Displays for Statistics 5401/8401

Lecture 31

November 18, 2005

Christopher Bingham, Instructor

612-625-1024, kb@umn.edu 372 Ford Hall

Class Web Page

http://www.stat.umn.edu/~kb/classes/5401 © 2005 by Christopher Bingham Statistics 5401 Lecture 31 November 18, 2005

Estimating Factor Scores (continued)

Factor scores f_i are not directly *obser-vable*, but *can* be estimated.

Slightly modified notation:

The vector of factor scores for case i is $\mathbf{f}_{i} = [f_{i1}, f_{i2}, ..., f_{im}]', i = 1,...,N.$

The (unobservable) N by m matrix of factor scores for all N cases is

$$F = \begin{bmatrix} f_1' \\ ... \\ f_N' \end{bmatrix}$$
, f_i is row i of F, i=1,...,N.

The factor analysis model for case i is

$$\mathbf{x}_{i} = \boldsymbol{\mu} + \mathbf{L}\mathbf{f}_{i} + \boldsymbol{\epsilon}_{i}, \mathbf{L} = [\boldsymbol{\ell}_{1}, ..., \boldsymbol{\ell}_{m}], i = 1,...,N$$

$$\nabla[\boldsymbol{\epsilon}_{i}] = \boldsymbol{\Psi} = \text{diag}[\boldsymbol{\psi}_{1}, \boldsymbol{\psi}_{2}, ..., \boldsymbol{\psi}_{n}]$$

The full data matrix is

$$\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_N]' = \mathbf{1}_N \mathbf{\mu}' + \mathbf{F} \mathbf{L}' + \mathbf{\varepsilon}$$
 $\mathbf{x}_N = \mathbf{x}_N \mathbf{x$

Estimates of \mathbf{f}_i and \mathbf{F} are notated $\hat{\mathbf{f}_i}$ and $\hat{\mathbf{F}}$.

For Principal Components (PC) "factor analysis", factors are observable when parameters are known since

$$\mathbf{f} = [z_1/\sqrt{\lambda_1}, z_2/\sqrt{\lambda_2}, ..., z_m/\sqrt{\lambda_m}]',$$

where $z_j = \mathbf{v}_j'(\mathbf{x} - \boldsymbol{\mu})$, j = 1,...,m, are principal components.

Here λ_j and \mathbf{v}_j are eigenvalue and eigenvector of $\mathbf{\Sigma}$ or \mathbf{p} . For correlation PC's, replace $\mathbf{x} - \mathbf{\mu}$ by $\widetilde{\mathbf{x}}$, with $\widetilde{\mathbf{x}}_{\mathbf{k}} = (\mathbf{x}_{\mathbf{k}} - \mathbf{\mu}_{\mathbf{k}})/\sqrt{\sigma_{\mathbf{k}\mathbf{k}}}$.

You <u>estimate</u> f, by

$$\begin{split} \widehat{\mathbf{f}_{\mathrm{i}}} &= [\widehat{z_{\mathrm{i}1}}/\sqrt{\widehat{\lambda}_{\mathrm{l}}}, \ z_{\mathrm{i}2}/\sqrt{\widehat{\lambda}_{\mathrm{l}}}, \ldots, \ \widehat{z_{\mathrm{im}}}/\sqrt{\widehat{\lambda}_{\mathrm{m}}}]', \\ \text{where } \widehat{z_{\mathrm{i}j}} &= \widehat{\mathbf{V}_{\mathrm{j}}}'(\mathbf{X}_{\mathrm{i}} - \overline{\mathbf{X}}) \text{ or } \widehat{z_{\mathrm{i}j}} &= \widehat{\mathbf{V}_{\mathrm{j}}}'\widetilde{\mathbf{X}_{\mathrm{i}}}, \ \widehat{\mathbf{X}_{\mathrm{k}i}} &= \\ (\mathbf{X}_{\mathrm{k}i} - \overline{\mathbf{X}_{\mathrm{k}}})/\sqrt{\mathbf{S}_{\mathrm{k}k}}. \end{split}$$

The estimated matrix of factor scores is $\hat{\mathbf{F}} = \widehat{\mathbf{X}} \ [\widehat{\lambda}_{\scriptscriptstyle 1}^{\scriptscriptstyle -1/2} \widehat{\mathbf{v}}_{\scriptscriptstyle 1}, \ \widehat{\lambda}_{\scriptscriptstyle 2}^{\scriptscriptstyle -1/2} \widehat{\mathbf{v}}_{\scriptscriptstyle 2}, \ ..., \ \widehat{\lambda}_{\scriptscriptstyle m}^{\scriptscriptstyle -1/2} \widehat{\mathbf{v}}_{\scriptscriptstyle m}]$ where $\widehat{\mathbf{X}} = \mathbf{X} - \mathbf{1}_{\scriptscriptstyle N} \overline{\mathbf{x}}'$.

These are unrotated scores.

For PC-based factor analysis, the estimated <u>loading matrix</u> is

$$\hat{\mathbf{L}} = [\sqrt{\hat{\lambda}_1} \hat{\mathbf{v}_1}, \sqrt{\hat{\lambda}_2} \hat{\mathbf{v}_2}, ..., \sqrt{\hat{\lambda}_m} \hat{\mathbf{v}_m}]$$

Lecture 31

Then $\hat{\mathbf{F}} = \widetilde{\mathbf{X}} \hat{\mathbf{L}} \hat{\boldsymbol{\Lambda}}_{\mathrm{m}}^{-1}$ where $\hat{\boldsymbol{\Lambda}}_{\mathrm{m}} = \mathrm{diag}[\hat{\lambda}_{\mathrm{l}}, \hat{\lambda}_{\mathrm{l}}, \ldots, \hat{\lambda}_{\mathrm{m}}] = \hat{\mathbf{L}}'\hat{\mathbf{L}}$ because the eigenvectors $\hat{\mathbf{v}}_{\mathrm{l}}, \ldots, \hat{\mathbf{v}}_{\mathrm{m}}$ are orthonormal. Thus $\hat{\mathbf{F}} = \widetilde{\mathbf{X}} \hat{\mathbf{L}} (\hat{\mathbf{L}}'\hat{\mathbf{L}})^{-1}$.

When $\hat{\mathbf{L}}_{rot} = \hat{\mathbf{L}}\mathbf{H}$, where $\mathbf{H}'\mathbf{H} = \mathbf{I}_m$, are orthogonally rotated loadings, then $\hat{\mathbf{L}} = \hat{\mathbf{L}}_{rot}\mathbf{H}'$. The rotated estimated factors matrix is

$$\widehat{\mathbf{F}}_{\text{rot}} = \widehat{\mathbf{F}} \mathbf{H} = \widehat{\mathbf{X}} \widehat{\mathbf{L}} (\widehat{\mathbf{L}}' \widehat{\mathbf{L}})^{-1} \mathbf{H}$$

$$= \widehat{\mathbf{X}} \widehat{\mathbf{L}}_{\text{rot}} \mathbf{H}' (\mathbf{H} \widehat{\mathbf{L}}_{\text{rot}}' \widehat{\mathbf{L}}_{\text{rot}} \mathbf{H}')^{-1} \mathbf{H} = \widehat{\mathbf{X}} \widehat{\mathbf{L}}_{\text{rot}} (\widehat{\mathbf{L}}_{\text{rot}}' \widehat{\mathbf{L}}_{\text{rot}})^{-1}$$

In general, estimated factors from PC-based factor analysis are $\widetilde{\mathbf{X}} \widehat{\boldsymbol{\beta}}_{pc}$, where $\widehat{\boldsymbol{\beta}}_{pc}$ = $\widehat{\mathbf{L}}(\widehat{\mathbf{L}}'\widehat{\mathbf{L}})^{-1}$, $\widehat{\mathbf{L}}$ = estimated loading matrix

Continuing with the artificial data set:

```
Cmd> eigs <- eigen(r); eigs$values</pre>
                                                          0.26371
         2.9773
                    0.81302
                                 0.65535
                                              0.29061
Cmd> Lhat pc <- eigs$vectors[,run(m)] *\</pre>
           sqrt(eiqs$values[run(m)]')
Cmd> Lhat_pc # unrotated loading matrix
           (1)
                       (2)
       0.65674
                   0.23525
Y1
Y2
       0.55496
                   0.76752
Y3
      -0.88329
                   0.16769
                   0.17873
      -0.86356
Y5
       0.84385
                  -0.32942
Cmd> Lhat_pc' %*% Lhat_pc # diagonal matrix of m eigenvalues
                   (2)
         2.9773 -8.1715e-17
(2) -8.1715e-17
                    0.81302
Cmd> scores pc <- \
    standardize(y) %*% Lhat_pc %*% solve(Lhat_pc' %*% Lhat pc)
Cmd> head(scores_pc,3) # unrotated estimated factor scores
            (1)
(1)
       -0.71819
                   -0.67613
       -0.83434
(2)
                   -0.92947
(3)
       -0.82209
                     1.2269
Cmd> Lhat pc rot <- \
         rotation(Lhat_pc,method:"quartimax",kaiser:T)
Cmd> Lhat_pc_rot # rotated factor loadings
           (1)
       0.56238
Y1
                   0.41277
Y2
       0.31304
                   0.89391
Y3
      -0.89444
                 -0.091162
Y4
      -0.87867
                 -0.074957
       0.90275
                 -0.075098
Cmd> scores pcrot <- standardize(y) %*% Lhat pc rot %*% \
            solve(Lhat pc rot' %*% Lhat pc rot)
Cmd> head(scores_pcrot,3) # rotated estimated factor scores
            (1)
                        (2)
(1)
       -0.49556
                   -0.85286
(2)
       -0.53463
                    -1.1288
(3)
        -1.1378
                    0.94151
```

Regression Method for estimating f

Lecture 31

This estimates f as the conditional expectation $E[f \mid x]$ of f given x.

Because

$$\mathbf{x} = [\mathbf{x}_1, ..., \mathbf{x}_p]' = \mathbf{\mu} + \mathbf{L}\mathbf{f} + [\mathbf{\epsilon}_1, ..., \mathbf{\epsilon}_p]',$$

when $V[\mathbf{f}] = \mathbf{I}_m$ (orthogonal factors),

- $\Sigma = LL' + \Psi$
- ullet the joint variance matrix of ${\bf x}$ and ${\bf f}$ is

$$V\begin{bmatrix} \mathbf{X} \\ \mathbf{f} \end{bmatrix} = \begin{bmatrix} \mathbf{\Sigma} = \mathbf{L}\mathbf{L}' + \mathbf{\Psi} & \mathbf{L} \\ \mathbf{L}' & \mathbf{I}_{m} \end{bmatrix}, \quad \mathbf{m}$$

When **x** and **f** are jointly <u>multivariate</u> <u>normal</u>, the <u>conditional expectation</u> is

$$E[f \mid x] = \beta_{reg}'(x - \mu), \text{ with}$$

$$\beta_{reg} = \Sigma^{-1}Cov[x, f] = (LL' + \Psi)^{-1}L$$

Then $\hat{\mathbf{f}} \equiv \boldsymbol{\beta}_{reg}'(\mathbf{x} - \boldsymbol{\mu}) = L'(LL' + \boldsymbol{\Psi})^{-1}(\mathbf{x} - \boldsymbol{\mu})$ satisfies $E[\hat{\mathbf{f}} - \mathbf{f} \mid \mathbf{x}] = \mathbf{0}$ and $V[\hat{\mathbf{f}} - \mathbf{f} \mid \mathbf{x}]$ is as small a possible.

Statistics 5401 Lecture 31 November 18, 2005 Statistics 5401 Lecture 31 November 18, 2005 October 18, 2005 Statistics 5401 Sta

(10)

1.9332

 $\pmb{\beta}_{\text{reg}}$ is the matrix of coefficients for the multivariate linear regression of \pmb{f} on $\pmb{x}.$

The error in estimating f,

$$f - \hat{f}_{req} \equiv f - \beta_{req}'(x - \mu) \neq 0.$$

will *not* be $\bf 0$ even when $\bf \beta$ and $\bf \mu$ are known *exactly*. This is what is meant by $\bf f$ being "unobservable".

A "plug in" estimate for
$$\boldsymbol{\beta}_{\text{reg}}$$
 is $\boldsymbol{\hat{\beta}}_{\text{reg}} = \boldsymbol{\hat{\Sigma}}^{-1} \hat{\mathbf{L}} = (\hat{\mathbf{L}}\hat{\mathbf{L}}' + \boldsymbol{\hat{\Psi}})^{-1} \hat{\mathbf{L}}.$

The matrix of estimated factor scores is

$$\hat{\mathbf{F}}_{reg} = \mathbf{\widetilde{X}} \hat{\mathbf{\beta}}_{reg} = \mathbf{\widetilde{X}} \hat{\mathbf{\Sigma}}^{-1} \mathbf{L}'$$

$$= \widetilde{X} (L \widehat{L} + \widehat{\Psi})^{-1} L', \widetilde{X} = X - 1_{N} \overline{X'}$$

Because $\overline{\mathbf{x}}$ is subtracted from each row of \mathbf{X} , the sample mean $\overline{\mathbf{f}}$ of the estimated scores is $\mathbf{0}$.

```
Cmd> facanal(r,m,method:"mle",rotation:"quartimax")
Convergence in 26 iterations by criterion 2
estimated uniquenesses:
     0.72178 1.5031e-06
                               0.2457
                                           0.30368
                                                        0.29364
quartimax rotated estimated loadings:
      Factor 1
                   Factor 2
Y1
       0.51052
                     0.1326
Y2
       0.39154
                    0.92016
Y3
      -0.86747
                  -0.042402
       -0.8327
Υ4
                  -0.054116
Y5
       0.83799
                  -0.064357
minimized mle criterion:
      0.0035949
Cmd> rhohat mle <- LOADINGS %*% LOADINGS' + dmat(PSI)
Cmd> betahat_reg <- solve(rhohat_mle, LOADINGS);betahat_reg</pre>
      Factor 1
                   Factor 2
Y1
      0.069041
                  -0.029377
                                 Coefficients to compute
Y2
      0.028727
                     1.0745
                                 estimated rotated factor
Y3
      -0.37938
                    0.16143
                                 scores
Υ4
       -0.2926
                     0.1245
Y5
       0.32341
                   -0.13761
Cmd> scores_reg <- standardize(y) %*% betahat_reg
Cmd> list(scores_reg)
                        100
                                     (labels)
scores
Cmd> scores[run(10),] # estimated rotated scores for cases 1-10
        -0.56509
                      -1.0167
        -0.42147
(2)
                     -0.30271
(3)
        -0.96222
                      0.82245
         -2.1753
                       1.7447
          1.3287
                     -0.23539
(5)
(6)
        0.021364
                      -1.3216
(7)
          1.0515
                        1.036
(8)
        -0.10595
                       1.3347
(9)
         -0.6242
                     -0.65937
```

1.5097

Cmd> plot(scores_reg[,1],scores_reg[,2],symbols:"\11",\
 xlab:"Factor 1", ylab:"Factor 2",\
 title:"MLE Factor scores estimated by regression method")

Because the sample correlation matrix R is another estimate for ρ , an alternate estimate for $\beta_{reg} = \rho^{-1}L$ is

$$\widetilde{\beta}_{reg} \equiv R^{-1} \widehat{L}$$

using the unrestricted estimate **R** for ρ instead of the factor analytic estimate $\hat{\rho} = \hat{LL}' + \hat{\Psi}$.

When $\hat{\Psi}$ and $\hat{\mathbf{L}}$ are fully converged max-imum likelihood (ML) estimates,

$$\widehat{\beta}_{\text{reg}} = R^{-1}\widehat{L} = \widehat{\beta}_{\text{reg}} = \widehat{\rho}^{-1}\widehat{L} = (\widehat{LL'} + \widehat{\Psi})^{-1}\widehat{L}$$
 so that $\widehat{F} = \widehat{F}_{\text{reg}}$.

		Cma> solve(r,LOADINGS)			
		Factor 2	Factor 1		
		-0.029377	0.069041	Y1	
		1.0745	0.028727	Y2	
as before	Same	0.16143	-0.37938	Y3	
		0.1245	-0.2926	Y4	
		-0.13761	0.32341	Y5	

Weighted least squares method

Statistics 5401

This estimates vectors $\hat{\mathbf{f}}$ of factor scores in such a way that the vector $\hat{\mathbf{\epsilon}} = (\mathbf{x} - \overline{\mathbf{x}})$ - $L\hat{\mathbf{f}}$ of estimated *unique* factor scores is as small as possible. This may make sense in a context where the unique factors ϵ_i are considered as errors.

What is minimized is a *weighted* sum of squares of estimated unique factor scores, with weights for the i^{th} unique factor score proportional to $\hat{\psi}_{i}^{-1}$.

The solution is weighted least squares estimated coefficients

$$\hat{\beta}_{LS} = \hat{\Psi}^{-1} \hat{L} \hat{\Delta}^{-1} = \hat{\beta}_{reg} (I_m + \hat{\Delta}^{-1})$$

$$\hat{\Delta} = \hat{L}^{-1} \hat{\Psi}^{-1} \hat{L}$$

$$\hat{f}_{LS} = (x - \overline{x}) \hat{\beta}_{LS}$$

When all $\hat{\psi}_{i}$ are small, $\hat{\Delta}$ is large, $\hat{\Delta}^{-1}$ is small and $\hat{\beta}_{LS} \approx \hat{\beta}_{reg}$ so that both types of factor scores are essentially the same.

```
Cmd> deltahat <- LOADINGS' %*% dmat(1/PSI) %*% LOADINGS
Cmd> solve(delta)
          Factor 1 Factor 2
Factor 1 0.003507 -0.005517
Factor 2 -0.005517 0.009226
Cmd> betahat_ls <- betahat_reg %*% (dmat(2,1)+solve(deltahat))</pre>
Cmd> betahat 1s # coeffs for computing LS factor estimates
      Factor 1
                   Factor 2
      0.079322
                  -0.033752
     -0.025299
Y2
                     1.0975
Y3
      -0.43588
                    0.18547
Υ4
      -0.33617
                    0.14304
Y5
       0.37157
                   -0.15811
Cmd> scores_ls <- standardize(y) %*% betahat_ls</pre>
Cmd> head(scores_ls[run(10),],5) # Weighted LS scores
        Factor 1
                     Factor 2
         -0.5818
                      -1.0096
(1)
        -0.45837
                     -0.28701
(2)
(3)
         -1.1277
                      0.89285
         -2.5432
                       1.9012
(4)
                     -0.31204
(5)
```

November 18, 2005

These are almost the same as the regression matrix scores.

You can see how similar the scores are by plotting Regression scores vs least squares scores.

Cmd> plot(scores[,1],scores_ls[,1],symbols:"\1",\
 title:"Least squares scores vs regression, factor 1",\
 xlab:"Least squares scores", ylab:"Regress scores")

Cmd> plot(scores[,2],scores_ls[,2],symbols:"\1",\
 title:"Least squares scores vs regression, factor 2",\
 xlab:"Least squares scores", ylab:"Regress scores")

Regression vs PC scores (rotated):

Correlation between two sets of variables

Lecture 31

Suppose

 $\mathbf{x}^{(1)} = [\mathbf{x}_1^{(1)}, ..., \mathbf{x}_p^{(1)}]'$ and $\mathbf{x}^{(2)} = [\mathbf{x}_1^{(2)}, ..., \mathbf{x}_q^{(2)}]'$ are two sets of measurements on the same subject or case.

Typically $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ each represent a natural grouping of variables.

• $\mathbf{x}^{(1)}$ might consist of *demographic* variables while $\mathbf{x}^{(2)}$ consists of results of *medical tests*.

Because $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ are variables associated with the *same* subject, you must presume that they are correlated.

Q How do you test the hypothesis H_0 : $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ are uncorrelated?

Q How should you describe any association between $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$?

Combine $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ in a single vector

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{bmatrix}$$
 p, a length p + q multi-

variate observation with p+q by p+q variance matrix $\Sigma = V[x]$ and correlation matrix $\mathbf{p} = \text{Corr}[\mathbf{x}]$.

Partition Σ and ρ in the natural way.

$$\Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}^{p}, \quad \rho = \begin{bmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{bmatrix}^{p}, \quad \rho_{ii}^{-11} = \operatorname{corr}[x_{2}^{(1)}, x_{3}^{(1)}] \\ \rho_{21} & \rho_{22} \end{bmatrix}^{q}, \quad \rho_{ii}^{-11} = 1, i = 1, 2, ..., p \\ \rho_{ii}^{-22} = 1, i = 1, 2, ..., q \\ \rho_{ii}^{-22} = 1, i = 1, 2, ..., q \\ \rho_{ii}^{-12} = \operatorname{corr}[x_{i}^{(1)}, x_{i}^{(2)}] \neq 0$$

$$\bullet \quad \Sigma_{11} = V[\mathbf{x}^{(1)}] = [\sigma_{ii}^{-11}] \quad (p \times p)$$

- - $\rho_{11} = Corr[\mathbf{x}^{(1)}] = [\rho_{ij}^{-11}] \qquad (p \times p)$
- $\Sigma_{12} = [\sigma_{ij}^{12}] = \Sigma_{21}'$ (p × q)
- $\rho_{12} = [\rho_{ij}^{12}] = \rho_{21}^{-1} \qquad (p \times q)$ $\Sigma_{22} = V[\mathbf{x}^{(2)}] = [\sigma_{ij}^{22}] \qquad (q \times q)$ $\rho_{22} = Corr[\mathbf{x}^{(2)}] = [\rho_{ij}^{22}] \qquad (q \times q).$

$$\rho_{22} = \text{Corr} [\mathbf{x}^{(2)}] = [\rho_{ij}^{22}] \quad (q \times q)$$

Notation:

$$\rho_{ij}^{kl} \equiv corr[x_i^{(k)}, x_j^{(l)}]$$

- k = 1, 2 and l = 1, 2 index the sets of variables
- i and j index variables within a set.

Examples:

$$\rho_{22}^{12} = corr[x_{2}^{(1)}, x_{2}^{(2)}]$$

$$\rho_{23}^{11} = corr[x_{2}^{(1)}, x_{3}^{(1)}]$$

$$\rho_{ii}^{11} = 1, i = 1, 2, ..., p$$

$$\rho_{ii}^{22} = 1, i = 1, 2, ..., q$$

$$\rho_{ii}^{12} = corr[x_{i}^{(1)}, x_{i}^{(2)}] \neq 1.$$

 $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ are <u>uncorrelated</u> if and only if all p×q correlations ρ_{ij}^{12} = 0, that is if the null hypothesis

 H_0 : ρ_{ij}^{12} = 0, i = 1, ..., p, j = 1, ..., q is true.

In terms of matrices,

$$H_0: \Sigma_{12} = \rho_{12} = 0.$$

When \mathbf{x} is $N_{p+q}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \; \boldsymbol{\rho}_{12} = \mathbf{0}$ is equivalent to

 $\widetilde{H_0}$: $\mathbf{X}^{(1)}$ and $\mathbf{X}^{(2)}$ are <u>independent</u>

Usually \widetilde{H}_0 is the real hypothesis of interest rather than $\boldsymbol{\rho}_{12}$ = $\boldsymbol{0}$, but it's almost impossible to test without assuming multivariate normality.

There are other ways to state H₀:

H_o in terms of regression coefficients

- $\beta_{2.1} \equiv \Sigma_{21} \Sigma_{11}^{-1} = q$ by p matrix of (true) multivariate regression coefficients of $\mathbf{x}^{(2)}$ on $\mathbf{x}^{(1)}$ ($\mathbf{E}[\mathbf{x}^{(2)} \mid \mathbf{x}^{(1)}] = \mu_2 + \beta_{2.1}'(\mathbf{x}^{(1)} \mu_1)$)
- $\beta_{1.2} \equiv \Sigma_{12} \Sigma_{22}^{-1} = p$ by q matrix of (true) multivariate regression coefficients of $\mathbf{x}^{(1)}$ on $\mathbf{x}^{(2)}$ ($\mathbf{E}[\mathbf{x}^{(1)} | \mathbf{x}^{(2)}] = \mu_1 + \beta_{12}$ ($(\mathbf{x}^{(2)} \mu_2)$)

 H_0 : $\boldsymbol{\rho}_{12}$ = **0** is equivalent to either of H_0 : $\boldsymbol{\beta}_{2,1}$ = **0** or H_0 : $\boldsymbol{\beta}_{1,2}$ = **0**

 $\beta_{1,2}$ and $\beta_{2,1}$ are related by identities:

- $\beta_{1,2} = \Sigma_{11} \beta_{2,1} \Sigma_{22}^{-1}$
- $\beta_{2.1} = \Sigma_{22} \beta_{1.2} \Sigma_{11}^{-1}$

This generalizes the bivariate regression identity (p = q = 1)

$$\beta_{x,y} = (\sigma_x^2 / \sigma_y^2) \beta_{y,x}$$

- When you think of $\mathbf{x}^{(2)}$ as <u>depending on</u> $\mathbf{x}^{(1)}$, $\boldsymbol{\beta}_{2,1}$ is often a good way to summarize association between $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$.
- When you think of $\mathbf{x}^{(1)}$ as <u>depending on</u> $\mathbf{x}^{(2)}$, $\boldsymbol{\beta}_{1,2}$ is often a good way to summarize association between $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$.

 $\boldsymbol{\beta}_{2.1}$ and $\boldsymbol{\beta}_{1.2}$ both treat $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ assymetrically.

When you think of $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ symmetrically, then you would usually prefer $\mathbf{\rho}_{12}$ to $\mathbf{\beta}_{2.1}$ or $\mathbf{\beta}_{1,2}$ as a summary of the dependence.

"Symmetric" means that swapping $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ will not effect how you view the relationship.

Data: Usually a <u>random sample</u>:

$$\mathbf{x}_{i} = [\mathbf{x}_{i}^{(1)}, \mathbf{x}_{i}^{(2)}], i = 1,...,n,$$

from a p+q dimensional population.

Consequence: Both $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ are random.

Suppose either $\mathbf{x}^{(1)}$ or $\mathbf{x}^{(2)}$ is not random.

- <u>Population</u> correlations between elements of $\mathbf{x}^{(1)}$ and elements of $\mathbf{x}^{(2)}$ are not defined.
- $\beta_{1,2}$ ($\mathbf{x}^{(1)}$ random but not $\mathbf{x}^{(2)}$) or $\beta_{2,1}$ ($\mathbf{x}^{(2)}$ random but not $\mathbf{x}^{(1)}$) may be defined.

In either of the following, be <u>suspicious</u> of any correlation-based analysis:

- Values of $\mathbf{x}^{(1)}$ and/or $\mathbf{x}^{(2)}$ are subject to manipulation or control
- Values of $\mathbf{x}^{(1)}$ and/or $\mathbf{x}^{(2)}$ are affected by a data selection procedure.

Either implies the sample is not random.

November 18, 2005

Statistics 5401 Lecture 31

Tests of H_0 : $\rho_{12} = 0$

Bonferronized $\{r_{ij}^{12}\}_{1 \le i \le p, 1 \le j \le q}$

This uses the pq sample correlations

 $r_{ij} \equiv r_{ij}^{12} = \widehat{Corr}[x_i^{(1)}, x_j^{(2)}] = s_{ij} / \sqrt{\{s_{ii}s_{jj}\}}$ computed from **S** with f_e d.f.

A standard *bivariate* test statistic of $H_0^{(ij)}$: $\rho_{ij}^{12} = 0$

İS

$$t_{ij} = \sqrt{(f_e - 1)r_{ij}} / \sqrt{(1 - r_{ij}^2)}$$

whose null distribution is Student's t on f_e-1 degrees of freedom.

 $f_e = n - 1$ for $\hat{\rho}$ from a random sample. $f_e = n - g$ for $\hat{\rho}$ from a pooled estimate **S** $= (n-g)^{-1}E$ from a MANOVA with g-groups. You reject $H_0^{(ij)}$ when $\left|t_{ij}\right| > t_{f_{e^{-1}}}(\alpha/2)$

Since you can recover r_{ii} from t_{ii} as

$$r_{ij} = t_{ij} / \sqrt{\{f_e - 1 + t_{ij}^2\}}$$

you can reject H_n (ij) when

$$|r_{ij}| > t_{f_{e}-1}(\alpha/2)/\sqrt{\{f_{e}-1+t_{f_{e}-1}(\alpha/2)^{2}\}}.$$

Assumptions required for Student's t

- 1. Either $\{x_{i1}^{(1)}, x_{i2}^{(1)}, ..., x_{in}^{(1)}\}$ or $\{x_{j1}^{(2)}, x_{j2}^{(2)}, ..., x_{jn}^{(2)}\}$ or both is a random sample
- 2. Either $x_i^{(1)}$ or $x_i^{(2)}$ (or both) is <u>univariate</u> normal
- 3. $x_i^{(1)}$ and $x_i^{(2)}$ are <u>independent</u>,

Under these conditions,

$$t_{ij} = t_{f_{e}-1} = t_{n-2}$$
, Student's t

In particular, *Bi*variate normality is *not* required to test *independence*.

Statistics 5401 Lecture 31 November 18, 2005

When $(x_i^{(1)}, x_j^{(2)})$ is not bivariate normal, $\rho_{ij}^{12} = 0$ is not enough to ensure that t_{ij} is t_{f_0-1} . You need actual <u>independence</u>.

Since there are K = pq t-statistics t_{ij} , one for each $r_{ij}^{(12)}$ in \mathbf{R}_{12} you should Bonferronize them using $K = p \times q$ to test $H_0: \mathbf{\rho}_{12} = \mathbf{0}$.:

Reject H_0 when $\max_{i,j} |t_{ij}| > t_{f_{i-1}}((\alpha/(pq))/2)$

or when pq×min $_{i,j}$ P $_{ij}$ < \varpropto , P $_{ij}$ = two-tail P-value based on t $_{ij}$

And, for all i and j such that

$$|t_{ij}| > t_{f_{a-1}}((\alpha/(pq))/2)$$
 or $pq \times P_{ij} < \alpha$

you can reject $H_0^{(ij)}$: $\rho_{ij}^{12} = 0$ and declare that $x_i^{(1)}$ and $x_j^{(2)}$ are apparently correlated.