Therefore,
TPM = .5%*P(1]2) + .5*P(2| 1)) = &(-A/2)
You estimate TPM and P(i | i) by
TP = B(1|2) = B(2|1) = &(-A/2)
where

®(x) = cumnor(x) =
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When you don’'t have a formula for
g,(8,,8), you may be able to estimate
g,(6,.8) by simulation:

1. Generate large samples from densities

f(x;6))

2. Use TT to classify them;

3. estimate B(i | j; 1) = g,(6,.6) by
relative frequencies.

warning: g,(6,6) is useful only when the
parametric model 1s correct. Even when
you assume multivariate normality to

derive T, you probably shouldn’'t believe
1t accurately describes the populations.

[t 1s better to have a way to estimate

P(i | j;ﬁ) regardless of the model, that is,
see how well it classifies actual data
from known populations.
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Best situation (validation sample):
You have two independent data sets

e the training sample X, X,, X,, ..., X

N
which you use to find rule Tu(x)

e 3 validation sample X *,x *,x *,....x *
which 1s independent which you use to
estimate TPM(7T) or ECM(7T).

[n both samples you know the population
each x or x ™ belongs to.
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Suppose there are M. cases from TC, in the The estimated TPM and ECM are

validation sample. TPM = Z]ﬂggpj{zmmij/Mj}

e Use T?(xk*) to classify case k in the =1 - Z1§j§9pjmjj/MJ
validation sample, k = 1,...,M. ECF= %, p 2. c | j)m, /M}

e Find rTl” = number of x* values from 7T Because P(i | i 70 is unbiased., TPM and
with 7U(x*) = 1T, ECM are also unbiased.

e Then P(i | j;ﬁ) =m,/M = sample pro- Disadvantage: |
portion. * You could probably get a better esti-

. mate of the optimal rule using both
Because E[m,] = MxP(i | jim), P is un- the training and validation samples to

biased, that is estimate the rule.

EIBG | 701 = P(i i 7). This is not an important issue when the
training sample is sufficiently large to
provide an acceptable classification rule.



Statistics 5401 Lecture 37 December 5, 2005

Re-use the training sample
What if you were to re-use the training

sample as if it were a validation sample?

That is, use T to classify cases in the
training sample and determine the
relative frequencies of errors.

This will have optimistic bias, that is, it
will make TC appear to be too good.

e Let n, = number of X's in the training

sample that belong in 7T but TH(X) = TT..
Then the estimate based on the
training sample is P(i | j; T0) = n,/N..
Estimated TPM and ECM are
« TP = &, p A2 n /N =1
« ECIT = ¥,.,.p 4%, Cl | n /N}
But E[TPM] < TPM and E[ECH] < ECM.

- 2PN /N

11
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. ~ ﬁ .
[f you estimate p, by p. = N/N, TFI1 is
TP = > .n./N
= (total number of errors)/N
This 1s the APER = apparent error rate.

APER is directly applicable only when p. =

N./N estimates p.. Even in that case, the

APER 1s biased downward and is thus

‘optimistic”.

p, = N/N is a sensible estimate of the

prior probabilities p. only when

 {p, are objective probabilities des-
cribing the prevalence of the popula-
tions,

e The training sample was collected ran-
domly, with the probability of each
case belonging to population TT, being

P

12
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Leave-one-out (Jackknife method)

This widely used method reuses the
training sample to estimate classifi-
cation probabilities of an estimated rule.
[t 1s also known as Lachenbruch’s
holdout procedure or the Lachenbruch-
Mickey method.

You classify each case 1n the training
sample using a rule based on all the other
cases, "holding out” the data for the case
you are classifying. Specifically:

e Forcasek, k =1, ..., N, estimate a

rule 17, (X) using all the data except x,.

e Then classify each X, as coming from
population ﬁ(_k)(xk).

e Estimate P(i|j) by P(i|j) = n */N,
Where n * = number of Tt, cases
classified as TT.

T ~, . .
TpmJK:ZBJigijisz(l | J) - Z1ij§9pj(zizjnij*)/Nj
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When you estimate p. by p. = N/N,
TP * *
KT (Z1§jigzi21nij J/N =1 - Z1§J£9njj /N

This might be called APER, = JackKnife
Apparent Error Rate. It estimates TPM
only when you obtained the training
sample by "mixture” sampling.

Example

Cmd> data <- read("™,"dayfisher")

dayfisher 29 8 format

) Data on seed of Pantago maritima (a Scottish plantain) was

) collected from 29 Scottish localities. The localities could

) be broadly classified in three regions - Coastal, Inland and

) Island. The Costal localities were further subdivided into

) 4 types (a) waterlogged mud, (b) typical salt marsh, (c)

) drained mud) and (d) coastal meadow above highest tide mark.

) Seed from each locality was grown under comparable

) conditions in an experimental garden and various

) measurements made on 100 plants grown from seed from each
) locality. In particular sample means and standard

) deviations were computed for leaf length (L), breadth (B)

) and thickness (T).

)

) This data consists of 1000*log10(means) and 1000*log10(stdev)

) Col. 1: Region (1 = Coastal, 2 = Inland, 3 = Island)

ol. 2: Locality within Coastal region 1 (1=type a,2=type b,
3=type c,4=type d); also 1 for all of regions 2 and 3

. 3: 1000*log10(stdev(length))

. 4: 1000*log10(stdev(breadth))

. 5: 1000*log10(stdev(thickness))

. 6: 1000*log10(mean(length))

l. 7: 1000*log10(mean(breadth))

. 8: 1000*log10(mean(thickness))

Read from file "TP1:Stat5401:dayfisher.mat"

)C
)
) Col
) Col
) Co
) Co
) Co
) Col
a

14
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Cmd> region <- factor(data[,1])
Cmd> locality <- factor(data[,2])
Cmd> y <- data[,-run(2)]

From the description in the header,
locality 1s nested within region . |
combined these in a single factor place
with 6 levels.

Cmd> unique(10*region + locality) # 6 different values
@) 11 12 13 14 21 31

Cmd> place <- makefactor(10*region + locality)

Cmd> list(place)
place REAL 29 1 FACTOR with 6 levels

This works because 10*region+locality
consists of the 6 numbers - 11, 12, 13,

14, 21, and 31 which makefactor() turns

into a factor with 6 levels.

Cmd> manova('y = place"}# do MANOVA computates to get residuals
Model used is y = place
WARNING: summaries are sequential
NOTE: SS/SP matrices suppressed because of size; use
'manova(,sssp:T)'
SS and SP Matrices
DF

CONSTANT 1

Type 'SS[1,,]' to see SS/SP matrix
place 5

Type 'SS[2,,]' to see SS/SP matrix
ERROR1 23

Type 'SS[3,,]' to see SS/SP matrix

15
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Check that things aren’'t too far from
normal.

Cmd> chiggplot(RESIDUALS,sqrt: T\
title:"Sqrt chi-sq QQ plot of Day-Fisher Residuals™)
Sqrt chi-=gq Q0 plot of Day-Fisher Residuvals
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[t looks pretty straight.

Cmd> N <- nrows(y) # size of training sample (29)
Cmd> setoptions(format:"9.5g") # fit more on line
Cmd> discrimfun <- discrim(place,y) # find linear discrim fun

Cmd> discrimfun # coefficients in estimated min TPM rule
component: coefs Coefficients of I|inear part
placel place2 place3 placed place5 place6
(1) 0.83379 0.84765 0.8636 0.88501 0.81145 0.84027
(2) -0.24068 -0.24764 -0.27343 -0.27526 -0.27973 -0.27775
(3) -0.449 -0.46187 -0.47554 -0.50837 -0.45276 -0.47627
(4) -1.0685 -1.0682 -1.0908 -1.1082 -0.9932 -1.0706
(5) 1.0617 1.0838 1.1484 1.1717 1.0317 1.0769
(6) 1.3695 1.3815 1.4215 1.4205 1.283 1.3668
component: addcon constant to be added
placel place2 place3 place4 place5 place6
(1) -1145 -1178.9 -1270.1 -1293.7 -1035.1 -11425

16
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Cmd> scores <- y %*% discrimfun$coefs + discrimfun$addcon

Cmd> list(scores)
scores REAL 29 6

Each row of scores contains the linear
discriminant scores for the 6 places for
that case.

(labels)

Assuming equal prior probabilities p, = p,
= ...=p, = 1/6, you classify a case in the
population with the largest score.

Cmd> scores_1 <- vector(scores[1,]); scores_1 # case 1 scores

1) 11037 11005 1086.3 10793 10955 1100.5

You would classify case 1 as place 1
since place 1 has the highest score.

17
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Now find estimated posterior probabili-
ties. Start with case 1.

Cmd> exp(scores_1)/sum(exp(scores_1))

WARNING: exp(x) with result too large set to MISSING

WARNING: exp(x) with result too large set to MISSING

WARNING: MISSING values found by sum()

WARNING: arithmetic with missing value(s); operation is /

(1) MISSING MISSING MISSING MISSING MISSING MISSING

Ooops! This is a case where | should
have subtracted some function K(x) from
the scores.

Cmd> kx <- scores][,1] # scores for place 1

Cmd> probs <- exp(scores - kx)/vector(sum(exp(scores - kx)"))

Cmd> probs[1,] # repeat of posterior probs for case 1

placel place2 place3 place4 place5 place6
(1) 0.92492 0.036058 2.6112e-08 2.301e-11 0.00026554 0.038755

You would classify case 1 incrop 1 when
TU(X) computed from all the data.

Now | find Tﬁt(x) for all cases at once.

i

Cmd> daplace <- vector(grade(probs',down:T)[1,])

daplace contains guessed classifications
of all 29 training sample cases.

Cmd> print(paste(daplace))
11122222223344445555552566656

18
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Posterior probabilities and guesses:

Cmd> print(format:"5.3f",hconcat(probs, place, daplace))
MATRIX:: Probabilities

(1,1) 0.925 0.036 0.000 0.000 0.000 0.039 1.000 1.000
(2,1) 0.893 0.107 0.000 0.000 0.000 0.000 1.000 1.000
(3,1) 0.826 0.060 0.000 0.000 0.000 0.113 1.000 1.000
(4,1) 0.253 0.396 0.001 0.000 0.005 0.345 1.000 2.000
(5.1) 0.354 0.633 0.000 0.000 0.000 0.012 1.000 2.000

True Quess

(6,1) 0.286 0.700 0.001 0.000 0.000 0.013 2.000 2.000
(7,1) 0.268 0.730 0.001 0.000 0.000 0.000 2.000 2.000
(8,1) 0.219 0.471 0.001 0.000 0.005 0.303 2.000 2.000
(9,1) 0.056 0.808 0.119 0.005 0.000 0.012 2.000 2.000
(10,1) 0.082 0.417 0.005 0.000 0.391 0.104 2.000 2.000

(11,1) 0.004 0.059 0.937 0.000 0.000 0.000 3.000 3.000
(12,1) 0.000 0.021 0.968 0.011 0.000 0.000 3.000 3.000
(13,1) 0.000 0.000 0.131 0.869 0.000 0.000 3.000 4.000

(14,1) 0.000 0.000 0.032 0.968 0.000 0.000 4.000 4.000
(15,1) 0.000 0.000 0.020 0.980 0.000 0.000 4.000 4.000
(16,1) 0.000 0.000 0.022 0.978 0.000 0.000 4.000 4.000

(17,1) 0.001 0.000 0.000 0.000 0.992 0.007 5.000 5.000
(18,1) 0.013 0.021 0.000 0.000 0.676 0.291 5.000 5.000
(19,1) 0.013 0.005 0.000 0.000 0.956 0.026 5.000 5.000
(20,1) 0.000 0.000 0.000 0.000 0.990 0.010 5.000 5.000
(21,1) 0.000 0.000 0.000 0.000 1.000 0.000 5.000 5.000
(22,1) 0.000 0.000 0.000 0.000 0.999 0.001 5.000 5.000
(23,1) 0.040 0.472 0.009 0.000 0.396 0.083 5.000 2.000
(24,1) 0.000 0.000 0.000 0.000 0.993 0.007 5.000 5.000

(25,1) 0.004 0.000 0.000 0.000 0.000 0.996 6.000 6.000
(26,1) 0.145 0.074 0.000 0.000 0.103 0.679 6.000 6.000
(27,1) 0.074 0.126 0.001 0.000 0.001 0.798 6.000 6.000
(28,1) 0.009 0.007 0.000 0.000 0.831 0.153 6.000 5.000
(29,1) 0.012 0.168 0.008 0.006 0.016 0.790 6.000 6.000

means place z gquessed place

Cmd> sum(daplace != place)

(1,2 5 msclassified
Cmd> 5/N
(1) 0.17241 (17% APER)

19
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The APER = 5/29 = 17.2%. This esti-
mates TPM only when places were selec-
ted by "mixture sampling” so that the
prior probabilities can be estimated by p.

= N/N. This 1s unlikely to be true.

Cmd> print(tabs(,place,daplace),format:"6.0f")
MATRIX:

11 3 2 0 0 0 O
1) 0 5 0 0 0 O
31 0 0 2 1 0 0
41 0 0 0O 3 0 O
(1) 0 1 0 0 7 0
61) 0 0 0 O 1 4
This 1s a “confusion matrix, a cross

tabulation of the data with

e ROWSs corresponds to the actual
locations cases came from.

e Columns correspond to the guesses
TU(x ) made for cases.

The diagonal elements are the numbers
correctly clasified.

20
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Assume equal prior probabilities (p, = ...
= p, = 1/6),

Cmd> prior <- rep(1/6,6) # assumed prior probabilities

Cmd> n <- tabs(,place); n # sample sizes
) 5 5 3 3 8 5

Cmd> P_ii <- diag(tabs(,place,daplace))/n; P_ii
1) 06 1 0.66667 1 0875 08

These are P(i | ).

Cmd> 1 - sum(prior*P_ii)
(1) 0.17639

. . e
This 1s TPM, biased downward because it
Is computed by treating the training
sample as a validation sample.

21
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Plots against case number of the naively
estimated posterior probabilities

Posterior probabilities for place 1

T | T [Ty T [T AR EI R

0.8 ) 0.8 P(2|x)-
0.4 P(llxl) 0.é X\ 1

Pasterior probabilities for place 2

5 10 15 20 25 5 10 15 20 25
Poasterior probzbilities for place 3 Posterior probabilities for pl 4
1 T 1 T T T
T MR W5 | T F I AR s | T,
0.5 0.3
0.4 0.é
Y
0.4 P3| x) 0.4 l/ﬁ 1|
-
(d1x,)
0.2 0.2
LAl :
5 10 15 20 25 5 10 15 20 25
Posterior probabilities for place 5 Posterior probabilities for place &

IR AN AN E AN ER AR AR A

0.5 1 0. " .
. Pi61x,)

0.é P(5|x1) 1 0.6 1

0.4 1 0.4 1

5 10 15 20 25 5 10 15 20 25

You can tell from this that Tt does a
reasonably good job of classifying the
training sample. It would probably not do
as well with a true validation sample.
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Jackknife estimation of error
probabilities
[llustrate with case 1.

Cmd> temp <- discrlim(place[-l],y[-l,])
temp contains constants for rule com-

puted from all the data except case 1.

Cmd> scores_1 <- y[1,] %*% temp$coefs + temp$addcon

Cmd> scores_1 <- vector(scores_1"; scores_1 # case 1 scores

Group1l Group2 Group3 Group4 Group5 Group6
1100 1097.4 1081.

1075.5 P 1093.2  1097.9

These are the linear scores for case 1.

Compute estimated posterior probabili-
ties P(j|x,) for case 1.

Cmd> kx1 <- max(scores_1);exp(scores_1-kx1)/sum(exp(scores_1-
kx1))
Groupl Group2 Group3 Group4 Group5 Group 6
0.83416 0.061132 9.9361e-09 1.8822e-11 0.00088082 0.10383

This classifies case 1 as coming from TT
as before. Because the maximum P(j |x,)
is P(1|x,) = 0.834, you would classify

with reasonable but not great confidence.

Note that 0.834 < 0.925 = “naive” est-
imate of P(1x,).

23
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jackknife(groups,x) automates leave-
one-out computations for linear classi-
fication.

Cmd> pjk <- jackknife(place, y)
Cmd> list(pjk)#Cols 1-6 are posterior probs

pik REAL 29 7

The number of columns is g + 1 =6 + 1

o piK]i,] contains P(j |x) for case i, ]
=1,..,9="6

e pjk[i,g+1] = pjK[i, 7] holds the group

number j  with
max P(j | x,) = P(]

X.).

max 1

Case 1 would be classified as coming
from TC

max

24
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Cmd> print(format:"5.3f",hconcat(p,place))

MATRIX: Posterior Probabilities

(1,1) 0.834 0.061 0.000 0.000 0.001 0.104 1.000 1.000
(2,1) 0.054 0.909 0.037 0.000 0.000 0.000 2.000 1.000 *
(3,1) 0.539 0.107 0.000 0.000 0.000 0.353 1.000 1.000
(4,1) 0.059 0.467 0.001 0.000 0.009 0.464 2.000 1.000 *
(5,1) 0.054 0.932 0.001 0.000 0.001 0.012 2.000 1.000

GQuess

December 5, 2005

True

(6,1) 0.523 0.453 0.001 0.000 0.000 0.023 1.000 2.000
(7,1) 0.684 0.313 0.003 0.000 0.000 0.000 1.000 2.000
(8,1) 0.287 0.296 0.002 0.000 0.009 0.406 6.000 2.000 *
(9,1) 0.084 0.602 0.280 0.011 0.000 0.022 2.000 2.000
(10,1) 0.049 0.026 0.006 0.000 0.773 0.146 5.000 2.000

(11,1) 0.166 0.829 0.002 0.000 0.000 0.003 2.000 3.000 *
(12,1) 0.001 0.143 0.799 0.057 0.000 0.000 3.000 3.000
(13,1) 0.000 0.000 0.000 1.000 0.000 0.000 4.000 3.000

(14,1) 0.000 0.000 0.162 0.838 0.000 0.000 4.000 4.000
(15,1) 0.000 0.007 0.505 0.488 0.000 0.000 3.000 4.000 *
(16.1) 0.000 0.000 0.047 0.953 0.000 0.000 4.000 4.000

(17,1) 0.004 0.001 0.000 0.000 0.976 0.020 5.000 5.000
(18,1) 0.029 0.047 0.000 0.000 0.348 0.576 6.000 5.000 *
(19,1) 0.183 0.052 0.000 0.000 0.630 0.136 5.000 5.000
(20,1) 0.000 0.000 0.000 0.000 0.956 0.044 5.000 5.000
(21,1) 0.000 0.000 0.000 0.000 1.000 0.000 5.000 5.000
(22,1) 0.000 0.000 0.000 0.000 0.998 0.002 5.000 5.000
(23,1) 0.077 0.787 0.005 0.000 0.035 0.097 2.000 5.000 *
(24.1) 0.000 0.000 0.000 0.000 0.984 0.016 5.000 5.000

(25,1) 0.437 0.000 0.000 0.000 0.000 0.563 6.000 6.000
(26,1) 0.323 0.157 0.000 0.000 0.258 0.262 1.000 6.000 *
(27,1) 0.139 0.240 0.001 0.000 0.002 0.618 6.000 6.000
(28,1) 0.001 0.001 0.000 0.000 0.999 0.000 5.000 6.000 *
(29,1) 0.022 0.465 0.019 0.006 0.040 0.447 2.000 6.000 *

Cmd> confus <- tabs(,place,pjk[,7]);print(confus,format:"4.0f")
confus:
(1,1)
(2.1)
(3.1)
(4.1)
(5.1)
(6.1)

RPOOOMNN
PROREFPW
OQORrRFrOO
OQONRFRLOO
RPOOORrO
NFROORFRO
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Cmd> N - sum(diag(confus))
@ 15 Nurmber of

APER, is 15/29 = .517

Cmd> 1 - sum(prior*diag(confus)/n)
(1) 0.54167 .

Assuming equal p,,
TPM, = 0.54167

As you might expect, these are larger

than the naive estimates. Usually there
Is not that big a difference, but here no
sample sizes is large (maxiN} = 10) and
there are two samples of size 3.

m scl assifications

[ncidentally, you cannot estimate quad-
ratic discriminant functions from these

data since N, < p for several J. You need
S ' to compute the quadratic discriminant
function for group j, but S. 1s singular
and has no inverse when N. <p = 7 as Is
the case for every place except place 5.
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