Lecture 35

November 30, 2005

Christopher Bingham, Instructor 612-625-1024

Class Web Page

http://www.stat.umn.edu/~kb/classes/5401

Copyright© Christopher Bingham 2005

Statistics 5401 Lecture 35 November 30, 2005

The minimum ECM (<u>expected cost of</u> <u>misclassification</u>) and minimum TPM (<u>total probability of misclassification</u>) rules are based on ECM_i(**x**), where

• ECM_i(\mathbf{x}) = conditional expected cost, given \mathbf{x} (but not knowing the population \mathbf{x} comes from), of classifying \mathbf{x} as from π_i .

ECM_i(\mathbf{x}) weights the costs C(i | j), j \neq i, by posterior probabilities P($\pi_i \mid \mathbf{x}$).

Since $C(i \mid i) = 0$,

$$ECM_{i}(\mathbf{x}) = \sum_{1 \le j \le g} P(\pi_{j} \mid \mathbf{x})C(i \mid j)$$

The posterior probabilities are

$$P(\pi_{j} \mid x) = p_{j} f_{j}(\mathbf{x}) / \{\sum_{1 \le k \le g} p_{k} f_{k}(\mathbf{x})\}, \ 1 \le j \le g$$

$$ECM_{i}(\mathbf{x}) = \frac{\sum_{1 \le j \le g} p_{j} f_{j}(\mathbf{x}) C(i \mid j)}{\sum_{1 \le k \le g} p_{k} f_{k}(\mathbf{x})}$$

2

Statistics 5401

Lecture 35

November 30, 2005

Statistics 5401

SO

Lecture 35

November 30, 2005

Statement of minimum ECM rule

Select the π_i for which $ECM_i(\mathbf{x})$ is smallest.

More precisely,

$$\hat{\pi}_{\min ECM}(\mathbf{x}) = \pi_{j}$$
, where $ECM_{j}(\mathbf{x}) = \min_{1 \le i \le g} ECM_{i}(\mathbf{x})$

In words, the minimum ECM rule is:

"Select the population with the least posterior expected misclassification cost."

The denominator $\sum_{1 \le k \le g} p_k f_k(\mathbf{x})$ is the same for all ECM, (\mathbf{x}) i = 1, ..., g.

This means that you can restate $\hat{\pi}_{_{\text{min ECM}}}$ as:

• Select $\boldsymbol{\pi}_{_{i}}$ so as to minimize

$$\sum_{1 \le j \le g} p_j f_j(\mathbf{x}) C(i \mid j) = \sum_{j \ne i} p_j f_j(\mathbf{x}) C(i \mid j)$$

When costs are equal (C(i | j) = c, i \neq j), $\hat{\pi}_{\min TPM}(\mathbf{x}) = \hat{\pi}_{\min ECM}(\mathbf{x})$ and

$$\begin{split} \mathsf{ECM}_{i}(\boldsymbol{x}) &= c \sum_{j \neq i} p_{j} f_{j}(\boldsymbol{x}) / \sum_{1 \leq k \leq g} p_{k} f_{k}(\boldsymbol{x}) \\ &= c (1 - p_{i} f_{i}(\boldsymbol{x}) / \sum_{1 \leq k \leq g} p_{k} f_{k}(\boldsymbol{x})) \\ &= c (1 - P(\pi_{i} \mid \boldsymbol{x})) \\ &= c (1 - posterior probability \\ &= of \pi_{i} \text{ given } \boldsymbol{x}) \end{split}$$

This means you can state $\hat{\pi}_{_{\min \text{ TPM}}}(\boldsymbol{x})$ as Select $\pi_{_{i}}$ to $\textit{maximize} \ \text{P}(\pi_{_{i}} \, \big| \, \boldsymbol{x})$

In words this is

"Select the population with the largest posterior probability."

Since all denominators are the same, the rule simplifies to

"Select π , with largest p,f,(\mathbf{x})"

or

"Select π_i with largest $log(p_i) + log(f_i(x))$ "

Two group case (g = 2)

Lecture 35

When selecting one of two groups, only $\underline{\text{ratios}}$ of posterior probabilities or expected costs are important.

• For minimum TPM, the relevant ratio is $(since p_2 = 1 - p_1)$:

$$R(\mathbf{x}) = p_1 f_1(\mathbf{x}) / ((1-p_1)f_2(\mathbf{x})) = OR \times \lambda(\mathbf{x})$$
where

$$\lambda(\mathbf{x}) \equiv f_1(\mathbf{x})/f_2(\mathbf{x})$$
, the likelihood ratio
OR = $p_1/(1-p_1)$ = (prior) odds ratio

• For minimum ECM the ratio is:

$$R(\mathbf{x}) = OR \times CR \times \lambda(\mathbf{x})$$

$$CR = C(2 | 1)/C(1 | 2) = \underline{cost \ ratio}$$

In both cases, the rule is:

Classify as π_1 when $R(\mathbf{x}) \ge 1$ Classify as π_2 when $R(\mathbf{x}) < 1$

5

Statistics 5401

Lecture 35

November 30, 2005

Statistics 5401

Lecture 35

November 30, 2005

Typically you have a *training sample* - a a body of data with

 $\textbf{n}_{_1}$ observations $\textbf{X}_{_{11}}\text{, }\textbf{X}_{_{21}}\text{, }...\text{, }\textbf{X}_{_{n_1,1}}$ known to come from $\boldsymbol{\pi}_{_1}$

 $\mathbf{n_{_2}}$ observations $\mathbf{X_{_{12}}},~\mathbf{X_{_{22}}},~...,~\mathbf{X_{_{n_{_2,2}}}}$ known to come from $\boldsymbol{\pi_{_2}}$

 $\textbf{n}_{\tt g}$ observations $\textbf{x}_{\tt 1g},~\textbf{x}_{\tt 2g},~...,~\textbf{x}_{\tt n_{\tt g},\tt g}$ known to come from $\pi_{\tt g}$

You use these data to find estimates of densities $\hat{f_i}(\mathbf{x})$, computable for any \mathbf{x} .

Then, in the two group case, you estimate the likelihood ratio by

$$\hat{\lambda}(\mathbf{x}) = \hat{f}_1(\mathbf{x})/\hat{f}_2(\mathbf{x}).$$

Finally you use the rule obtained by "plugging" $\hat{\lambda}(\mathbf{x})$ into the minimum TPM or minimum ECM rule.

These classification rules (minimum ECM or minimum TPM) are <u>fully specified</u> only when you

- can provide prior probabilities p_i (needed for OR)
- can specify costs (needed for CR)
- can compute the likelihood ratio $\lambda(\mathbf{x})$ for which you need $f_1(\mathbf{x})$ and $f_2(\mathbf{x})$,

When you can't specify costs, it is usual to treat them as constant.

With certain types of data, you may be able to estimate p_i . Otherwise, if you don't know p_i , you might assume $p_1 = p_2 = \dots = p_q = 1/g$.

In practice, you seldom if ever know $f_i(\mathbf{x})$ so you can't compute $\lambda(\mathbf{x})$. Somehow you must estimate $f_i(\mathbf{x})$, i = 1, ..., g.

There are at least two types of estimates for densities, <u>non-parametric</u> and parametric.

Non-parametric density estimates Histogram estimate

 $f_i(\mathbf{x})$ = height of the bar of a (multivariate) histogram (computed from the training sample from π_i) which contains \mathbf{x} .

This amounts to "binning" the observations from each π_i in rectangular cells or "boxes" and estimating the density at \mathbf{x} by

 $\hat{f}_i(\mathbf{x}) = \frac{\text{relative frequency in cell}(\mathbf{x})}{\text{area or volume of cell}(\mathbf{x})}$

where $cell(\mathbf{x}) \equiv cell$ containing \mathbf{x} . This is generally feasible only when p is small, unless the samples sizes are huge.

7

8

Kernel estimate

$$\hat{f}_i(\mathbf{x}) = n_i^{-1} \sum_{1 \le k \le n_i} W(\mathbf{x} - \mathbf{x}_{ki})$$

Lecture 35

where $W(\mathbf{x}) > 0$ is a multivariate density function with a mode at 0.

Examples

- W(x) is N_s(0,Σ) density
- W(x) = uniform density over a square or cube centered at 0.
- W(x) = uniform density over a circle or sphere centered at **0**.

You can check that $f(\mathbf{x})$ is a density (non-negative, integrates to 1).

Usually W(x) is from a family of distributions, which vary in concentration, say $W(\mathbf{x}) = h^p V(h\mathbf{x}), p = dimension of \mathbf{x}, where$ $V(\mathbf{u})$ is a multivariate density such as $N_{s}(\mathbf{0}, \mathbf{I}_{s})$ or uniform over $\{\mathbf{u} \mid |\mathbf{u}_{s}| < .5\}$ or $\{\mathbf{u} \mid \|\mathbf{u}\| \leq 1\}.$

When $V(\mathbf{u}) = e^{-\|\mathbf{u}\|^2/2}/\{2\pi\}^{p/2}$ is the $N_{s}(\mathbf{0}, \mathbf{I}_{s})$ density, $W(\mathbf{x})$ is the $N_{p}(\mathbf{0},h^{-1}\mathbf{I}_{p})$ density

The larger h is,

Statistics 5401

- the more concentrated around the sample point \mathbf{x}_{ki} is $W(\mathbf{x} - \mathbf{x}_{ki})$
- the "bumpier" is f_i(x).

The smaller h is,

- the more spread out is $W(\mathbf{x} \mathbf{x}_{k_i})$
- This can result in a featureless estimate with excessive bias.

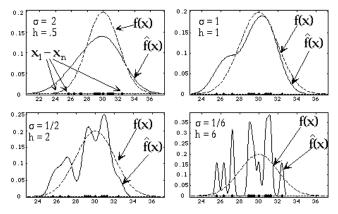
The key to successful kernel density estimation is determining the degree of concentration (choice of h). h is what is sometimes called a tuning constant. The optimal value of h is usually determined by cross validation.

Statistics 5401

November 30, 2005

Univariate (p = 1) example, with W(x) =

hV(hx), V(z) standard normal density, with $h = 1/\sigma$, $\sigma = 1/h = 2$, 1, 1/2, 1/6.



The dashed line is the true $N(30,2^2)$ density and artifical $N(30,2^2)$ data are marked on the x-axis.

The narrower the density W(x) is (smaller of here), the less smoothing is done and the rougher is the estimated density.

As $\sigma \to 0$, $f(\mathbf{x})$ has sharp spikes at the training sample data values.

10

Statistics 5401

November 30, 2005

Parametric density estimates Suppose you know (or can assume) that $f_{i}(\mathbf{x}) = g(\mathbf{x}, \mathbf{\Theta}_{i}), g(\mathbf{x}, \mathbf{\Theta})$ a known density (say $N_{p}(\mu_{i},\Sigma_{i})$) with vector of parameters Θ .

When $\hat{\boldsymbol{\theta}}_i$ is an estimate of $\boldsymbol{\theta}_i$ computed from training sample data from π , you estimate $f_i(\mathbf{x})$ and $\lambda(\mathbf{x}) = f_1(\mathbf{x})/f_2(\mathbf{x})$ by

 $\hat{f}_i(\mathbf{x}) = g(\mathbf{x}, \hat{\boldsymbol{\theta}}_i)$ and $\hat{\lambda}(\mathbf{x}) = g(\mathbf{x}, \hat{\boldsymbol{\theta}}_i)/g(\mathbf{x}, \hat{\boldsymbol{\theta}}_i)$ $g(\mathbf{x}, \hat{\mathbf{\theta}}_i)$ is often called a "plug-in" density estimate.

This is the approach we focus on, with $f_i(\mathbf{x})$ a $N_{\scriptscriptstyle D}(\boldsymbol{\mu}_i,\boldsymbol{\Sigma}_i)$ density.

- When the Σ , 's are equal, you classify using linear functions of x
- With Σ , 's that differ, you classify using quadratic functions of x.

11

12

Statistics 5401

Parameter estimates for multivariate normal

Lecture 35

Suppose **x** in π_i is $N_{\mathfrak{g}}(\mu_i, \Sigma_i)$, so

 $\Theta = [\mu_1, \mu_2, ..., \mu_n, \sigma_{11}, \sigma_{12}, \sigma_{22}, ..., \sigma_{n-1}, \sigma_{nn}]',$ p(p+3)/2 parameters.

Estimates of the μ 's are

•
$$\hat{\boldsymbol{\mu}}_i = \overline{\boldsymbol{x}_i}$$
, $i = 1,...,g$

When you can assume $\Sigma_1 = ... = \Sigma_g = \Sigma$, you estimate of Σ by

$$\hat{\Sigma} = S_{pooled} = (N - g)^{-1} \sum_{1 \le i \le g} (n_i - 1) S_i = f_e^{-1} E_i$$

E the MANOVA error matrix, f = N - g.

With unrestricted $\Sigma_{_{i}}$'s, you estimate $\Sigma_{_{i}}$ by

$$\hat{\Sigma}_{i} = S_{i}, i = 1,...,g.$$

There are other possibilites, such as Σ_{i} = $k_i \Sigma$, k_i unknown, but I will not explore them.

Classifying data from Multivariate Normal Populations

The $N_{\mu}(\mu, \Sigma)$ density for π , is

$$f_i(\mathbf{x}) = \frac{\exp\{-(\mathbf{x} - \boldsymbol{\mu}_i)'\boldsymbol{\Sigma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i)/2\}}{(2\pi)^{p/2}\{\det(\boldsymbol{\Sigma}_i)\}^{1/2}}$$

Note: $exp{. . .}$ means $e^{(...)}$.

Things are neater using log densities:

$$\begin{aligned} \log f_i(\mathbf{x}) &= \mathrm{const}_1 \\ &- \log(\det(\mathbf{\Sigma}_i))/2 \\ &- (\mathbf{x} - \boldsymbol{\mu}_i)' \mathbf{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i)/2, \end{aligned}$$

a quadratic function of \mathbf{x} .

You can ignore const, = $-(p/2)\log(2\pi)$ because it the same for all $f_i(\mathbf{x})$ and doesn't affect any comparisons of densities.

13

Statistics 5401

November 30, 2005

Statistics 5401

Lecture 35

November 30, 2005

Equal variance case: $\Sigma_1 = \Sigma_2 = \dots = \Sigma_n = \Sigma$. Then $\log f(\mathbf{x})$

= const₂ -
$$(\mathbf{x} - \boldsymbol{\mu}_i)'\boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_i)/2$$

= const₂ -
$$q(\mathbf{x})$$
 - $\mu_i' \Sigma^{-1} \mu_i / 2 + \mu_i' \Sigma^{-1} \mathbf{x}$

=
$$const_2 - q(\mathbf{x}) - c_i + l_i'\mathbf{x}$$

•
$$const_2 = const_1 - log(det(\Sigma))/2$$

= $-(p/2)log(2\pi) - log(det(\Sigma))/2$

•
$$q(\mathbf{x}) = \mathbf{x}'\mathbf{\Sigma}^{-1}\mathbf{x}/2$$
, the same for all π_i

•
$$l_i = \Sigma^{-1}\mu_i$$
, $c_i = \mu_i'\Sigma^{-1}\mu_i/2 = l_i'\mu_i/2$

You can ignore const, and q(x) because they are the same for all π_i .

The part that does depend on π , is $-c_i + l_i x = l_i (x - \mu_i/2).$

You classify by comparing g linear functions of \mathbf{x} ,

$$-c_{i} + l_{i}'x$$
, $i = 1, ..., g$.

15

Two groups with $\Sigma_1 = \Sigma_2$

14

When g = 2 and $\Sigma_1 = \Sigma_2 = \Sigma$

log
$$\lambda(\mathbf{x}) = \log f_1(\mathbf{x}) - \log f_2(\mathbf{x})$$

= $(\mathbf{l}_1'\mathbf{x} - \mu_1'\mathbf{\Sigma}^{-1}\mu_1/2) - (\mathbf{l}_2'\mathbf{x} - \mu_2'\mathbf{\Sigma}^{-1}\mu_2/2)$
= $(\mathbf{l}_1'\mathbf{x} - \mathbf{c}_1) - (\mathbf{l}_2'\mathbf{x} - \mathbf{c}_2)$

because const, - $q(\mathbf{x})$ cancel out.

Here

•
$$\mathbf{l}_1 = \mathbf{\Sigma}^{-1} \mathbf{\mu}_1$$
 and $\mathbf{l}_2 = \mathbf{\Sigma}^{-1} \mathbf{\mu}_2$

•
$$c_1 = \mu_1' \Sigma^{-1} \mu_1 / 2 = \ell_1' \mu_1 / 2$$

 $c_2 = \mu_2' \Sigma^{-1} \mu_2 / 2 = \ell_2' \mu_2 / 2$

Define
$$\mathbf{l} \equiv \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2}) = \mathbf{l}_{1} - \mathbf{l}_{2}$$
. Then log $\lambda(\mathbf{x}) = \mathbf{l}'(\mathbf{x} - (\boldsymbol{\mu}_{1} + \boldsymbol{\mu}_{2})/2)$
$$= \sum_{1 \le i \le p} \mathbf{l}_{i} \{ \mathbf{x}_{i} - (\boldsymbol{\mu}_{i1} + \boldsymbol{\mu}_{i2})/2 \}$$

a single linear function of x.

$$\lambda(\mathbf{x}) > 1 \iff \mathbf{l}'(\mathbf{x} - (\boldsymbol{\mu}_1 + \boldsymbol{\mu}_2)/2) > 0$$

$$\lambda(\mathbf{x}) < 1 \iff \mathbf{l}'(\mathbf{x} - (\boldsymbol{\mu}_1 + \boldsymbol{\mu}_2)/2) < 0$$

Good rules are based on $\lambda(\mathbf{x}) = f_1(\mathbf{x})/f_2(\mathbf{x})$ You can specify a rule by choosing a

Lecture 35

suitable constant "cutpoint" k_n:

- Classify as π , when log $\lambda(\mathbf{x}) =$ $l'(x - (\mu_1 + \mu_2)/2) \ge k_0$
- Classify as π_2 when log $\lambda(\mathbf{x}) < k_0$ k_o is a *cutpoint* or *threshold*.

 $\mathbf{k}_{_{0}}$ depends on $\underline{\text{prior probabilities}}$ and costs, but not parameters.

Define $m = \mathbf{l}'(\boldsymbol{\mu}_1 + \boldsymbol{\mu}_2)/2$. Then you can restate the rule as

- Classify as π_1 when $\ell' \mathbf{x} \geq \mathbf{k}_1 \equiv \mathbf{m} + \mathbf{k}_0$
- Classify as π , when $\ell x < k$

17

Statistics 5401

November 30, 2005

 $\mathbf{l}'\mathbf{x} = (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)'\boldsymbol{\Sigma}^{-1}\mathbf{x}$, is Fisher's *linear* discriminant function. It was derived under the assumption that $\Sigma_1 = \Sigma_2 = \Sigma$ The constant

 $k_1 = m + \log(p_2/p_1) + \log\{C(1/2)/C(2/1)\}$ is a thresholdor cut-off value separating values of $\ell'x$ favoring $\pi_1(\ell'x \geq k_1)$ from values of $\mathbf{l}'\mathbf{x}$ favoring π_{2} ($\mathbf{l}'\mathbf{x} < \mathbf{k}_{1}$).

• The more the prior odds ratio OR = p_1/p_2 favors π_2 (is small)

or

 the more the error cost ratio $C(1 \mid 2)/C(2 \mid 1)$ disadvantages π_1 the higher is the threshold 1 x must reach in order to select π_1 .

Recall that the <u>minimum ECM rule</u> is Classify as π_1 when $OR \times CR \times \lambda(\mathbf{x}) \geq 1$ Classify as π_{a} when $OR \times CR \times \lambda(\mathbf{x}) < 1$ where

Lecture 35

OR =
$$p_1/(1-p_1) = p_1/p_2$$

= (prior) odds ratio
CR = C(2 | 1)/C(1 | 2) = cost ratio
That is

Classify as π , when $\lambda(\mathbf{x}) \geq 1/(OR \times CR)$ Classify as π_{a} when $\lambda(\mathbf{x}) < 1/(OR \times CR)$

Therefore minimum ECM rule uses

• $k_0 = \log(1/(OR \times CR)) = -\log(OR) - \log(CR)$ = $log(p_2/p_1) + log\{C(1 | 2)/C(2 | 1)\}$

• $k_1 = l'(\mu_1 + \mu_2)/2 +$ $log(p_2/p_1) + log\{C(1 | 2)/C(2 | 1)\}$

Cutpoints k_0 (for log $\lambda(\mathbf{x})$) and k_1 (for $\mathbf{l}'\mathbf{x}$) combine log prior odds and log misclassification cost ratios.

Statistics 5401

Lecture 35

November 30, 2005

Simple case with equal priors and costs:

 $p_1 = p_2$ and $C(1 | 2) = C(2 | 1) \Rightarrow k_0 = 0$ The threshold for 1 'x is

$$k_1 = m = l'(\mu_1 + \mu_2)/2,$$

halfway between $\ell'\mu_1$ and $\ell'\mu_2$. That is, classify in π , if and only if

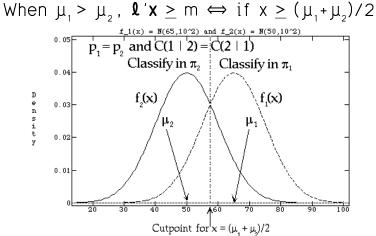
$$\mathbf{l} \ '\mathbf{x} > \mathbf{l} \ '(\mu_1 + \mu_2)/2$$

November 30, 2005

Statistics 5401

Univariate (p = 1) case

Lecture 35



The graph shows

- $\lambda(x) > 1$ to the left of $(\mu_1 + \mu_2)/2$
- $\lambda(x) < 1$ to the right of $(\mu_1 + \mu_2)/2$

Unequal costs and prior probabilities

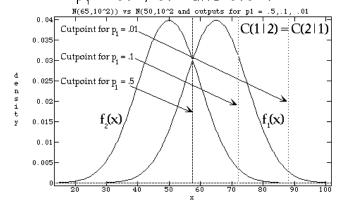
Classify in π₁ when

$$\begin{array}{l} \textbf{l} \cdot \textbf{x} & \equiv [(\mu_1 - \mu_2)/\sigma^2] x > (\mu_1 - \mu_2)(\mu_1 + \mu_2)/(2\sigma^2) \\ & + \log(p_2/p_1) + \log\{C(1 \mid 2)/C(2 \mid 1)\} \\ \end{array} \\ \text{When } \mu_1 < \mu_2, \text{ this is}$$

• Classify in $\pi_{_1}$ when

$$x < (\mu_1 + \mu_2)/2 + (\sigma^2/(\mu_1 - \mu_2)) \times \{\log(\rho_2/\rho_1) + \log\{C(1 \mid 2)/C(2 \mid 1)\}\}$$

Cut points when $C(1 \mid 2) = C(2 \mid 1) = 1$ and $p_1 = 0.5, 0.1$ and 0.01



21