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Facts (easily checkable):

.8, E,U =L U =6Z% U
z:21211 12:12 Vj - 'Cj2222Vj - ejzzzvj
« Coefficient vector u, for zj(”is a
eigenvector of £ & 'E relative to &

12722
s a
relative to z,

* Coefficient vector v, for z
eigenvector of £ & 'S

So you can find canonical variables by
solving two relative eigenvalue/vector
problems involving pieces of X.
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You get canonical variables from the
multistandardized X" = £ *(x" - u")

and X = £_T*(x? - p?) usmg left and

22

right singular vectors 2 andr, of
p,, = corrlx" x?] = g WZ z

12722
How do you get canonical varlables

directly from x(” and x?, rather than
from X" and X'
° Zj(1) - QJT"m - Q, T/2( m _ }1(”)

= uT( }1

=u'x" - u'u"”, whereu = £ "0
° Zj(z) - roiTz) - roZZZ-T/z(X(z) _ 11(2))

- VjT(x(2) _ }1(2))

- VTx(z) _ vap(2), Where V Z 1/2

J
Thus you need to find u, and v.. Although
they are defined using & and r, they can
be computed directly from X.
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Usually, the canonical variables are
defined as

zj(” = ujT x" = (ZH‘”zflJ)T x"

B Ix = (2, )T X
without subtracting means. These differ
only by constants u'u™ and v u” from
the previous definition, and

ujTJl(1) - E[Zj(”], va JJm - E[z@]

]

My examples have not, of course, had to
do with population principal components,
but rather with sample canonical cor-
relations.

You define
e sample canonical correlations fj

e pairs of sample canonical variables zAj(”
and ij(2)

in a similar way, starting with S instead
of Z.
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Continue with analysis of artificial data:

Ond> s <- tabs(scores,covar:T)

Ond> J1 <-run(3); J2 <- run(4,7) # selectors for variables

Ond> s11 <- s[J1,J1]; s22 <- s[J2,J2]

Oml> s12 <-s[J1,J2]; s21 <- s12'

Cmd> tauhatsq <- releigenvals(s21 %*% solve(s11) %*% s12, s22)

Ond> tauhatsq # squared canonical correlations
(1) 0. 83093 0.030001  0.0089408 6.5688e-18

Compute canonical correlations fj from

SVD of correlation matrix of multi-
standardized data:

Ond> tauhat <- svd(cor(scores[,J1] %*% solve(cholesky(s11)),\
scores][,J2] %%*% solve(cholesky(s22)))[J1,J2])

Ond> tauhat"2 # same as tauhatsq

(1) 0. 83093 0.030001  0.0089408 0
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Alternative Approach: Find features or
summaries of x'” and x® that are
highly correlated with each other.

This is the more traditional approach to

canonical correlation.

We concentrate on linear features u'x""
and v'x® and try to find u and v to
maximize (make as large as possible)

COV[UTXU) VTquz
VIu'x"IVIv' x®?]
(u's v)°
(U's, u)(v'E V)

T

p2[u X(”, vTx(2)]

We work with p? because the sign of the
correlation will be arbitrary.
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There is a close relationship between
sample canonical correlations and
relative eigenvalues from the regression
approach discussed on Monday.

If X, are the sample eigenvalues of H

relative to E in either the multivariate
regression of x" on x® or of x® on x",
then

£ = /6 = IR/ 4 X))
Ond> manova("x2 =x1_1+x1_2+x1_3"silent:T)
Ond> h2 <- sum(SS[run(2,4),,]); e2 <- SS[5,,]

Ond> lambdahat <- releigenvals(h2,e2)

Ond> lambdahat
(1) 4.9149 0.030929 0.0090215 1.2698e-15

Ond> lambdahat{run(3))/(1 + lambdahat[run(3)])
(1) 0. 83093 0.030001  0.0089408

Ond> tauhatsq[run(3)]
(1) 0. 83093 0.030001  0.0089408

The correlation canonical variables fj(‘)
and z” are the same as the MANOVA
canonical variables of regressions of x"
on x? and of x® on x", except possibly
for change of sign.

thetahat = tauhat”"2

6
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['ll skip any derivation, but the solution
can be stated using relative eigenvectors:

* U=u, whereu,u, ..., u are the
relative eigenvectors of

£ ,%, s, relative to £ (both pxp),

with corresponding relative eigen-
values 6, > 6, > ... > 6.

* V=V, wherev,V, .., Vv are the
relative eigenvectors of
£, %'z relative to £, (both gxq),

with corresponding relative eigen-
values > 6, > ... > eq.

Furthermore the maximized value (largest
squared correlation) is 6, = z °

These are the same coefficient vectors
from the first approach to canonical
correlation.
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That is
maxu’va[uTx(”, VTX(2)] -
2 T(1) Ty (2) -
pfux", v,'x?] = 8,

November 23, 2005

Note: These ej‘s are the same as before,
that is 8 = z* where z is a SV of & .

With the usual normalization for u,,
VIu'x"T=u's u =1

and
VIv.x?1=v'E v = 1.
and
(1) )7 _ -
Covlu,'x",v'x?1 = ¢, = /8,
Similarly
1 _ Ty (1) . .
= WX -, min(p,q)

(2) _ Ty (2)

2@ =v'x
(1) (27 _ -

have Corrlz”, 2?1 = ¢ = /6.

z"and z? have the largest squared

correlation of any linear combinations

uncorrelated with z,'" and z,”, k < j

9
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In general, there are s = min(p,q) pairs
(z”, z*) of canonical variables.

All the correlation between X’ and x? is
“concentrated” in
v =corrlz”z?],1=1,.,s.

When p z g, there are |p - q| additional
unpaired canonical variables that not
correlated with anything and have no
significance.

You define sample canonical correlations
and correlation canonical variables the
same way using the sample eigenvalues 6,

z” and eigenvectors U, and V, of
-1 :

S,,S,,°S,, relative to S,
-1 :

S,S, 'S, relative to S ..
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Here is what the correlation matrix (and
variance matrix) of standardized canon-
ical variables looks like when p = 4 and q

= 3.
1 0 0 Jo, 0 0 O]
0 1 0 0 Jg 0 0
0 0 1 0 0 a0
izl _ J,,Tl 0 0 1 0 00
0 Jg, O 0 1 0 o0
0 0 Jgg 0o 0 1 0
0 0 0 0 0 0 1
Z - [21(1), 22(1)' 23(1), 21(2), Z2(2), 23(2), Z4(2)]T

There are only s = min(3,4) = 3 non-zero
canonical correlations z = /6, ¥, = /8,
and z, = /8,. Note that all correlations
with z,” are 0.

10
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Cmd> eigs21 <- releigen(s12 %*% solve(s22) %*% s21, s11)
Ond> eigsl2 <- releigen(s21 %*% solve(s11) %*% s12, s22)
Ond> uhat <- eigs21$vectors; vhat <- eigs12$vectors

Ond> list(uhat,vhat)

uhat REAL 3 3

vhat REAL 4 4

Ond> sqrt(eigs21$values) # canonical correlations
(1) 0. 91156 0.17321 0. 094556

Ond> sqrt(eigs12$valuesfrun(3)]) # canonical correlations
(1) 0.91156 0.17321  0.094556

Ond> Z1 <- X1 %*% uhat; Z2 <- x2 %*% vhat
Z1 and Z2 contain canonical variables
computed using relative eigenvectors.
Ond> print(format:"7.4f",cor(Z1,22))
MATRI X

.1y 1.0000 -0.0000 -0.0000; 0.91ié& 0.0000 -0.0000 0.0000
,1y -0.0000 1.0000 -0.0000¢-0.0000 =0.4732 —-0.0000 -0.0000

(1
(z
(3,
(4,17 TOELEE THAE0E T G0EE
(3 i
)
(7
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What do you do with canonical variables?

One thing to do is to make scatter plots
7 (2) (1)
of z7 vs z,

Cmd> plot(Z1[,1],Z2[,1],xlab:"Canonical variable 1 for x1",\
ylab:"Can var 1 for x2"\
title:"First pair of canonical variables")

Ord> plot(Z1[,2],22[,2],xlab:"Canonical variable 2 for x1")\
ylab:"Can var 2 for x2"\
title:"Second pair of canonical variables")
ionl varizbles Second poir of canon

First pniv of oznonion ionl vorisbles

:
C 14 N o2 PO
-] L] * -
, 13 w%%"*'b"“‘ bt 1-15 : :‘“ :%‘“w
2 ‘%&N‘*a a5 - w de ¥
Iz S Al 27 tetred eV
: ChES £ 0 RSN
y 1 & $:$ v N s -1f . .o
ol vt T,=9116 [*2791,=+1732
E - 10 11 12 13 -1 1 2 E 4
Canonical voriable 1 for xl Canonical variable 2 for xl
> (2) > (1)
These are plots of z™ vs z " (left) and

7 (2) 2 :
z,” vs z,"” (right).

And you can look at U, and V, to gain
insight on what the canonical variables

are made up from, much as you can do in
MANOVA.
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In terms of the canonical correlations
and the matrix S.'S, S 'S

12 722

Hotelllng S trace

S—SS'1S)SS'1S)

( 11 12 722 12 722
((1, -5,78,,S,'S,)'S,'S,,8,,'S,)
LR test
/111 + X) =T(1 - 8))
= det(E, )/det(H,  + E, )

= det(l - S 'S S ’'S,)

12722

11
~ ~+
-

Pillai's trace
SR/ + R) =56
tr{(H + E )H U}
tr(s, ‘1S S ‘1S )

12722

In these equations you can replace S, by
S,and S 'S S,'S, bysS, 'S, S 'S,

12 22

15
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The 6. have the same information as the
eigenvalues X\, X,, ... of H relative to E
that appear in the multivariate regres-
sion tests of p., = 0.

5 - %/(1+ %)

X -8/0-6)

Oonly s = min(p,q) of these are non-zero.

The regression hypothesis and error
matrices are

H1,2: fS1zs22_1s21’ E1.2: fes11_H1,2’ X" on x*
H2.1 - fe821s11_1812' E2.1 - feszz_Hz.w x® on x"
So X, is the i" eigenvalue of H, , relative

toE , or of H

2.1

relative to E |
When H: p., = 0 is true,
(X} = {6/(1 - &)}

You can use any of the MANOVA tests
based on relative eigenvalues.

14

Statistics 5401 Lecture 33 November 23, 2005

Beyond Canonical Correlations
Here are two paths you might follow.

1. Use quadratic features instead of
linear features. That is, try to find
vectors u and v and symmetric matrices
A and B such that

+ x(1)'Ax(1)’ V'x(2) + x(2)‘Bx(2)]

Is as large as possible

Corrfu’x""”

2. Describe the pattern of correlation
among k > 2 sets of variables x"’, x?, ...,
x*“. One possibility would be to find
vectors u,, u,, ... u that minimize det(R,),
where R, is the correlation matrix of
U1‘x(1), u2-x(2) ’ uk-x(k)

Since det(R) = 1 - plu 'x",u'x?] when k
= 2, this leads to the ordinary canonical
correlations when there are k = 2 groups
of variables..

16



Statistics 5401 Lecture 33 November 23, 2005

The classification problem

Situation: You have data x (1 or several
variables) on an individual that is known
to belong to one of g distinct populations
T, T, ..., TC

.
The classification problem: Find a
“rule” or formula which uses X to "guess”
or "estimate” the population 7T, the indi-
vidual belongs to.

Example: When each population consists
of patients with a particular disease and
X contains an individual's medical history
and test results, the classification prob-
lem would be to diagnose the correct
disease from the information in X.

17
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suppose the observed X is much less
likely to be observed in population 7T,
(density f.(x)) than in population 7T,
(density f(x)). Then you might reason-
ably guess 7T, in preference to 7T..
Here are densities for three p=1 popula-
tions with normal distributions.
o1 Densities oflthree univarliate nomallpopulaﬁo:sl

oae) 8=3P=1 f .

Density

Lill]

When x = 25, you would choose Tt, over T,
or T(;; when x = 51, you would choose TC;
when X = 55, you would choose TL..

19
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More formally, suppose
e You have a random vector x (the data)
of p characteristics (variables).

e You know X has one of g densities
f.(x), £,(x), ..., f.(x), where f (x) defines

the distribution of x in population Tt,.

e You seek a procedure or formula (a
"rule”) that maps x to a population.

; m
/ 1
? e A
= T o
?
> g

Here 1 is the guessed index of the pop-
ulation chosen.

18
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[t's often easier to compare densities
when they are plotted in a log scale.

Densities of three univarate normal populations
0.o0if ,/F~<
le-5F

le-11pF

le-13F

:
|
¢

le-15F, . . N . L L
10 Z0 30 a0 50 &0 70

X
Guess,| GuessmT, Guess 1, | Guess m,|Guess 7,

The extra vertical lines are where the
densities intersect.

Under the graph is a sensible rule for
picking one of these three populations -
pick the population with largest density.

Near the boundary points you wouldn't be
very sure about your decision based on
this rule.

20
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The logs of the ratios f (x)/f (x) are in-
formative for deciding between 7T, and TT,.

1580F

Ratio
oy
=
[}

Lagf1(x)/f20x)) Log(fliz)/£30x)

Log Ratio
5 S
ILogl

2

rha

=
T
=

L , L s ‘.‘\""“-r-—._‘ X
o 20 30 40 50 A0 YO

0 20 30 40 A0 60 ToX

Lol 20x)/£3013)
Plots of log likelihood
ratios

0 20 a0 40 51 el 70
The O line is the line of equal likelihood.
These let you choose between T, and 7T,

e When 10 < x < 395, you would probably
assign x to 71, (above 0 in top 2 plots)

e X near 45 you would assign x to T,

e 60 < x < 70 you would assign x to TL,.

[t looks like for x < 10 and x > 70, you
should prefer 7t, to 7T, and TC, even though

X is nearer to j, or j, than to p..

21
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Effect of rarity

Suppose you knew, for example, that
seeing any observation, regardless of
value, from T{, was extremely rare as
compared to either 7T, or 7,. Then this
"obvious” way to guess a population
might change.
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In that case, you might classify a value
of x = 45 as coming from 7T,, even though

it would be an unlikely value to see from
T(,, just because it is unlikely to see any

individual from TL,.

In the extreme, if the chance of seeing
any individual from 7T, was 1/1,000,000,

for all practical purposes you can
probably exclude 7T, from consideration

and never pick TC,.
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