Displays for Statistics 5401/8401

Lecture 29

November 14, 2005

Christopher Bingham, Instructor

612-625-1024, kb@umn.edu 372 Ford Hall

Class Web Page

http://www.stat.umn.edu/~kb/classes/5401 © 2005 by Christopher Bingham Statistics 5401 Lecture 29 November 14, 2005

There are two important and different types of factor analysis - **exploratory** factor analysis and **confirmatory** factor analysis.

Exploratory factor analysis estimates the factor analysis model with some purely $\underline{\text{mathematical}}$ restriction (e.g. L'L diagonal) on the loading matrix L to assure uniqueness. Then $\hat{\mathbf{L}}$ is "rotated" to have an "interpretable" structure.

For example a rotated L might be

Interpretation:

- x₁ is affected only by factor 1
- x_2 and x_3 are affected only by factor 2.

You use confirmatory factor analysis with a pre-determined form for L like

$$L = \begin{bmatrix} * & 0 \\ 0 & * \\ 0 & * \end{bmatrix}$$
 (* means non-zero)

The pattern might come from an earlier exploratory factor analysis or from subject-matter knowledge.

You estimate **L** by finding the best fitting loadings of this form, that is with $l_{12} = l_{21} = l_{31} = 0$.

A goodness-of-fit test of $\hat{\Sigma} = \hat{L}\hat{L}' + \hat{\Psi}$ to **S** or $\hat{\rho}$ to **R** tests the null hypothesis

H₀: $\ell_{12} = \ell_{21} = \ell_{31} = 0$

٧S

 H_1 : no special pattern of 0's. When you cannot reject H_0 , then the

proposed pattern is confirmed.

Confirmatory factor analysis is a special case of **structural equation modeling**.

My focus is on <u>exploratory factor anal</u><u>ysis</u>.

Recapitulate

The <u>factor analytic model</u> for x is $x = \mu + Lf + \epsilon$.

 Σ = V[X] has the <u>factor analytic form</u> $\Sigma = V + \Psi = L\Gamma L' + \Psi, \Gamma = V[f]$ rank m diagonal

where

- Ψ = Var[ε] = diag[ψ_1 , ψ_2 , ..., ψ_p] is p by p diagonal with $\psi_i \ge 0$
- L is p by m
- $\Gamma = V[f]$ is m by m
- $V = L\Gamma L'$ has rank m < p

Only V and Ψ are uniquely defined. Given V and Ψ , there are infinitely many p by m L and m by m Γ with V = $L\Gamma L$.

 Γ = I_m characterizes the orthogonal factor model.

Exploratory factor analysis usually consists of two phases

1 Factor extraction - compute estimates $\hat{\Psi}$ and \hat{V} = $\hat{L}\hat{L}$, where \hat{L} satisfies a <u>mathematical</u> restriction to achieve uniqueness and may not be interpretable.

This is followed by

2 Factor rotation - modifies $\hat{\mathbf{C}}$ without changing $\hat{\mathbf{V}} = \hat{\mathbf{L}}\hat{\mathbf{C}}$ so as to try to achieve an interpretable form for $\hat{\mathbf{L}}$.

With <u>oblique factor analysis</u>, $\hat{\Gamma}$ and \hat{L} are found so that $\hat{V} = \hat{L}\hat{\Gamma}\hat{L}$ and \hat{L} has interpretable structure and $\hat{\Gamma}$ provides information about how the factors are related. You can often get a "simpler" \hat{L} than with $\Gamma = I_m$.

You start with the sample variance matrix **S** or correlation matrix **R**.

Usually

$$S = (n-1)^{-1} \sum_{1 \le i \le n} (\mathbf{x}_i - \overline{\mathbf{x}}) (\mathbf{x}_i - \overline{\mathbf{x}})'$$
comes from a random sample $\mathbf{x}_1, ..., \mathbf{x}_n$.
$$S \text{ can also be a "pooled" matrix}$$

$$S = \int_{a}^{-1} \mathbf{E}$$

where E is the error matrix from a MANOVA or MANACOVA.

The estimated $\underline{\text{correlation matrix}}$ is

$$R = DSD$$

with

D = diag[
$$1/\sqrt{s_{11}}$$
, $1/\sqrt{s_{22}}$, ..., $1/\sqrt{s_{pp}}$].

For two methods of estimation, GLS and MLE (but not ULS), you get essentially the same results whether you start with **S** or **R**. This contrasts strongly with Principal Components Analysis.

In covariance-based factor extraction you try to approximate S by finding

p by m $\hat{\mathbf{L}}$ and diagonal p by p $\hat{\mathbf{\Psi}}$ such that

$$[\hat{\sigma}_{ij}] = \hat{\Sigma} \equiv \hat{LL}' + \hat{\Psi} = \hat{V} + \hat{\Psi} = \hat{S}$$

When the factor analytic model is correct, $\hat{\Sigma}$ will be a "better" estimate of Σ than S, because $\hat{\Sigma}$ has factor analytic structure while S does not.

Correlation-based factor analysis tries to approximate

$$\mathbf{R} = \begin{bmatrix} 1 & r_{12} & r_{13} & \dots & r_{1p} \\ r_{21} & 1 & r_{23} & \dots & r_{2p} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ r_{p1} & r_{p2} & \dots & r_{p,p-1} & 1 \end{bmatrix}, r_{ij} = r_{ji}$$

by a matrix of the form $\hat{\rho} \equiv \hat{LL}' + \hat{\Psi}$ which should be a better estimator of ρ than R.

Usually factor analysis starts with R.

Lecture 29

Because $\hat{\mathbf{V}} = \hat{\mathbf{LL}}$ appears in the approximations for Σ and \boldsymbol{p} , the factor extraction phase is based on an orthogonal factor model, but this is only for mathematical convience.

Finding $\hat{\mathbf{L}}$ in this phase is just the way you find the rank m piece $\hat{\mathbf{V}} = \hat{\mathbf{L}}\hat{\mathbf{L}}$ of the factor analytic estimate $\hat{\mathbf{\Sigma}} = \hat{\mathbf{V}} + \hat{\mathbf{\Psi}}$ or $\hat{\boldsymbol{\rho}} = \hat{\hat{\mathbf{V}}} + \hat{\mathbf{\Psi}}$.

I will focus on methods starting with S. They can be applied to R by substituting ρ and R for Σ and S in what follows.

The most usual mathematical restrictions on $\hat{\mathbf{L}}$ are

- L'L is diagonal (columns of L are orthogonal), assumed for ULS
 (unweighted least squares) estimation
- $\hat{\mathbf{L}}'\hat{\mathbf{\Psi}}^{-1}\hat{\mathbf{L}}$ is diagonal (columns of $\hat{\mathbf{\Psi}}^{-1/2}\hat{\mathbf{L}}$ are orthogonal), assumed for GLS (generalized least squares) and MLE (maximum likelihood) estimation.

Neither restriction on $\hat{\mathbf{L}}$ appears to have an interpretable meaning.

Both are particular cases (when $Q = I_p$ and $Q = \hat{\Psi}$) of

- L'Q-1L is diagonal
- Q positive definite, possibly depending on $\hat{\Psi}$.

Fact:

Suppose you have found $\hat{\mathbf{V}}$ by some means or other. Then you can find $\hat{\mathbf{L}}_{o}$ such that $\hat{\mathbf{V}} = \hat{\mathbf{L}}_{o}\hat{\mathbf{L}}_{o}$ ' and $\hat{\mathbf{L}}_{o}$ satisfies

$$\hat{\mathbf{L}}_{Q}'\mathbf{Q}^{-1}\hat{\mathbf{L}}_{Q}$$
 is diagonal

where ${\bf Q}$ is a specific positive definite symmetric matrix, say $\hat{{\bf \Psi}}.$

$$\hat{\mathbf{L}}_{0} = [\hat{\mathbf{l}}_{10}, ..., \hat{\mathbf{l}}_{m0}], \hat{\mathbf{l}}_{i0} = \sqrt{\delta_{i}}\mathbf{Q}\mathbf{e}_{i}$$

where

- \mathbf{e}_1 , ..., \mathbf{e}_m are the first m eigenvectors of $\hat{\mathbf{V}}$ relative to \mathbf{Q}
- δ_1 , ..., δ_m the first m relative eigenvalues

With this choice $\hat{V} = \hat{L_Q}\hat{L_Q}$ and

$$\hat{\mathbf{L}_{Q}}'\mathbf{Q}^{-1}\hat{\mathbf{L}_{Q}} = \text{diag}[\delta_{1}, \delta_{2}, ..., \delta_{m}]$$
 is diagonal.

- 1. Diagonal $\hat{\mathbf{L}}$ corresponds to $\mathbf{Q} = \mathbf{I}_{p}$ when <u>relative</u> eigenvalues and vectors are <u>ordinary</u> eigenvalues $\hat{\lambda}_{i}$ and eigenvectors $\hat{\mathbf{v}}_{i}$ of $\hat{\mathbf{V}}$, so the columns of $\hat{\mathbf{L}}$ are $\hat{\mathbf{Q}}_{i} = \sqrt{\hat{\lambda}_{i}}\hat{\mathbf{v}}_{i}$.
- 2. Diagonal $\hat{\mathbf{L}}'\hat{\mathbf{\Psi}}^{-1}\hat{\mathbf{L}}$ corresponds to $\mathbf{Q} = \hat{\mathbf{\Psi}}$. In this case $\hat{\mathbf{L}}_j = \sqrt{\sigma_i \mathbf{u}_i}$, where σ_i and σ_i are eigenvalue and eigenvector of $\hat{\mathbf{V}}$ relative to $\hat{\mathbf{\Psi}}$.

We will look at several ways to estimate \boldsymbol{V} , including the ULS, GLS and MLE (or ML) methods

ULS assumes L'L is diagonal ($Q = I_p$).

GLS and ML assumes $\mathbf{L}' \mathbf{\Psi}^{-1} \mathbf{L}$ is diagonal $(\mathbf{Q} = \mathbf{\Psi})$.

To summarize exploratory factor analysis:

Phase 1: Extraction:

$$(\mathbf{x}_1, \dots, \mathbf{x}_n) \to (\mathbf{S} \text{ or } \mathbf{R}) \to (\hat{\mathbf{L}}, \hat{\Psi}) \to (\hat{V}, \hat{\Psi}),$$

 $\hat{V} = \hat{\mathbf{L}}\hat{\mathbf{L}}'$

where $\hat{\mathbf{L}}$ satisfies a mathematical restriction that makes it unique.

Phase 2: Rotation:

Find **H** (and possibly $\hat{\Gamma}$) so that $\hat{L}^* = \hat{L} \hat{H}$ is interpretable with $\hat{V} = \hat{L}^*\hat{L}^*$, (or $\hat{V} = \hat{L}^*\hat{\Gamma}\hat{L}^*$)

The choice of \hat{L}^* (or H) must be based on substantive scientific reasons, not mathematical convenience.

All methods of rotation share the idea of finding **H** so that $\hat{L}^* = \hat{L}H$ has simple structure.

The left matrix is "not simple" (* means non-zero); the right matrix would generally be considered simpler

- In $\hat{\mathbf{L}}$ all p = 5 variables load on all m = 3 factors. This is <u>not simple</u>.
- In \hat{L}^* , variables x_1 and x_2 load only on f_1 , X_3 loads on f_1 and f_2 , X_4 loads only on f_2 , and x_5 loads only on f_3 . And factor f_1 affects only x_1 , x_2 and x_3 , f_2 affects only x_3 and x_4 , and f_3 affects only x_{ϵ} .

The simpler pattern *might* be more interpretable by a subject matter expert, especially if you can identify a feature that is shared by x_1 and x_2 .

For example, if both x_1 and x_2 were concerned with a subject's logical thinking skills, then it *might* be possible to identify f, as a "clear thinking" factor. You would need subject matter knowledge to do this with confidence.

Most computational rotation methods such as varimax and quartimax find H

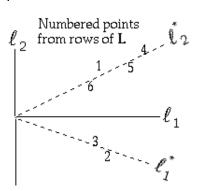
- to $maximize I_s(\widehat{LH})$ where $I_s(L)$ is a "simplicity" index
- or to $minimize I_c(\widehat{LH})$, where $I_c(L)$ is a "complexity" index.

For varimax and quartimax the criterion function is a degree 4 polynomial in ℓ_{ii} .

For oblique (non-orthogonal) factor rotation, you "rotate" with a matrix H that is not a rotation matrix, that is $H'H \neq I_m$ and $\Gamma = V[f] \neq I_m$.

Here is an m = 2 example when this might be appropriate. No *orthogonal* rotation will produce simple form.

Using coordinates based on the non perpendicular dashed lines, variables 3 and 2 will load primarily on factor 1 and variables 1, 4, 5, and 6 on factor 2, a simple structure.



That is, L* has the form

The rotated factors f_j^* will *not* be uncorrelated (Γ not diagonal).

We will look at four or five methods of factor extraction:

- PC = Principal Components
- IPF = Iterated principal factor
- ULS = Unweighted Least Squares
- GLS = Generalized Least Squares
- ML = Maximum likelihood assuming normality.

All except PC require iteration.

IPF is sometimes an option on computer programs. It is a simple iterative method that should lead to the same solution as the ULS method. IPF is generally not recommended because it may need a huge number of steps. There are similar inferior iterative methods for GLS and MLE.

ULS, GLS and MLE estimates each attempt to <u>minimize a specific criterion</u> which measures the discrepancy between **S** (or **R**) and the estimate $\hat{\Sigma} = \hat{L}\hat{L}' + \hat{\Psi}$.

Principal Component Factor Estimation

The PC method approximates \mathbf{x} in terms of the first few sample principal components $\hat{z}_i = \hat{v}_i'(x - \overline{x})$

Summary of method

- Find the eigenvectors $\hat{\mathbf{v}}_i$ and eigenvalues $\hat{\lambda}_i$, j = 1,...,p of the sample covariance matrix **S** or (more usually) the sample correlation matrix \mathbf{R} .
- For a suitable choice of m (usually the number of eigenvalues greater than a threshold such as 1), the unrotated estimated loading matrix is

$$\hat{\mathbf{L}} = [\sqrt{\hat{\lambda}_{1}} \hat{\mathbf{v}_{1}}, ..., \sqrt{\hat{\lambda}_{m}} \hat{\mathbf{v}_{m}}]$$

$$= [\hat{\mathbf{Q}}_{1}, ..., \hat{\mathbf{Q}}_{m}], \hat{\mathbf{Q}}_{ij} = \sqrt{\hat{\lambda}_{j}} \times \hat{\mathbf{v}_{ij}}$$

Because eigenvectors are orthonormal, $\hat{L}'\hat{L} = \text{diag}[\hat{\lambda}_1, ..., \hat{\lambda}_m]$ is diagonal.

The estimated factors are $\hat{f}_i = \hat{z_i} / \sqrt{\hat{\lambda}_i}$

- You estimate V by $\hat{V} = \hat{LL}'$. \hat{V} is the best (least squares) rank m approximation to S (or R).
- You find $\hat{\Psi}$ so that the diagonal of $\hat{\Sigma}$ = $\hat{\mathsf{LL}}$ ' + $\hat{\Psi}$ exactly matches the diagonal of S. That is

$$\hat{\Psi}$$
 = diag[S - $\hat{\mathbf{L}}\hat{\mathbf{L}}$ '], = diag[S - $\hat{\mathbf{V}}$] or explicitly

$$\hat{\Psi}_{i} = S_{ii} - \sum_{1 \le j \le m} \hat{\ell}_{ij}^{2}, i = 1,...,p.$$

The estimated communalities are

$$\hat{h}_i^2 = s_{ii} - \hat{\psi}_i = \sum_{1 \le j \le m} \hat{\ell}_{ij}^2$$

When S = R, $\hat{h}_i^2 = 1 - \hat{\psi}_i$

Notation note:

When $A = [a_{ij}]$, the notation diag[A] means the diagonal matrix diag[$a_{11},...,a_{nn}$].

Example: Artifical data with m = 2

Cmd> s	<- tabs(y,co	ovar:T); s #	sample varia	ance matrix		
(1,1)	3.1903	0.6777	-2.2794	-0.62891	0.71555	
(2,1)	0.6777	1.3874	-1.2398	-0.3807	0.29635	
(3,1)	-2.2794	-1.2398	7.7395	1.7365	-1.8761	
(4,1)	-0.62891	-0.3807	1.7365	0.73894	-0.56029	
(5,1)	0.71555	0.29635	-1.8761	-0.56029	0.87565	
Cmd> eigs <- eigen(s)						
Cmd> eigs\$values # eigenvalues of S						
(1)	J ,	2.2704	1.1149	0.46384	0.23323	

Cmd> m < -2

Cmd> Lhat <- sqrt(eigs\$values[run(m)]') * eigs\$vectors[,run(m)]</pre>

	# unrotated		loadings	Columns
(1,1) (2,1)	1.1223 0.54182	1.3747		are
(3,1)	-2.7107	0.19703		<u> </u>
(4,1)	-0.66079	0.062869		$\sqrt{\widehat{\lambda}_{_{\mathrm{j}}}}\widehat{\mathbf{V}_{_{\mathrm{j}}}}$
(5,1)	0.71535	-0.056138		V ~ j • j

Cmd> psihat <- diag(s) - diag(Lhat %*% L'); psihat (1) 0.040853 1.055 0.056965 0.2983

0.36078

These are the estimated uniquenesses $\widehat{\Psi}_i$.

Cma > VI	nat <- Lnat	%*% Lnat';	<i>Vnat # rank</i>	2 piece	
(1,1)	3.1495	0.87894	-2.247	-0.65517	0.72565
(2,1)	0.87894	0.33239	-1.3547	-0.34564	0.37653
(3,1)	-2.247	-1.3547	7.6826	1.8276	-1.9716
(4,1)	-0.65517	-0.34564	1.8276	0.44059	-0.47622
(5,1)	0.72565	0.37653	-1.9716	-0.47622	0.51488

Cmd> h <- diag(vhat); h #c Estimated omunalities 3.1495 0.33239 7.6826 0.44059 0.51488

Cmd> sigmahat <- Vhat + dmat(psihat)</pre>

Cmd> sigmahat # Estimated variance matrix; diags exactly match S					
(1,1)	<u>3.1903</u>	0.87894	-2.247	-0.65517	0.72565
(2,1)	0.87894	1.3874	-1.3547	-0.34564	0.37653
(3,1)	-2.247	-1.3547	<u>7.7395</u>	1.8276	-1.9716
(4,1)	-0.65517	-0.34564	1.8276	<u>0.73894</u>	-0.47622
(5,1)	0.72565	0.37653	-1.9716	-0.47622	0.87565

Advantages of PC factor estimation

- Estimated uniqueness $\hat{\psi}_i$ and unrotated loadings $\hat{\mathbf{L}}$ are explicit functions of eigenvalues and eigenvectors of S or R. No iteration is required.
- You can obtain loadings for any m ≤ p
- $\hat{\mathbf{l}}_i$ doesn't change when m changes.

Disadvantage:

 The PC method does not actually estimate either Ψ or V = LL'. Even when $\Sigma = V + \Psi$ and $S = \Sigma$, the principal component method does not reproduce V and Ψ . This is because in the Principal Component "model"

$$\mathbf{x} = \mathbf{\mu} + \sum_{1 \le j \le m} f_j \mathbf{l}_j + \mathbf{\epsilon}, \mathbf{\epsilon} = \sum_{m+1 \le j \le p} Z_j \mathbf{v}_j$$

 $f_j = Z_j / \sqrt{\lambda_j}, \mathbf{l}_j = \sqrt{\lambda_j \mathbf{v}_j}.$

But $V[\mathbf{\epsilon}] = \sum_{m+1 < i < n} \lambda_i \mathbf{v}_i \mathbf{v}_i$ is *not* diagonal.

Iterated Principal Factor Estimation
The *iterated principal factor* (IPF)
method of factor extraction is <u>iterative</u>.
Each step or stage is quite similar to the PC method.

At the ith stage you have a trial value $\hat{\Psi}_{(i)}$. If $\hat{\Psi}_{(i)}$ is close to the true Ψ then $V^* = S - \hat{\Psi}_{(i)}$ should be close to the true rank m matrix V.

Then you find a p by m $\hat{\mathbf{L}}_{\scriptscriptstyle (i+1)}$ such that $\hat{\mathbf{V}}_{\scriptscriptstyle (i+1)} = \hat{\mathbf{L}}_{\scriptscriptstyle (i+1)}\hat{\mathbf{L}}_{\scriptscriptstyle (i+1)}$ is the best rank m approximation to $\mathbf{V}_{\scriptscriptstyle (i)}^* \equiv \mathbf{S} - \hat{\mathbf{\Psi}}_{\scriptscriptstyle (i)}$.

But this is

$$\hat{\mathbf{L}}_{(i+1)} = [\sqrt{\delta_1} \mathbf{e}_1, ..., \sqrt{\delta_m} \mathbf{e}_m].$$

where δ_j and \mathbf{e}_j are the eigenvalues and eigenvectors of $\mathbf{V}_{(i)}^*$. This is like the PC method but with $\mathbf{V}_{(i)}^*$ replacing \mathbf{S} .

Because the eigenvectors \mathbf{e}_{j} are orthonormal, $\hat{\mathbf{L}}_{(i+1)}'\hat{\mathbf{L}}_{(i+1)} = \text{diag}[\delta_{1}, ..., \delta_{m}]$ and thus is diagonal.

You then get a new $\hat{\Psi}$ as

$$\hat{\Psi}_{(i+1)} = \text{diag}[S - \hat{L}_{(i+1)}\hat{L}_{(i+1)}]$$

just as in the PC method.

To summarize: At the ith iteration:

- $\hat{\Psi}_{(i)}$ and $\hat{L}_{(i)}$ are current trial values.
- $\hat{\Sigma}_{(i)} = \hat{L}_{(i)}\hat{L}_{(i)}' + \hat{\Psi}_{(i)} = \hat{V}_{(i)} + \hat{\Psi}_{(i)}$ is the current approximation to S based on $\hat{\Psi}_{(i)}$ and $\hat{L}_{(i)}$.

After iteration i+1

- $\hat{\mathbf{L}}_{(i+1)} = [\sqrt{\delta_1} \mathbf{e}_1, ..., \sqrt{\delta_m} \mathbf{e}_m], \delta_j \text{ and } \mathbf{e}_j$ eigenvalues and vectors of $\mathbf{V}_{(i)}^* = \mathbf{S} \hat{\mathbf{\Psi}}_{(i)}$
- $\hat{\Psi}_{(i+1)} = \text{diag}[S \hat{L}_{(i+1)}\hat{L}_{(i+1)}].$

Substitute **R** for **S** when working with correlations.

Statistics 5401 Lecture 29 November 14, 2005

You continue the iteration until it converges (if it does), that is,

 $\hat{\Psi}_{(i+1)}$ - $\hat{\Psi}_{(i)} pprox 0$ or $\hat{\Sigma}_{(i+1)}$ - $\hat{\Sigma}_{(i)} pprox 0$.

In practice, it may converge very slowly. Or it can <u>abort</u> if at some point $\delta_m < 0$ so that $\sqrt{\delta_m}$ can't be calculated.

Note:

- At each stage, $\hat{\Psi}_{(i)}$ is *all* you need to go to the next stage, since the next stage is computed from the eigenvalues and vectors of $\mathbf{V}^* = \mathbf{S} \hat{\Psi}_{(i)}$.
- To start the iteration, you must provide an *initial value* $\hat{\Psi}_{\scriptscriptstyle(0)}$ for $\Psi.$

The most usual is

$$\hat{\Psi}_{(0)} = \text{diag}[1/s^{11}, 1/s^{22}, ..., 1/s^{pp}]$$

where $\mathbf{S}^{-1} = [s^{k\ell}].$

 $1/s^{kk}$ is essentially 1 - R^2 in a regression of x_k on the other x's.