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Statistics 5401 Lecture 31 November 18, 2005

Estimating Factor Scores (continued)

Factor scores f are not directly obser-
vable, but can be estimated.

Slightly modified notation:

The vector of factor scores for case 1 is
f = [fn, f .., 1, 1=1,.. N.

i2 ! im

The (unobservable) N by m matrix of
factor scores for all N cases is

f
F o= {1 } f'isrow i of F, 1=1,...,N.
f,
The factor analysis model for case i is
X = J+Lf +€e L=[0,..2 1 1=1,..N
Vle]l =V = diagly .y....., gffp]
The full data matrix is
X=1[X,..,x]'= 1T +F L +¢€

Nxp Nxp Nxm  mxp Nxp

Estimates of f and F are notated f and F.
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For Principal Components (PC) “factor
analysis”, factors are observable when
parameters are known since

f= z/\/x Z /Ny s Z N T

where z = v'(x - J), ]
principal components.

11
—

Here X and v, are eigenvalue and eigen-

vector of £ or p. For correlation PC’s,
replace X - M by X, with x_= (x-p)//o..

You estimate f. by

f =z /¢>\ z /¢x e Z, /¢x

The estlmated matrix of factor scores is
= X IR, RV, L R
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These are unrotated scores.

For PC-based factor analysis, the
estimated loading matrix is

L= [/AV, VAV, .., VA V]
Then F = XLA ' where A =
diaglX,, X,, ..., X 1 = 'L because the
eigenvectors v, ..., V_are orthonormal.
Thus F = XL(C'L) ™.
When L = LH, where H'H = 1 , are ortho-
gonally rotated loadings, then L = L_H".
The rotated estimated factors matrix is
F = FH = XL(C'D'H
= XL _H'(HC 'L _H)'H = XL _

(Lrot'Lrot)_1

In general, estimated factors from PC-
based factor analysis are Xf , where 8

- L)', L = estimated loading matrix
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Continuing with the artificial data set:
CGrd> eigs <- eigen(r); eigs$values

(1) 2.9773 0. 81302 0. 65535 0. 29061 0. 26371

Cnd> Lhat_pc <- eigs$vectors[,run(m)] *\
sqrt(eigs$values[run(m)]’)

Ord> Lhat_pc # unrotated loading matrix
(1) (2)

Y1 0. 65674 0. 23525

Y2 0. 55496 0. 76752

Y3 -0. 88329 0. 16769

Y4 -0. 86356 0.17873

Y5 0. 84385 -0. 32942

Omd> Lhat_pc' %*% Lhat_pc # diagonal matrix of m eigenvalues

(1) (2)
(1) 2.9773 -8.1715e- 17
(2) -8.1715e-17 0. 81302

Ond> scores_pc <-\
standardize(y) %*% Lhat_pc %*% solve(Lhat_pc' %*% Lhat_pc)

Qmd> head(scores_pc,3) # unrotated estimated factor scores
(1) (2)

(1)  -0.71819  -0.67613
(2)  -0.83434  -0.92947
(3)  -0.82209 1. 2269

Qrd> Lhat_pc_rot <-\
rotation(Lhat_pc,method:"quartimax" kaiser:T)

Qrd> Lhat_pc_rot # rotated factor loadings
(1) (2)

Y1l 0. 56238 0. 41277
Y2 0. 31304 0. 89391
Y3 -0.89444  -0.091162
Y4 -0.87867 -0.074957
Y5 0.90275 -0.075098

Omd> scores_pcrot <- standardize(y) %*% Lhat _pc_rot %*% \
solve(Lhat_pc_rot' %*% Lhat_pc_rot)

Qrmd> head(scores_pcrot,3) # rotated estimated factor scores

(1) (2)
(1) -0.49556  -0.85286
(2) -0. 53463 -1.1288

(3) -1.1378 0. 94151

Statistics 5401

Regression Method for estimating f

This estimates f as the conditional
expectation E[f | x] of f given x.
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Because
X =[x, ....x] = p«Lf+[e,..e],
when VI[f] = I (orthogonal factors),
e ¥ =LL + V¥
e the joint variance matrix of x and f is
X > =LL+V L p
VI ] = :
f L’ I m
(p+m) x (p+m) P m

When x and f are jointly multivariate

normal, the conditional expectation is
ELf | x] = B '(x - u), with
B. =Z Covlx, fl=(LL" + W)L
pxm
Then f =8 '(x - u)=L(LL" + ¥)'(x - W)

sat13f1esEf—f|x 0ande—f|x is

as small a possible
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B, is the matrix of coefficients for the
multivariate linear regression of f on X.

The error in estimating f,
f-f =f-8_(x-u=0.

reg

will not be 0 even when f and J are
known exactly. This is what 1s meant
by f being "unobservable”.
A "plug in” estimate for B is

'Breg - f_1|: - (I:I:‘ + \T/)_]I:.
The matrix of estimated factor scores is
F\eg: 2"Breg - Yf_]L'

r
Nxm

= X(LL+ ¥)'L, X =X -1x
Because X is subtracied from each row of

X, the sample mean f of the estimated
scores 1s O.
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Qrd> facanal(r,m,method:"mle" rotation:"quartimax")
Convergence in 26 iterations by criterion 2
estimat ed uni quenesses:
Y1 Y2 Y3 Y4
0.72178 1.5031e-06 0. 2457 0. 30368
quartimax rotated estinated | oadi ngs:

Factor 1 Factor 2
Y1l 0. 51052 0. 1326
Y2 0. 39154 0. 92016
Y3 -0. 86747 - 0. 042402
Y4 -0. 8327 -0. 054116
Y5 0. 83799 - 0. 064357

mnimzed me criterion:
(1) 0. 0035949

Ond> rhohat_mle <- LOADINGS %*% LOADINGS' + dmat(PSlI)
Ord> betahat reg <- solve(rhohat_mle, LOADINGS);betahat_reg

November 18, 2005

Y5
0. 29364

Factor 1 Factor 2
Y1 0.069041 -0.029377 Coefficients to conpute
Y2 0. 028727 1. 0745 estimated rotated factor
Y3 -0. 37938 0. 16143 scores
Y4 -0. 2926 0. 1245
Y5 0. 32341 -0.13761

Qrd> scores_reg <- standardize(y) %*% betahat _reg
Qrd> list(scores_reQ)

scores REAL 100 2 (1 abel s)
Qrd> scores[run(10),] # estimated rotated scores for cases 1-10
(1) - 0. 56509 -1. 0167

(2) -0. 42147 -0. 30271

(3) -0. 96222 0. 82245

(4) -2.1753 1. 7447

(5) 1. 3287 -0. 23539

(6) 0. 021364 -1. 3216

(7) 1. 0515 1. 036

(8) -0. 10595 1. 3347

(9) -0. 6242 - 0. 65937

(10) 1.9332 1. 5097
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Qrd> plot(scores_reg|,1],scores_reg[,2],symbols:"\11"\
xlab:"Factor 1", ylab:"Factor 2"\
title:"MLE Factor scores estimated by regression method")

IfLE Factor scores estimated by regression method
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Because the sample correlation matrix R
s another estimate for p, an alternate
estimate for 8 = p'L is

Breg = R'L

using the unrestricted estimate R for p
instead of the factor analytic estimate

p=LLC+ V.
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wWhen ¥ and L are fully converged max-
imum likelihood (ML) estimates,

- - B
Breg - - reg

pxm  pxp pxm

so that F = F_.

Qrd> solve(r,LOADINGS)
Factor 1 Factor 2

Y1l 0.069041  -0.029377
Y2 0. 028727 1. 0745
Y3 -0. 37938 0. 16143
Y4 -0. 2926 0. 1245
Y5 0.32341 -0. 13761

=p'L= (L + ¥)'L

Sane as before
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Weighted least squares method

This estimates vectors f of factor scores
in such a way that the vector € = (x - X)
- Lf of estimated unique factor scores
Is as small as possible. This may make
sense In a context where the unique
factors €, are considered as errors.

What 1s minimized is a weighted sum of
squares of estimated unique factor
scores, with weights for the i" unique
factor score proportional to \j/

The solution is weighted least squares
estimated coefficients

When all . are small, A is large, A"
small and §, =~ B, so that both types of
factor scores are essentially the same.
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Qrd> deltahat <- LOADINGS' %*% dmat(1/PSI) %*% LOADINGS

Qrd> solve(delta)

Factor 1 Factor 2
Factor 1 0.003507 -0.005517
Factor 2 -0.005517 0.009226

Qrmd> betahat_lIs <- betahat_reg %*% (dmat(2,1)+solve(deltahat))

Qmd> betahat_lIs # coeffs for computing LS factor estimates
Factor 1 Factor 2

Y1l 0.079322  -0.033752
Y2  -0.025299 1. 0975
Y3 - 0. 43588 0. 18547
Y4 -0. 33617 0. 14304
Y5 0. 37157 -0. 15811

Qmd> scores_ls <- standardize(y) %*% betahat_ls
Qmd> head(scores_lIs[run(10),],5) # Weighted LS scores

Factor 1 Factor 2
(1) -0.5818 -1. 0096
(2) - 0. 45837 -0. 28701
(3) -1.1277 0. 89285
(4) -2.5432 1.9012
(5) 1. 5088 -0. 31204

These are almost the same as the
regression matrix scores.
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You can see how similar the scores are

by plotting Regression scores vs least
squares scores.

Qrd> plot(scores],1],scores_ls[,1],symbols:"\1"\
title:"Least squares scores vs regression, factor 1"\
xlab:"Least squares scores", ylab:"Regress scores")

Qrd> plot(scores|,2],scores_ls[,2],symbols:"\1"\
title:"Least squares scores vs regression, factor 2"\
xlab:"Least squares scores", ylab:"Regress scores")
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Regression vs PC scores (rotated):

Qrd> plot(scores_pcrot[,1],scores_regs[,1],symbols:"\1"\
title:"Regression scores vs PC, factor 1"\
xlab:"PC scores", ylab:"Regression scores")

Ord> plot(scores_pcrot[,2],scores_regs[,2],symbols:"\1"\
title:"Regression scores vs PC, factor 2"\
xlab:"PC scores", ylab:"Regression scores")
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Correlation bet_ween two sets of
variables
Suppose

X" = [x,".x "] and X = [x?,x PT

are two sets of measurements on the
same subject or case.

Typically x" and x*® each represent a
natural grouping of variables.

e x"" might consist of demographic
variables while x® consists of results
of medical tests.

Because X" and x'” are variables assoc-
lated with the same subject, you must
presume that they are correlated.

Q How do you test the hypothesis
H,: X" and x? are uncorrelated?

Q How should you describe any associa-
tion between x" and x*?
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Combine X" and x“

x(1) p
{ y @ } q '
variate observation with p+q by p+q var-

lance matrix £ = VI[X] and correlation
matrix p = Corr[x].

Partition £ and p in the natural way.

In a single vector

X = a length p + @ multi-

|— ZH Z12—| p |— pH p12-| p
R P O .
X, ,149 P, P,LI1Q
p q p q
¢ £, = VX" =[oc"] (p x p)
p.. = Corr[x"] = p, '] (p x p)
¢« £,=[0,71=2, (p x q)
p,=1[p,1=p, (p x @)
e £, = VIx?]=[oc*] (g x q)
p22 = Corr [X(2)] = [pij22] (q X q)

15

Statistics 5401 Lecture 31 November 18, 2005

Notation:
p,“ = corrlx x "]
e k=1,2and 2 =1, 2 index the sets of
variables

e | and j index variables within a set.

Examples:
p 12 =corrlx " x ]
p,.l" = corrlx, ", x. "]
p=1,i=1,2,.,p
pZ=1,1=12..0

12 _ (1) (2)
p,  =corrlx " x*1= 1.
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x" and x are uncorrelated if and only if
all pxqg correlations p * = 0, that is if
the null hypothesis

H,: p”_‘2:0,i: 1, ....p,]=1,..,4

1s true.

In terms of matrices,
|_|O: z:12 - p12 = O

When x is N (M, £), p,, = 0 is equivalent
to

~

H: x" and x® are independent

0

Usually H, is the real hypothesis of
interest rather than p = 0, but it's

almost impossible to test without
assuming multivariate normality.
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There are other ways to state H:

H, in terms of regression coefficients

e B =2 % ' =qbyp matrix of (true)
multivariate regression coefficients of
x? on x (E[x? | X7 = T 52.1:()((1)_}11))

e B =% % ' =pbyq matrix of (true)
multivariate regression coefficients of
x" on x? (E[Xm | x(2)] ST 51.2'()((2)_“2))

H;: p,, = 0 is equivalent to either of
Ho: 52.1 =0 or Ho: ’81.2 =0

8., and B are related by identities:
* 51.2 = ZH.B2.1‘Z22_1

) -1
° B2.1 = Z2251.2 ZH

This generalizes the bivariate regression
identity (p = q=1)
8, = (c3/c)p

y.x
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e When you think of x* as depending on
x"", B, is often a good way to sum-

marize association between x" and x*.

e When you think of x'” as depending on
x?, B, is often a good way to sum-

marize association between X'V and x*.

B..and B . both treat x" and x* assym-
2.1 1.2

etrically.

When you think of X" and x® symmet-

rically, then you would usually prefer p
to §,, or B,, as a summary of the depen-
dence.

"Symmetric” means that swapping x"’ and

x? will not effect how you view the
relationship.
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Data: Usually a random sample:
x =[x, x7 T, 1= 1,...n,
from a p+q dimensional population.

Consequence: Both X" and x* are

random.

Suppose either x" or x® is not random.

e Population correlations between ele-
ments of X" and elements of x? are
not defined.

e 8  (x" random but not x®) or B (x?
random but not x™’) may be defined.

[n either of the following, be suspicious
of any correlation-based analysis:

e Values of x" and/or x'” are subject to
manipulation or control

e Values of x" and/or x? are affected by
a data selection procedure.

Either implies the sample 1s not random.
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Testsof H: p, =0

Bonferronized {r, "}

1<i<p,1<j<q

This uses the pg sample correlations

ro=r, 7= T Ix ), x @1 = s //{s,s }
computed from S with f_d.f.
A standard bivariate test statistic of

(i), 12 _
Ho ' p, " =

0
1S
- 2
t, = /(f-1r /0 -r?
whose null distribution is Student’s t on
f - 1 degrees of freedom.
f_=n- 1 for p from a random sample.

f =n-gforp from a pooled estimate S
= (n-g)'E from a MANOVA with g-groups.
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You reject H,"” when
[t ] >t (v2)
Since you can recover r from t. as
- 2
r = t”./”\/{fe -1+t
you can reject H"” when
Ir | >t (ew2)7 /M1, - 1+t (e/2)7),

Assumptions required for Student’s t

fo-1

1. Either {x. ", x ", ..., x "} or
{x ', x,®, ..., x “}or both is a random
sample

2. Either x" or x® (or both) is univariate
normal
3. x,"” and x? are independent,

Under these conditions,
tij =t =t Student'st

[n particular, Bivariate normality is not
required to test independence.
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When (x”, x ) is not bivariate normal,
p,” = 0 is not enough to ensure that t, is
t. .. You need actual independence.

fo1

Since there are K = pq t-statistics t,,
one for each r “? in R, you should Bon-

ferronize them using K = pxq to test
HO: p12 - 0

Reject H, when
max, |t | >t (t/(pg))/2)
or when pgxmin, P < o, P, = two-tail P-
value based on t,
And, for all 1 and ] such that
|tij| > tfe_1((o</(pq))/2) or pgxP, < o
you can reject H": p "* = 0 and declare

that x,” and x* are apparently corre-
lated.
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