Lecture 33

November 23, 2005

Christopher Bingham, Instructor 612-625-1024

Class Web Page

http://www.stat.umn.edu/~kb/classes/5401

Copyright© Christopher Bingham 2005

Statistics 5401 Lecture 33 November 23, 2005

Facts (easily checkable):

$$\begin{split} & \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} \boldsymbol{u}_{j} = \boldsymbol{\tau}_{j}^{2} \boldsymbol{\Sigma}_{11} \boldsymbol{u}_{j} = \boldsymbol{\Theta}_{j} \boldsymbol{\Sigma}_{11} \boldsymbol{u}_{j} \\ & \boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12} \boldsymbol{v}_{j} = \boldsymbol{\tau}_{j}^{2} \boldsymbol{\Sigma}_{22} \boldsymbol{v}_{j} = \boldsymbol{\Theta}_{j} \boldsymbol{\Sigma}_{22} \boldsymbol{v}_{j} \end{split}$$

- Coefficient vector $\mathbf{u}_{_{j}}$ for $\mathbf{z}_{_{j}}^{^{(1)}}$ is a eigenvector of $\mathbf{\Sigma}_{_{12}}\mathbf{\Sigma}_{_{22}}^{^{-1}}\mathbf{\Sigma}_{_{21}}$ relative to $\mathbf{\Sigma}_{_{11}}$
- Coefficient vector \mathbf{v}_{j} for $\mathbf{z}_{j}^{(2)}$ is a eigenvector of $\mathbf{\Sigma}_{21}\mathbf{\Sigma}_{11}^{-1}\mathbf{\Sigma}_{12}$ relative to $\mathbf{\Sigma}_{22}$

So you can find canonical variables by solving two <u>relative eigenvalue/vector</u> problems involving pieces of Σ .

Statistics 5401 Lecture 33

You get canonical variables from the multistandardized $\widetilde{\mathbf{x}}^{(1)} = \mathbf{\Sigma}_{11}^{-T/2}(\mathbf{x}^{(1)} - \boldsymbol{\mu}^{(1)})$ and $\widetilde{\mathbf{x}}^{(2)} = \mathbf{\Sigma}_{22}^{-T/2}(\mathbf{x}^{(2)} - \boldsymbol{\mu}^{(2)})$ using left and right singular vectors \mathbf{l}_i and \mathbf{r}_i of

$$\widetilde{\boldsymbol{\rho}}_{12} = \text{corr}[\widetilde{\mathbf{x}}^{(1)}, \widetilde{\mathbf{x}}^{(2)}] = \widetilde{\boldsymbol{\Sigma}}_{11}^{-T/2} \widetilde{\boldsymbol{\Sigma}}_{12}^{T} \widetilde{\boldsymbol{\Sigma}}_{22}^{-1/2}.$$

How do you get canonical variables directly from $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$, rather than from $\widetilde{\mathbf{x}}^{(1)}$ and $\widetilde{\mathbf{x}}^{(2)}$?

•
$$Z_{j}^{(1)} = \mathbf{l}_{j}^{T} \widetilde{\mathbf{x}}^{(1)} = \mathbf{l}_{j}^{T} \mathbf{\Sigma}_{11}^{-T/2} (\mathbf{x}^{(1)} - \boldsymbol{\mu}^{(1)})$$

= $\mathbf{u}_{j}^{T} (\mathbf{x}^{(1)} - \boldsymbol{\mu}^{(1)})$
= $\mathbf{u}_{j}^{T} \mathbf{x}^{(1)} - \mathbf{u}_{j}^{T} \boldsymbol{\mu}^{(1)}$, where $\mathbf{u}_{j} = \mathbf{\Sigma}_{11}^{-1/2} \mathbf{l}_{j}$

•
$$Z_{j}^{(2)} = \Gamma_{j}^{T} \widetilde{\mathbf{X}}^{(2)} = \Gamma_{j}^{T} \Sigma_{22}^{-T/2} (\mathbf{X}^{(2)} - \mu^{(2)})$$

= $\mathbf{V}_{j}^{T} (\mathbf{X}^{(2)} - \mu^{(2)})$
= $\mathbf{V}_{j}^{T} \mathbf{X}^{(2)} - \mathbf{V}_{j}^{T} \mu^{(2)}$, where $\mathbf{V}_{j} = \Sigma_{22}^{-1/2} \Gamma_{j}$

Thus you need to find $\mathbf{u}_{_{j}}$ and $\mathbf{v}_{_{j}}$. Although they are defined using $\mathbf{l}_{_{j}}$ and $\mathbf{r}_{_{j}}$, they can be computed directly from Σ .

_

Statistics 5401 Lecture 33

November 23, 2005

November 23, 2005

Usually, the canonical variables are defined as

$$Z_{j}^{(1)} = \mathbf{u}_{j}^{\mathsf{T}} \mathbf{x}^{(1)} = (\mathbf{\Sigma}_{11}^{-1/2} \mathbf{\ell}_{j})^{\mathsf{T}} \mathbf{x}^{(1)}$$

 $Z_{j}^{(2)} = \mathbf{v}_{j}^{\mathsf{T}} \mathbf{x}^{(1)} = (\mathbf{\Sigma}_{22}^{-1/2} \mathbf{r}_{j})^{\mathsf{T}} \mathbf{x}^{(2)}$

without subtracting means. These differ only by constants $\mathbf{u}_{_{j}}^{\ \mathsf{T}}\boldsymbol{\mu}^{^{(1)}}$ and $\mathbf{v}_{_{j}}^{\ \mathsf{T}}\,\boldsymbol{\mu}^{^{(1)}}$ from the previous definition, and

$$\mathbf{u}_{j}^{\mathsf{T}} \boldsymbol{\mu}^{(1)} = \mathsf{E}[z_{j}^{(1)}], \quad \mathbf{v}_{j}^{\mathsf{T}} \boldsymbol{\mu}^{(1)} = \mathsf{E}[z_{j}^{(2)}]$$

My examples have not, of course, had to do with <u>population</u> principal components, but rather with <u>sample</u> canonical correlations.

You define

- ullet sample canonical correlations $\hat{ au}_{_{_{ar{1}}}}$
- pairs of sample canonical variables $\widehat{z_{_{j}}^{^{(1)}}}$ and $\widehat{z_{_{i}}^{^{(2)}}}$

in a similar way, starting with \boldsymbol{S} instead of $\boldsymbol{\Sigma}$.

Statistics 5401

Continue with analysis of artificial data:

Lecture 33

Cmd> s <- tabs(scores,covar:T)</pre> Cmd> J1 <- run(3); J2 <- run(4,7) # selectors for variables Cmd> $s11 \leftarrow s[J1,J1]; s22 \leftarrow s[J2,J2]$ Cmd> s12 <- s[J1,J2]; s21 <- s12' Cmd> tauhatsq <- releigenvals(s21 %*% solve(s11) %*% s12, s22) Cmd> tauhatsq # squared canonical correlations 0.030001 0.0089408 6.5688e-18

Compute canonical correlations \hat{z}_i from SVD of correlation matrix of multistandardized data:

Cmd> tauhat^2 # same as tauhatsq (1) 0.83093 0.030001 0.0089408

Statistics 5401

November 23, 2005

Statistics 5401

November 23, 2005

Alternative Approach: Find features or summaries of $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ that are highly correlated with each other.

This is the more traditional approach to canonical correlation.

We concentrate on <u>linear</u> features $\mathbf{u}^{\mathsf{T}}\mathbf{x}^{(1)}$ and $\mathbf{v}^{\mathsf{T}}\mathbf{x}^{(2)}$ and try to find \mathbf{u} and \mathbf{v} to maximize (make as large as possible)

$$\rho^{2}[\mathbf{u}^{\mathsf{T}}\mathbf{x}^{(1)}, \mathbf{v}^{\mathsf{T}}\mathbf{x}^{(2)}] = \frac{\mathsf{Cov}[\mathbf{u}^{\mathsf{T}}\mathbf{x}^{(1)}, \mathbf{v}^{\mathsf{T}}\mathbf{x}^{(2)}]^{2}}{\mathsf{V}[\mathbf{u}^{\mathsf{T}}\mathbf{x}^{(1)}]\mathsf{V}[\mathbf{v}^{\mathsf{T}}\mathbf{x}^{(2)}]}$$
$$= \frac{(\mathbf{u}^{\mathsf{T}}\boldsymbol{\Sigma}_{12}\mathbf{v})^{2}}{(\mathbf{u}^{\mathsf{T}}\boldsymbol{\Sigma}_{11}\mathbf{u})(\mathbf{v}^{\mathsf{T}}\boldsymbol{\Sigma}_{22}\mathbf{v})}$$

We work with ρ^2 because the sign of the correlation will be arbitrary.

There is a close relationship between sample canonical correlations and relative eigenvalues from the regression approach discussed on Monday.

If $\hat{\lambda}_i$ are the sample eigenvalues of **H** relative to **E** in either the multivariate regression of $\mathbf{x}^{(1)}$ on $\mathbf{x}^{(2)}$ or of $\mathbf{x}^{(2)}$ on $\mathbf{x}^{(1)}$, then

$$\hat{\tau}_i = \sqrt{\hat{\theta}_i} = \sqrt{\hat{\lambda}_i/(1 + \hat{\lambda}_i)}$$

 $Cmd > manova("x2 = x1_1 + x1_2 + x1_3", silent:T)$ Cmd> h2 <- sum(SS[run(2,4),,]); e2 <- SS[5,,] Cmd> lambdahat <- releigenvals(h2,e2) Cmd> lambdahat 0.030929 0.0090215 1.2698e-15 4.9149 (1)Cmd> lambdahat[run(3)]/(1 + lambdahat[run(3)]) 0.030001 0.0089408 thetahat = tauhat^2

The <u>correlation</u> canonical variables $\hat{z_i}^{\scriptscriptstyle{(1)}}$ and $\hat{z_i}^{(2)}$ are the same as the MANOVA canonical variables of regressions of $\mathbf{x}^{(1)}$ on $\mathbf{x}^{(2)}$ and of $\mathbf{x}^{(2)}$ on $\mathbf{x}^{(1)}$, except possibly for change of sign.

I'll skip any derivation, but the solution can be stated using relative eigenvectors:

• $\mathbf{u} = \mathbf{u}_1$, where \mathbf{u}_1 , \mathbf{u}_2 , ..., \mathbf{u}_n are the relative eigenvectors of

 $\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$ relative to Σ_{11} (both p×p),

with corresponding relative eigen $values \ \theta_1 \geq \theta_2 \geq ... \geq \theta_p.$

• $\mathbf{v} = \mathbf{v}_1$, where \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_n are the relative eigenvectors of

 $\Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}$ relative to Σ_{22} (both q×q),

with corresponding relative eigen $values \ \theta_1 \geq \theta_2 \geq ... \geq \theta_n$

Furthermore the maximized value (largest squared correlation) is $\theta_1 = \tau_1^2$.

These are the same coefficient vectors from the first approach to canonical correlation.

That is $\max_{\mathbf{u},\mathbf{v}} \rho^{2}[\mathbf{u}^{\mathsf{T}}\mathbf{X}^{(1)}, \mathbf{v}^{\mathsf{T}}\mathbf{X}^{(2)}] = \\ \rho^{2}[\mathbf{u}, \mathbf{X}^{(1)}, \mathbf{v}, \mathbf{X}^{(2)}] = \Theta,$

Note: These θ_j 's are the same as before, that is $\theta_j = \tau_j^2$ where τ_j is a SV of $\widetilde{\Sigma}_{12}$. With the usual normalization for \mathbf{u}_1 ,

$$\nabla[\mathbf{u}_{1}^{\mathsf{T}}\mathbf{x}^{(1)}] = \mathbf{u}_{1}^{\mathsf{T}}\mathbf{\Sigma}_{11}\mathbf{u}_{1} = 1$$

and

$$V[V_1^T X^{(2)}] = V_1^T \Sigma_{22} V_1 = 1.$$

and

$$Cov[\mathbf{u}_{1}^{\mathsf{T}}\mathbf{x}^{(1)},\mathbf{v}_{1}^{\mathsf{T}}\mathbf{x}^{(2)}] = \tau_{1} = \sqrt{\theta_{1}}.$$

Similarly

$$Z_{j}^{(1)} = \mathbf{u}_{j}^{\mathsf{T}} \mathbf{X}^{(1)}, \quad j = 1, ..., \min(p,q)$$

 $Z_{j}^{(2)} = \mathbf{v}_{j}^{\mathsf{T}} \mathbf{X}^{(2)}$

have $Corr[z_j^{(1)}, z_j^{(2)}] = \tau_j = \sqrt{\theta_j}$. $z_j^{(1)}$ and $z_j^{(2)}$ have the largest squared correlation of any linear combinations uncorrelated with $z_k^{(1)}$ and $z_k^{(2)}$, k < j

Statistics 5401 Lecture 33

November 23, 2005

In general, there are s = min(p,q) pairs $(z_j^{(1)}, z_j^{(2)})$ of canonical variables.

All the correlation between $\mathbf{x}^{\scriptscriptstyle{(1)}}$ and $\mathbf{x}^{\scriptscriptstyle{(2)}}$ is "concentrated" in

$$\tau_{i} = corr[z_{i}^{(1)}, z_{i}^{(2)}], i = 1,..., s.$$

When $p \neq q$, there are |p - q| additional unpaired canonical variables that not correlated with anything and have no significance.

You define sample canonical correlations and correlation canonical variables the same way using the sample eigenvalues $\hat{\theta}_i$ = $\hat{\tau}_i^2$ and eigenvectors $\hat{\mathbf{u}}_i$ and $\hat{\mathbf{v}}_i$ of

- **S**₁₂**S**₂₂-1**S**₂₁ relative to **S**₁₁
- $S_{21}^{-1}S_{11}^{-1}S_{12}$ relative to S_{22} .

Here is what the correlation matrix (and variance matrix) of standardized canonical variables looks like when p = 4 and q = 3.

$$\mathbf{V}[\mathbf{z}] = \begin{bmatrix} 1 & 0 & 0 & \sqrt{\theta_1} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & \sqrt{\theta_2} & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & \sqrt{\theta_3} & 0 \\ \hline \sqrt{\theta_1} & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & \sqrt{\theta_2} & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & \sqrt{\theta_3} & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{Z} = [Z_{1}^{(1)}, Z_{2}^{(1)}, Z_{3}^{(1)}, Z_{1}^{(2)}, Z_{2}^{(2)}, Z_{3}^{(2)}, Z_{4}^{(2)}]^{\mathsf{T}}$$

There are only s = min(3,4) = 3 non-zero canonical correlations $\tau_1 = \sqrt{\theta_1}$, $\tau_2 = \sqrt{\theta_2}$ and $\tau_3 = \sqrt{\theta_3}$. Note that all correlations with $z_4^{(2)}$ are 0.

10

```
Statistics 5401 Lecture 33 November 23, 2005
```

```
Cmd> eigs21 <- releigen(s12 %*% solve(s22) %*% s21, s11)
Cmd> eigs12 <- releigen(s21 %*% solve(s11) %*% s12, s22)
```

Cmd> uhat <- eigs21\$vectors; vhat <- eigs12\$vectors

Cmd> unat <- eigs21\$vectors; vnat <- eigs12\$vectors

Cmd> list(uhat,vhat)
uhat REAL 3 3
vhat REAL 4 4

Cmd> sqrt(eigs21\$values) # canonical correlations

Cmd> sqrt(eigs12\$values[run(3)]) # canonical correlations

(1) 0.91156 0.17321 0.094556

Cmd> Z1 <- x1 %*% uhat; Z2 <- x2 %*% vhat

z1 and z2 contain canonical variables computed using relative eigenvectors.

Cmd> print(format:"7.4f",cor(Z1,Z2))

MATRIX:
(1,1) 1.0000 -0.0000 -0.0000 | 0.9116 | 0.0000 -0.0000 | 0.0000 |
(2,1) -0.0000 1.0000 -0.0000 | -0.0000 | -0.1732 | -0.0000 | 0.0946 | -0.0000 |
(3,1) -0.0000 -0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0946 | -0.0000 |
(4,1) | 0.9116 | -0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | -0.0000 |
(5,1) | 0.0000 | -0.1732 | 0.0000 | 0.0000 | 1.0000 | -0.0000 |
(6,1) -0.0000 | -0.0000 | 0.946 | 0.0000 | -0.0000 | 1.0000 | 0.0000 |
(7,1) | 0.0000 | -0.0000 | -0.0000 | -0.0000 | 0.0000 | 1.0000 |

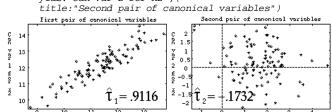
Statistics 5401

What do you do with canonical variables? One thing to do is to make scatter plots Of $\hat{z_{i}}^{(2)}$ Vs $\hat{z_{i}}^{(1)}$.

Lecture 33

Cmd> $plot(Z1[\ ,1]\ ,Z2[\ ,1]\ ,xlab:"Canonical variable 1 for x1"\ ,\ ylab:"Can var 1 for x2"\ ,\ title:"First pair of canonical variables")$

Cmd> plot(Z1[,2],Z2[,2],xlab:"Canonical variable 2 for x1",\
 ylab:"Can var 2 for x2",\



These are plots of $\hat{z_1}^{(2)}$ vs $\hat{z_1}^{(1)}$ (left) and $\hat{z_{2}}^{(2)}$ vs $\hat{z_{2}}^{(1)}$ (right).

And you can look at $\hat{f u}_i$ and $\hat{f v}_i$ to gain insight on what the canonical variables are made up from, much as you can do in MANOVA.

The $\hat{\theta_i}$ have the same information as the eigenvalues $\hat{\lambda}_1$, $\hat{\lambda}_2$, ... of **H** relative to **E** that appear in the multivariate regression tests of $\rho_{12} = 0$.

$$\hat{\theta}_i = \hat{\lambda}_i/(1 + \hat{\lambda}_i)$$
 $\hat{\lambda}_i = \hat{\theta}_i/(1 - \hat{\theta}_i)$

Only s = min(p,q) of these are non-zero. The regression hypothesis and error matrices are

$$\mathbf{H}_{1.2} = f_{e} \mathbf{S}_{12} \mathbf{S}_{22}^{-1} \mathbf{S}_{21}$$
, $\mathbf{E}_{1.2} = f_{e} \mathbf{S}_{11} - \mathbf{H}_{1.2}$, $\mathbf{x}^{(1)}$ on $\mathbf{x}^{(2)}$
 $\mathbf{H}_{2.1} = f_{e} \mathbf{S}_{21} \mathbf{S}_{11}^{-1} \mathbf{S}_{12}$, $\mathbf{E}_{2.1} = f_{e} \mathbf{S}_{22} - \mathbf{H}_{2.1}$, $\mathbf{x}^{(2)}$ on $\mathbf{x}^{(1)}$
So $\hat{\lambda}_{i}$ is the ith eigenvalue of $\mathbf{H}_{1.2}$ relative to $\mathbf{E}_{1.2}$ or of $\mathbf{H}_{2.1}$ relative to $\mathbf{E}_{2.1}$

When
$$H_0$$
: $\rho_{12} = 0$ is true,
 $\{\hat{\lambda}_i\} = \{\hat{\theta}_i/(1 - \hat{\theta}_i)\}$

You can use any of the MANOVA tests based on relative eigenvalues.

13

Statistics 5401

November 23, 2005

Statistics 5401

November 23, 2005

In terms of the canonical correlations and the matrix $\mathbf{S}_{\scriptscriptstyle{11}}^{\scriptscriptstyle{-1}}\mathbf{S}_{\scriptscriptstyle{12}}\mathbf{S}_{\scriptscriptstyle{22}}^{\scriptscriptstyle{-1}}\mathbf{S}_{\scriptscriptstyle{12}}$

Hotelling's trace $\sum \hat{\lambda}_{i} = \sum \hat{\theta}_{i} / (1 - \hat{\theta}_{i})$ = $tr(E_{12}^{-1}H_{12})$ = $tr((S_{11} - S_{12}S_{22}^{-1}S_{21})^{-1}S_{12}S_{22}^{-1}S_{21})$ = $tr((I_p - S_{11}^{-1}S_{12}S_{22}^{-1}S_{21})^{-1}S_{11}^{-1}S_{12}S_{22}^{-1}S_{21})$

$$1/\Pi(1 + \hat{\lambda}_{i}) = \Pi(1 - \hat{\theta}_{i})$$

$$= \det(\mathbf{E}_{1.2})/\det(\mathbf{H}_{1.2} + \mathbf{E}_{1.2})$$

$$= \det(\mathbf{I}_{p} - \mathbf{S}_{11}^{-1}\mathbf{S}_{12}\mathbf{S}_{22}^{-1}\mathbf{S}_{21})$$

Pillai's trace

$$\sum \hat{\lambda}_{i} / (1 + \hat{\lambda}_{i}) = \sum \hat{\theta}_{i}$$

$$= tr\{(H_{1.2} + E_{1.2})^{-1}H_{1.2}\}$$

$$= tr(S_{11}^{-1}S_{12}S_{22}^{-1}S_{21})$$

In these equations you can replace S_{11} by \mathbf{S}_{22} and $\mathbf{S}_{11}^{-1}\mathbf{S}_{12}\mathbf{S}_{22}^{-1}\mathbf{S}_{21}$ by $\mathbf{S}_{22}^{-1}\mathbf{S}_{21}\mathbf{S}_{11}^{-1}\mathbf{S}_{12}$

Beyond Canonical Correlations

Here are two paths you might follow.

1. Use <u>quadratic</u> features instead of linear features. That is, try to find vectors \mathbf{u} and \mathbf{v} and symmetric matrices A and B such that

Corr[
$$\mathbf{u}'\mathbf{x}^{(1)} + \mathbf{x}^{(1)}'\mathbf{A}\mathbf{x}^{(1)}, \mathbf{v}'\mathbf{x}^{(2)} + \mathbf{x}^{(2)}'\mathbf{B}\mathbf{x}^{(2)}$$
]

is as large as possible

2. Describe the pattern of correlation among k > 2 sets of variables $\mathbf{x}^{(1)}$, $\mathbf{x}^{(2)}$, ..., $\mathbf{x}^{(k)}$. One possibility would be to find vectors \mathbf{u}_1 , \mathbf{u}_2 , ... \mathbf{u}_k that minimize $\det(\mathbf{R}_{11})$, where $R_{..}$ is the correlation matrix of $\mathbf{u}_{1}'\mathbf{X}^{(1)}, \ \mathbf{u}_{2}'\mathbf{X}^{(2)}, \ ..., \ \mathbf{u}_{k}'\mathbf{X}^{(k)}.$

Since $det(\mathbf{R}_{11}) = 1 - \rho^{2}[\mathbf{u}_{1}'\mathbf{x}^{(1)},\mathbf{u}_{2}'\mathbf{x}^{(2)}]$ when k = 2, this leads to the ordinary canonical correlations when there are k = 2 groups of variables...

November 23, 2005

The classification problem

Lecture 33

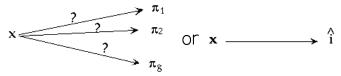
Situation: You have data \mathbf{x} (1 or several variables) on an individual that is known to belong to one of g distinct populations $\pi_1, \pi_2, ..., \pi_d$.

The classification problem: Find a "rule" or formula which uses \mathbf{x} to "guess" or "estimate" the population $\pi_{_{j}}$ the individual belongs to.

Example: When each population consists of patients with a particular <u>disease</u> and **x** contains an individual's <u>medical history</u> <u>and test results</u>, the classification problem would be to <u>diagnose</u> the correct disease from the information in **x**.

More formally, suppose

- You have a random vector x (the data)
 of p characteristics (variables).
- You know ${\bf x}$ has one of ${\bf g}$ densities $f_1({\bf x}), f_2({\bf x}), ..., f_g({\bf x})$, where $f_j({\bf x})$ defines the distribution of ${\bf x}$ in population π_i .
- You seek a procedure or formula (a "rule") that maps ${\bf x}$ to a population.



Here î is the guessed index of the population chosen.

17

Statistics 5401 Lecture 3

November 23, 2005 Statistics 5401

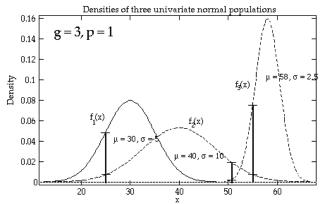
Lecture 33

18

November 23, 2005

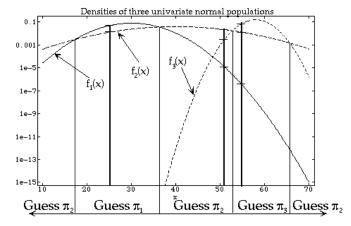
Suppose the observed \mathbf{x} is much less likely to be observed in population π_1 (density $f_1(\mathbf{x})$) than in population π_2 (density $f_2(\mathbf{x})$). Then you might reasonably guess π_2 in preference to π_1 .

Here are densities for three p=1 populations with normal distributions.



When x = 25, you would choose π_1 over π_2 or π_3 ; when x = 51, you would choose π_2 ; when x = 55, you would choose π_3 .

It's often easier to compare densities when they are plotted in a log scale.



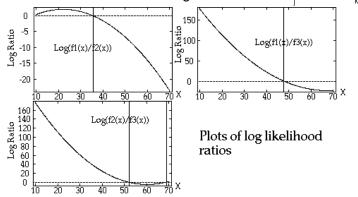
The extra vertical lines are where the densities intersect.

Under the graph is a sensible rule for picking one of these three populations - pick the population with largest density.

Near the boundary points you wouldn't be very sure about your decision based on this rule.

The logs of the ratios $f_j(x)/f_k(x)$ are informative for deciding between π_i and π_k .

Lecture 33



The 0 line is the line of equal likelihood. These let you choose between $\pi_{_{j}}$ and $\pi_{_{k}}$

- When 10 < x < 35, you would probably assign x to π_1 (above 0 in top 2 plots)
- x near 45 you would assign x to π ,
- 60 < x < 70 you would assign x to π_3 .

It looks like for x < 10 and x > 70, you should prefer π_2 to π_1 and π_3 even though x is nearer to μ_1 or μ_3 than to μ_2 .

Effect of rarity

Suppose you knew, for example, that seeing any observation, regardless of value, from π_2 was extremely rare as compared to either π_1 or π_3 . Then this "obvious" way to guess a population might change.

In that case, you might classify a value of x = 45 as coming from π_1 , even though it would be an unlikely value to see from π_1 , just because it is unlikely to see any individual from π_2 .

In the extreme, if the chance of seeing any individual from π_2 was 1/1,000,000, for all practical purposes you can probably exclude π_2 from consideration and never pick π_2 .