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Predicting bankruptcy on the basis of

an individual's credit history

e 7L, is the population of individuals
seeking credit who will declare
bankruptcy in the next 12 months

e 7L, is the population of such people
that will not do so (g = 2).

Identification of a variety or species

using data from an individual organism

» The populations 7t are different
varieties of a particular species or
variety of organism.

e Data x are various measured charac-
teristics such as petal length.

In some areas, this is done by a proce-
dure based on a "key” which can be sum-
marized by a "tree” of choice. Methods of
this type are CART and FIRM.
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Examples of Classification Problems

Classification is the process of "guess-
ing” on the basis of data x, which popula-
tion, 7T, TT,, ..., or 7, an individual is in.
Classification can be part of various
tasks:

Diagnosis of a medical condition on
the basis of a patient’'s data
e Each population 7t consists of indiv-

iduals with a particular health
condition from a list of g conditions
(one might be "no disease”).

Data x are the patient’'s medical his-
tory and results of medical diagnostic
procedures carried out on the patient.

Effect of rarity

A physician might be reluctant to diag-
nose a very rare disease, even if the
symptoms were more consistent with it
than with other more common conditions.
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Prior probabilities quantify rarity
You quantify the rarity of a population by
its prior probability,

P, = P(71T).

1

p, is the probability, prior to observing
data x, that a case belongs to or comes
from population TT.

Knowledge of p,, ..., p, almost certainly
should affect your choice of a classifi-
cation rule.

When p. is small, individuals from 7T are

rare and you probably should require
stronger evidence to classify an indivi-
dual as belonging to 7T.

When p, is close to 1, your should require
strong evidence to classify an individual
as anything other than from 7t.
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e For diagnosis, p. measures how pre-
valent medical condition 1 is among
the patients seen by the physician. A
rare condition has small p..

e For bankruptcy, p, =1 -p, =
P(randomly selected loan applicant
will declare bankruptcy).

e For identifying plant varieties,
p, = proportion (prevalence) of plants
of variety 1 in all plants of that type.

Alternatively, p, might measure a
combination of actual prevalence and
ease of finding or collecting specimens
the variety. It's possible a common
variety is very hard to see.
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Classification Rules
| use the notation 7U(x) as a generic
symbol for a procedure, rule or formula
to select 7T on the basis of data X.
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* When the procedure selects Tt based on
data x, you write TU(x) = 7T,

 The possible "values” for Ti(x) are Tt
T, . T

The notation reflects a view of classifi-

cation as an estimation procedure,

where the unknown “parameter” is Tt.
Equivalently, 1 is an unknown parameter,
leading to the clumsier notation Tt, = T,
where 1(x) is the index chosen.

A sensible rule: Tt(x) = population 1T with
largest posterior probability P(TT, | X).
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Because we assume X comes from one of
g specific populations, Zmigpi: 1.

By Bayes' rule, once you know X, the
posterior probability P(7t |x) that x
comes from population Tt is

p,f(x)

Z1sjsgpjf1(x)

The numerator weights the density in 7T
by the prior probability of TT.

o Large p, can compensate for small f (X).

P(TC | X) =

o P(IT. | X) is large when the prior proba-

bility p, is large and f(x) is large.
The denominator is exactly what is
needed so that 3 P(TT, | X) = 1.

e |t is the marginal distribution of x
when you pick a population using p. and
observe x with density f (x).
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How do you compare two rules?
When you can answer this question, you
can then ask:

Which rule, if any, is the best rule in
the sense of being at least as good as
(no worse than) any other rule.

When g = 2, this issue has a lot in com-
mon with testing a null hypothesis H,
(population Tt,) against an alternative H_
(population TC,).

There, you want the probabilities of

incorrect choices « = P(reject | H,) (type I

error) and 8§ = P(not reject | H) (type Il
error) to be small. Equivalent you want
probabilities 1 - «wand 1 - B of correct
choices to be large.

This suggests error probabilities are a
way to in evaluate classification rules.

8
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(Mis)classification probabilities

Notation
PG| ) = P(UX) = 7 |70), 1 < i.j<g

= P(classify x as from 7t when it
actually is from TT).

A more complete notation would P.(i | j)

or P(i|j; 70) since P(i|j) depends on Tt.

Trivial example: 7T = Always choose TT,
P(1[1)=1; P(|1)=0,]=1
P(1[2)=1; P(j|2)=0,j=1,021

Less trivial example with p = 1.
TC: X 1S N(3O,52); T[2: X 1S N(40,72).

1

Suppose Ti(x) selects 7T, when x < 35 and

selects TC, when x > 35. Then from

Ond> cummor (vect or ((35-30)/5, (35-40)/7))
(1) 0.84134 0. 23753 P(x < 35/m) and P(x < 35| m)

P(1]1) = .841 P(2|1)=.159 | 1
P(1]2) = .238 P(2]2) = .762 | 1
What's the overall probability of error?
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e The off-diagonal elements are prob-
abilities of incorrect classification.
They generalize o« and 8 in a hypo-
thesis test

e The diagonal elements P(] | j) are prob-
abilities of correct classification.
They generalize 1 - «xand 1 - § in a
hypothesis test

e You want P(i|]j) to be small, j =z i.
e You want P(i|i) to be large.

11
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More about P(i|j)
DI |j) =1 (always select some T0)
° P(J J) =
P(x from 7T, correctly classified)
« 1 -PG[D=Z PG =
P(x from TC misclassified).
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You can display P(i | j) ina g by g table:

Prior Classification Decision
Pop |Pr| 7T, TC, TC, T,
7T, |p, [P [D)|P2]1) P(3]1) ... P(g]T)
7, |p, [P(1]2)[P(2]2) |P(3]2) ... P(g]
7T, |p, [P(1]3) P(2|3) [P(3]3)]... P(g]3)
T, |p, [P(1|g) P(2|g) P(3|g) ...[P(g|g)

The off diagonal elements P(] |i), jzi
are generalizations of « and 8 in a
hypothesis test. The diagonal elements
are analogous to 1 - «and 1 - 8.
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The Total Probability of Misclassi-

fication (TPM) of rule Tt is

TPM = TPM(TT) =
P(misclassify randomly selected case)

Random selection of a case means:

» random select a population 1T with
distribution f using prior probabilities
Piv Py oo Py

e Randomly select x from that population

The notation TPM(TT) emphasizes that TPM

depends on the rule Tt.

TPM is one answer to the question of how
to compare two rules 7" and 7t®
71? {s better than 71" when
TPM(1T?) < TPM(TT")

This suggests, a "best” rule would be a
rule whose TPM is as small as possible,
that is a rule 7t that minimizes TPM(TU).
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Formula for TPM(7t)
When X actually comes from TC the

probability it is misclassified by 7T is
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P(misclassify | X from 1) =
S PG =1 - PGi])
Taking into account the prior probabil-
ities, this means that
TPM = TPM(7D) = ¥,_.pA¥ .P(j | 1)}
TPy TaagP PO D= T - 5, pPG 1)
1 - P(correct classification)

TPM depends explicitly on the prior
probabilities p..

When 7T is such that TPM(7T) < TPM(TT),
for every 7t z 7T, then 7T is a minimum
TPM rule.
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P2 | 1) =P(Z>(C- p)/o)
= cumor ((C - J,)/0, upper: T)
P1 | 2)=P(Z < (C - p)/o)
= cummor ((C - p,)/0)
So TPM, =

p,P(Z > (C - p)/o)+pP(Z<(C- p)/o)

Omd> pl <- .3; p2 <~ 1 - pl # Prior Probabilities
Omd> nul <- 40; mu2 <- 50; sigma <- 5
Omd> zeta <- run(mul, nu2, (mu2 - nul)/100)

Cmd> tpm <- pl*cummor((zeta - mul)/sigma, upper:T) + \
p2 *cumor ((zeta - mu2)/si gm)

Cmd> lineplot(zeta,tpmtitle:"TPMvs zeta")

TFI vs zeta
0.35 ' '
0.3t
t
P o025
it
2ol Minimum of TPM
0.15}

a0 Iz T s a5 =0
zeta
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Example
Suppose g = 2 and

f.(x) = N(u,,0), f,(x)=N(p,o)
where g, =40, 4, = 30, c = 5

Hormal densities with sigma = 5, pl=40, p2=50

| X

T T i i i i T T n
25 20 25 EL) 45 50 55 El) &5
4

Any sensible rule will be of the form
T, X <(
4' , some (
LTE2 x> C
That is, there is a single cut point C
dividing values of x.

14
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Let's focus on values of C near where
TPM, is minimized, say 42.5 < C < 43.5.

Omd> zetal <- 42.5 + run(0,1,.01)

Ond> tpnl <- pl*cummor((zetal - nul)/sigm, upper:T) + \
p2 *cumor ((zetal - nu2)/sigma)

Ond> |ineplot(Zeta:zetal, TPMtpni, title:"TPMvs zeta")
TPMvs zeta

U+

Minimum of TPM
is close to 42.85

0. 139f

0.139f

0. 139f

0. 139f

2.6 728 73 32 37
Zeta

The best cutpoint is somewhat nearer p,
than to j.. This can be expected because
the prior probability of 7T, is p, = .7 as
opposed to p, = .3.
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Costs
The probability of misclassification is
only one aspect of rule quality.

There are often costs or consequences
arising from particular misclassifica-
tions.

The cost of a misclassification depends
on

» The actual population 7T that x comes
from R
e The guessed population TU(x).

Examples:

e The cost of misclassifying an edible
mushroom as being poisonous is
certainly less than the cost of mis-
classifying a poisonous mushroom as
edible.

e The cost of failing to correctly diag-
nose a hemophiliac (bleeder) about to
undergo an operation might be very
large (false negative is worse than
false positive).

November 28, 2005
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Before you observe X from 7T, you don't
know the actual cost of classifying it
using 7, because you don’'t know how you
will classify X.

You can, however, find the expected cost
of classifying an x that comes from Tt.
You weight the costs of each possible
classification by the probability of that
classification:
EC(i) = EC,(i)

= Elcost |1t = ¥ . P(j|D)C(|1)
Now you can use the prior probabilities
{p,} to find the overall expected cost of
classifying a single X

EC = EC(TD) = &, P,EC.(1)

= T PAT P [0 | D)

Note that this is the expected cost of a
particular rule Tt.

1<j<g

19
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Notation A
C(j|1) = cost incurred when 7i(x) = T
and true population is 7T,
It seems reasonable that C(i|i) < O,
because a negative "cost” is a "benefit”.

You can display the values of C(j |i) ina
table like that for P(j|1).

Prior Classification Decision
Pop |Pr| TT, T, T, . T
T |p, [COH 1) [C(2] 1) C(3]1) ... Clg]1)
T, |p, [C(1[2)[C(2]2)|C(3]2) ... C(g]2)
7T, |p, |C(1]3) C(2]3)|C(3]3)].. Clg]3)
7T, |p, |C(1]g) C(2]g) C(3]g) ...[C(g]q)

Unlike P(i | j) = P.(i | i), C(i | j) does not
depend on 1T Or p,, ..., P..

g
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EC is another way to compare 7t’s.
By this criterion, 1T, is "better than" 7T,
when EC(TT,) < EC(TT,).

Note: EC is not the only reasonable way
to use costs in evaluating Tt.

Alternatives:
e Maximum expected cost
max EC(i) = max {3, P(] |)cG | 1)}

If you are a pessimist, a good rule might
be one that minimizes the maximum
expected cost (minimax rule). Of course,
if the population for which this cost is
maximum is extremely rare, you may
greatly increase your expected cost to
protect yourself against a rare event.

» Weighted maximum expected cost

max {pEC(1)} = max {p 2. P(] ) 1))
This downweights the costs of rare
events.

20
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Fact (not hard to demonstrate)
Let EP = expected penalty = expected
cost when the costs are replaced by
the "penalty” C(j|1) = c(j |1) - (i),
The penalty satisfies C(i|i) = 0. Then
for any two rules
EP(TT,) = EP(7T,) & EC(TT,) = EC(7T,)
EP(7T,) < EP(TT,) & EC(TT,) < EC(7T,)
In fact
EC(7T,) - EC(7T,) = EP(TT,) - EP(T,)
Thus you get the same ranking of rules by
EP as by EC. This means there you lose
no generality, by assuming that C(i | i) =
0,1 =1,....,g for which costs EP(TT) =
EC(7T).
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Suppose all misclassification costs are
the same, so that C(] |i) =c,izjand
C(i | i) = 0. Then also

ECM(i) = c(1 - P(i|1))
and
ECM(TD) = cx¥, . p(1 - P(i]1)) = cxTPM(TD).
In this equal cost case, ranking rules by
ECM is the same as ranking rules by TPM.
When you can identify differential costs
of misclassification, ECM is a way to
rank classification rules.

You should prefer 1T, to 7T, when
ECM(TT,) < ECM(TT,)

Using this approach, the "best” rule is a
minimum ECM rule, that is a rule that
with the smallest possible ECM.

23
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From now on | will assume C(i | i) = 0 and
will, use ECM = the Expected Cost of
Misclassification in place of EC.

ECM(70) = ECM = ¥ p (¥, P(j|1)C(j]| i)}
= 2. p,ECM(i)
ECM is a weighted average of the expec-

ted costs of misclassifying an individual
from a population.

22
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When you cannot reasonably specify
costs, it’'s sometimes appropriate to act
as if all costs are the same.

In this case, you should rank rules by
their overall error rate (TPM).

TC is "better” than 7T, when
TPM(7T,) < TPM(TT)
The "best” rule is the minimum TPM

rule which has the smallest possible
TPM.

e The minimum ECM rule is a classifi-
cation rule whose ECM is not greater
(<) than the ECM of any other rule.

e The minimum TPM rule is a classifi-
cation rule whose TPM is not greater
(<) than the ECM of any other rule.

Suppose you know how to find a minimum

ECM rule for any costs C(] |i).

Then, because TPM = ECM when C(j |i) =1,
j z 1, you also know how to determine the
minimum TPM rule.
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