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Statistics 5401 Lecture 35 November 30, 2005

The minimum ECM (expected cost of
misclassification) and minimum TPM
(total probability of misclassification)
rules are based on ECM.(x), where

o ECM(X) = conditional expected cost,

given x (but not knowing the population
X comes from), of classifying x as
from TC.

ECM.(x) weights the costs C(i|j), j = i, by
posterior probabilities P(1T | X).
Since C(i|i) = 0,
ECM(x) = ¥, POT [ X)C(i | })
The posterior probabilities are

PIT | %) = p,f()AE, P (0} 1<j<g
SO

24P, T, (X)C( | J)

ECM(X) =
| Z]gkggpkfk(x)
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Statement of minimum ECM rule

Select the Tt for which
ECM.(x) is smallest.

More precisely,
T een(X) = 70, Where
ECM (x) = min,__ ECM (x)

In words, the minimum ECM rule 1s:

"Select the population with the least
posterior expected misclassification
cost.”

The denominator »., P
for all ECM(x) i = T,

p.f.(X) is the same
.., G.

This means that you can restate TE
as:

min ECM

e Select 7T so as to minimize

LGP E0C ] ) = 3 pfx)Ci] )
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When costs are equal (C(i]j) = c, i z j),

T[mmTPM( ) ﬁ:mmECM( )and
ECM(x) =cx p,f(X)/2 . Pf(X)
=c(1 - pf(x)/2, P f (X))
= c(1 - P(7C | X))

c(1 - posterior probability
of 7T given X)

This means you can state T (X) as
Select T, to maximize P(7T | x)

In words this is

"Select the population with the largest
posterior probability.”

Since all denominators are the same, the
rule simplifies to

"Select TU with largest p.f(x)"
or

"Select Tt with largest log(p.) + log(f (x))”
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Two group case (g = 2)
When selecting one of two groups, only

ratios of posterior probabilities or
expected costs are important.

November 30, 2005

e For minimum TPM, the relevant ratio is
(since p, = 1 - p,):

R(x) = p,f,(x)7((1-p)f (X)) = ORxX(X)
where
X(x) = f.(x)/f(x), the likelihood ratio

OR = p,/(1-p,) = (prior) odds ratio
e For minimum ECM the ratio is:
R(x) = ORxCRxA(X)
CR = C(2]1)/C(1]2) = cost ratio
In both cases, the rule is:
Classify as 7T, when R(x) > 1
Classify as 7T, when R(x) < 1
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These classification rules (minimum ECM

or minimum TPM) are fully specified

only when you

e can provide prior probabilities p.
(needed for OR)

e can specify costs (needed for CR)

e can compute the likelihood ratio A(x)
for which you need f (x) and f(x),

When you can’'t specify costs, it is usual
to treat them as constant.

With certain types of data, you may be
able to estimate p.. Otherwise, if you
don’t know p., you might assume p, = p, =
.. =p, = 1/4.

In practice, you seldom if ever know f(X)

so you can’t compute X(x). Somehow you
must estimate f(x), 1 =1, ..., g.
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Typically you have a training sample - a
a body of data with

n, observations X,,. X,,, .... X known

to come from TC,

n, observations X,,, X,,, .... X_, Known

to come from TC,

n, observations X, ., X,, ..., X known
.

to come from TIg

You use these data to find estimates of
densities f(x), computable for any x.
Then, in the two group case, you estimate
the likelihood ratio by

A(x) = £ (x)/f (x).

Finally you use the rule obtained by
"plugging” X(x) into the minimum TPM or
minimum ECM rule.
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There are at least two types of esti-
mates for densities, non-parametric and
parametric.

Non-parametric density estimates

Histogram estimate
f(x) = height of the bar of a (multi-
variate) histogram (computed from
the training sample from 7t) which

contains X.

This amounts to "binning” the obser-
vations from each 7T in rectangular

cells or "boxes” and estimating the
density at x by
~ relative frequency in cell(X)

f(x) =

]
i area or volume of cell(x)

where cell(x) = cell containing X.

This is generally feasible only when p
s small, unless the samples sizes are
huge.
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Kernel estimate

fT(X) = ni-1z1<k<ni\/\/(x - in)

where W(x) > 0 is a multivariate density
function with a mode at O.
Examples

e W(x) is N (0,X) density

e W(x) = uniform density over a square
or cube centered at 0.

e W(X) = uniform density over a circle or
sphere centered at 0.

You can check that f(x) is a density
(non-negative, integrates to 1).

Usually W(x) is from a family of distri-
butions, which vary in concentration, say
W(x) = h*V(hx), p = dimension of X, where
V(u) is a multivariate density such as
N(0, 1) or uniform over ful |u| < .s}tor
(uf ul <.
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When V(u) = e"""?/{271}"*is the N (0,1
density, W(x) is the N (0,h"'I) density

The larger h is,

e the more concentrated around the
sample point x . is W(X - X )

e the "bumpier” is f(x).

The smaller h is,
e the more spread out is W(x - X )

e This can result in a featureless
estimate with excessive bias.

The key to successful kernel density
estimation is determining the degree of
concentration (choice of h). h is what is
sometimes called a tuning constant. The
optimal value of h is usually determined
by cross validation.

10
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Univariate (p = 1) example, with W(x) =
hV(hx), V(z) standard normal density,
withh=1/c,0c =1/h=2,1,1/2, 1/6.

0.z

n.2 f(x) T
WAl 9

o=1
o.ast h=1

24 26 28 30 32 34 36

0.35

0.25
0.z

0.15
0.1

.05

0.0s
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The dashed line is the true N(30,2°)
density and artifical N(30,2%) data are
marked on the x-axis.

The narrower the density W(x) is (smaller
o here), the less smoothing is done and
the rougher 1s the estimated density.

As o - 0, f(x) has sharp spikes at the
training sample data values.

11
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Parametric density estimates
Suppose you know (or can assume) that

f(x) = g(x,8), g(x,8) a known density (say
N (J,.Z)) with vector of parameters 6.

When 8. is an estimate of 8 computed
from training sample data from 7T, you
estimate f(x) and X(x) = . (x)/f_(X) by

f(x) = g(x,8) and X(x) = g(x,6,)/g(x,8))
g(x,8) is often called a "plug-in" density
estimate.

This 1s the approach we focus on, with

f.(x) a N(u,Z) density.

e When the £ s are equal, you classify
using linear functions of X

e With X’s that differ, you classify
using quadratic functions of x.

12
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Parameter estimates for
multivariate normal

Suppose X in Tt is N (J,Z), so

© = [J,.1,.....0, G,,,6,,,0,,,....0,, 0]
p(p+3)/2 parameters.
Estimates of the u's are
e U =X,i=1,.4
When you can assume &, = ... = X = X, you
estimate of ¥ by

$=5 _.,=WN-9"'> (n-1)8 = fE,

E the MANOVA error matrix, f_ =N - g.
With unrestricted ¥ 's, you estimate £ by
¥ =S,i=1,..43.

There are other possibilites, such as & =

k.Z, k. unknown, but I will not explore
them.

13
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Classifying data from Multivariate
Normal Populations

The N (J, ) density for 7t is
exp{-(x - p)'E'(x - p)/2}
0= T et
Note: exp{. . .} means e"".
Things are neater using log densities:
log f(x) = const.
-log(det(£))/2

- (X - p)ET(x - p)/2,

1

a quadratic function of Xx.

You can ignore const. = -(p/2)log(271T)
because it the same for all f (x) and
doesn’t affect any comparisons of den-
sities.

14
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Equal variance case: £ =% = .. = & = Z.
Then log f(x)

= const, - (X - p)'E(Xx - p)/2

= const, - q(X) - W'E"M/2 + P EX
= const, - q(x) - C, + QX
e const, = const, - log(det(X))/2

-(p/2)1log(211) - log(det(£))/2
o q(x) = x'£7'x/2, the same for all 7T,
e L =%'p,Cc o= WEH/2=0"D/2
You can ignore const, and q(x) because
they are the same for all Tt.
The part that does depend on 7T is

-+ Lx = L(x - p/2).

You classify by comparing g linear
functions of X,

-c.+ L'x, 1 =1, ..., ¢.

15
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Two groups with X = &
Wheng=2and & = & =X

log A(x) = log f (x) - log f (x)

= (X - PETR/2) - ()X - pSH /2)

= (2% - c, J)-()x- C
because const, - q(x) cancel out.
Here
e § =%y oand 2, =2
e C = H'EH/2=0"n/2
C,= W'E'W/2=0"n/2
Define & = &7'(, - p) =2 -4
log A(x) = 2°(x - (u,+p,)/2)
- Zm:ij{Xj ) (}1]-1"}112)/2}
a single linear function of X.
AX)> 1T o L(x - (U+p)/2) >0
AX) <1 & 0(x - (M+p)/2) <0

2

Then

5*
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f.(x)/f,(x)

You can specify a rule by choosing a

suitable constant “cutpoint” k :

o Classify as 11, when log A(X) =
L(x - (W+p,)72) 2 kg

o Classify as 7T, when log A(x) <k

Good rules are based on A(x) =

0

K, 1s a cutpoint or threshold.

k depends on prior probabilities and

0

costs, but not parameters.

Define m = L'(u. + J)/2. Then you can
restate the rule as

m + K

0

e Classify as 7T when 2'x > k.
e Classify as 71, when &°x < k|

17
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Recall that the minimum ECM rule is
Classify as 7T, when ORxCRxX(X) > 1

Classify as 71, when ORxCRxX(x) < 1
where

OR =p,/(1-p,) = p,/p,
= (prio ) odds ratio
CR = C(2|1)/C(1|2) = cost ratio
That 1s

Classify as 1, when X(x) > 1/(ORxCR)
Classify as 10, when X(x) < 1/(ORxCR)
Therefore minimum ECM rul uses

e k, = 10g(1/(ORxCR)) = -1og(OR) - 10g(CR)
= log(p,/p,) + 10g{C(1 |2) (2] 1)}
o k= L(J, + p)/2 +
log(p,/p,) + log{C(1|2)/C(2] 1)}

Cutpoints k, (for log A(x)) and k, (for 2°x)
combine log prior odds and 1log mis-
classification cost ratios.

18
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L'x = (u, - p)E'x, is Fisher's linear
discriminant function. 1t was derived
under the assumption that ¥ = ¥ = X

The constant
k, = m «log(p,/p,) + log{C(1|2)/C(2] 1)}

1

1S a thresholdor cut-off value separa-
ting values of &'x favoring 7T, (2'x > k)
from values of 'x favoring 17, (2'x < k).

e The more the prior odds ratio OR =
p./p, favors TC, (is small)

or
e the more the error cost ratio

C(1 | 2)/C(2 | 1) disadvantages Tt
the higher is the threshold 2'x must
reach in order to select TC..

19
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Simple case with equal priors and costs:
p, = p,and C(1[2) = c(2]|1)=k, =0
The threshold for £ 'x is
kK, =m= L(J + p)/2,
halfway between 2°u and L'y . That is,
classify in 7T, 1f and only if

L ox > L(p,+ p)/2

20



Univariate (p = 1) case
= X -p) = (u,-p,)/0% a scalar
m = L°(H + J)/2 = (U -p)(J + )/ (267)
L'x -m =
(- p,)70% = (- )+ )/ (267)
= {(p,-p,)/(20)Hx - (u,+p,)/2}
When p.> j, 8'x>m & if x > (J+4,)/2

£ 1(x) = W(65,10°2) and £ 2(x) = W(50,10°2)

o.0s5fF T T T T ! T =
p,=p, andC(1 | 2=C(2 | 1)

ol Classify in 7, (?E\smﬁ% inm, |
i E .l;z k'll'-.
= 0 0z o \‘.‘fI(X)
: l"ri ",
i I'l"l ""-.
5 ooozb ) 5
¥

0.0l -

0 == T ——

=0 =0 ETy =0 &0 w0 B0 50 oo

Cutpoint forx = (p,1+ p,z).-"E

The graph shows
o X(x) > 1 tothe left of (u, + p,
e X(x) <1 to the right of (u, + p)/2

<
N
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Unequal costs and prior probabilities
e Classify in 7T when
x = [(W,-1,)/0%0x > (-1 ) ([, +4,)/(207)
+ log(p,/p,) + log{C(1]2)/C(2|1)}
When i, < j, this is
e Classify in 7T when
X < (W +)/2 + (02/([, - J))x
{log(p,/p,) + log{C(1 |2)/C(2| 1)}
Cut points when C(1 \2) - C(2J 1) = 1 and

p, = 0.5, 0.

W(eS,10"2%) w= W(S0,10°2 and cubtputs for pl = .5,.1, .01
I I I I

and 0.01.

Cutpaint far B = 01

| Cutpoint for B= 1

~Cutpeint for pl =h

“ci=celn)]
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