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Statistics 5401 Lecture 29 November 14, 2005

There are two important and different
types of factor analysis - exploratory
factor analysis and confirmatory
factor analysis.

Exploratory factor analysis estimates
the factor analysis model with some
purely mathematical restriction (e.g. L'L
diagonal) on the loading matrix L to
assure uniqueness. Then L is “rotated” to
have an “interpretable” structure.

For example a rotated L might be

f] f2
x[ .99 -.08 1 [1 0]
L=x,|-10 -81 |Z]|0 -8]
x,l .09 .58 | 0 .6

3

Interpretation:
e X, Is affected only by factor 1

1

e X, and x, are affected only by factor 2.
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You use confirmatory factor analysis
with a pre-determined form for L like

* 0

L - { 0 *} (* means non-zero)
O *

The pattern might come from an earlier

exploratory factor analysis or from

subject-matter knowledge.

You estimate L by finding the best
fitting loadings of this form, that is
with & =0 =12 =0.

21
A goodness-of-fit test of £ =LL" + ¥ to S
or p to R tests the null hypothesis
HO: Q'12 - Q'21 - 9'31 = O

VS
H.: no special pattern of 0's.

1

When you cannot reject H , then the
proposed pattern is confirmed.

Confirmatory factor analysis is a special
case of structural equation modeling.
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My focus 1s on exploratory factor anal-

ySis.

Recapitulate
The factor analutic model for X is

X =M+ Lf + €.
¥ = VI[X] has the factor analytic form
>=-V + Vv =LTL + V¥, T = VI[f]

rank m diagonal

where

e V - Varle] = diagly,, ¥,, ..., ¥ 1is p by
p diagonal with y. >0

e Lispbym

e I' = V[f] is m by m

e V=-LITL hasrank m<p

Oonly V and V¥ are uniquely defined. Given
V and V¥, there are infinitely many p by m
L and mby mI' with V = LTL".

I' = [ characterizes the orthogonal factor
model.
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Exploratory factor analysis usually
consists of two phases

1 Factor extraction - compute esti-
mates W and V = L, where L satis-
fles a mathematical restriction to
achieve uniqueness and may not be
interpretable.

This 1s followed by

2 Factor rotation - modifies L without
changing V = LL" so as to try to
achieve an interpretable form for L.

With oblique factor analysis, I and L
are found so that V = LTL" and L has
interpretable structure and T provides
information about how the factors are
related. You can often get a "simpler”
L than with T" = I .
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You start with the sample variance
matrix S or correlation matrix R.

Usually
S = (n-1)7"2 (X - x)(x - X)
comes from a random sample X, ..., X .
S can also be a "pooled” matrix
S=fE
where E 1s the error matrix from a
MANOVA or MANACOVA.

The estimated correlation matrix is
R = DSD

with
D = diagl1/y/s,,, 1/4/s,,. ... 1/4/s].

For two methods of estimation, GLS and
MLE (but not ULS), you get essentially the
same results whether you start with S or
R. This contrasts strongly with Principal
Components Analysis.
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In covariance-based factor extraction
you try to approximate S by finding

p by m L and diagonal p by p ¥
such that

G1=5=00+¥=V+¥Zs
When tAhe factor analytic model is cor-
rect, £ will be a "better” estimate of X

than S, because £ has factor analytic
structure while S does not.

Correlation-based factor analysis tries
to approximate

T Mo T e T
R=|r, 1 r,y .r |.r=r,
rr .. r (B

- pl p2 p.p-1

by a matrix of the form p = [ + ¥
which should be a better estimator of p
than R.
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Usually factor analysis starts with R.

Because V = L' appears in the approx-
Imations for £ and p, the factor extrac-
tion phase is based on an orthogonal fac-
tor model, but this is only for mathe-
matical convience.

Finding L in this phase is just the way
you find the rank m piece V = LL" of the
factor analytic estimate £ =V + W or p =
V.9

[ will focus on methods starting with S.
They can be applied to R by substituting

p and R for £ and S in what follows.
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The most usual mathematical restrictions
on L are

e 'L is diagonal (columns of L are
orthogonal), assumed for ULS
(unweighted least squares) estimation

o "W [ is diagonal (columns of ¥ 2
are orthogonal), assumed for GLS
(generalized least squares) and MLE
(maximum likelihood) estimation.

Neither restriction on L appears to have
an interpretable meaning.

Both are particular cases (when Q = I
and Q = V) of
e L'Q'L is diagonal

e Q positive definite, possibly depending
on V.
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Fact:
Suppose you have found Y by some means
or other. Then you can find I:Q such that
V = L[ and L satisfies

L 'Q'L, is diagonal
where Q 1s a specific positive definite
symmetric matrix, say V.

=18, .08 /508
where
e e, .., e arethe first m eigenvectors
of V relative to Q
e &,...6 the first mrelative eigen-

1

values
With this choice V = L L ' and

L,'Q'L, = diagls,, &,. ..., § ]
s diagonal.

Q7

10
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1. Diagonal L'L corresponds to Q = I
when relative eigenvalues and vectors

are ordinary eigenvalues Xi and eigen-
vectors v, of V, so the columns of L
are £ = /v,

2. Diagonal L'W 'L corresponds to Q = V.
In this case & = /¥ U, where ¥, and u,
are eigenvalue and eigenvector of V
relative to V.

We will look at several ways to estimate
V, including the ULS, GLS and MLE (or ML)
methods

ULS assumes L'L is diagonal (Q = 1).

GLS and ML assumes L'¥''L is diagonal
(Q = V).

11
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To summarize exploratory factor
analysis:

Phase 1: Extraction:
X)- (SorR)- (LV) - (V, V),
\7 = EE'
where L satisfies a mathematical res-
triction that makes i1t unique.
Phase 2: Rotation:
Find H (and possibly I') so that
'* = U H is interpretable
with V= L*L*’, (or V = L*FL*")
The choice of L* (or H) must be based on

substantive scientific reasons, not math-
ematical convenience.

12
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All methods of rotation share the idea of
finding H so that L* = LH has simple
structure.

The left matrix is "not simple” (* means

non-zero); the right matrix would gene-
rally be considered simpler

- % * * T - % O O‘
R * * * * O O
| - *x % % |:* - * * 0
| * * * ] i O O * |
e InL all p = S variables load on all m

= 3 factors. This is not simple.

e In L*, variables x, and x, load only on
f., x, loads on f andf, x, loads only
on f_, and x, loads only on f,.. And
factor f affects only x,, x, and x,, f,
affects only x, and x,, and f_ affects

only X..

13
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The simpler pattern might be more
Interpretable by a subject matter
expert, especially if you can identify
a feature that is shared by x, and x..

For example, if both x, and x, were con-

cerned with a subject’s logical thinking
skills, then it might be possible to
identify f as a "clear thinking” factor.

You would need subject matter knowledge
to do this with confidence.

Most computational rotation methods
such as varimax and quartimax find H

e to maximize 1. (LH) where 1(L) is a
“simplicity” index

e or to minimize 1 (LH), where 1 (L) is
a "complexity” index

For varimax and quartimax the criterion
function is a degree 4 polynomial in &, .

14



Statistics 5401 Lecture 29 November 14, 2005

For oblique (non-orthogonal) factor
rotation, you “rotate” with a matrix H
that 1s not a rotation matrix, that is H'H
z ] and T = VIfl = [ .

Here 1s an m = 2 example when this
might be appropriate. No orthogonal
rotation will produce simple form.

Using coordinates based Nurbered points

on the non perpendicular £z fromrowsofl AL
dashed lines, variables 1.-%

3 and 2 will load prim- LR

arily on factor 1 and = {
variables 1, 4, 5, and 6 e

on factor 2, a simple el pr

structure. 1

That 1s, L* has the form

3 —

The rotated factors
fj* w1ll not be
uncorrelated (I" not
diagonal).

L* =

***OO

OO O x xO

15
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We will look at four or five methods of
factor extraction:

e PC = Principal Components

[PF = Iterated principal factor

ULS = Unweighted Least Squares

GLS = Generalized Least Squares

ML = Maximum likelihood assuming
normality.

All except PC require 1teration.

[PF 1s sometimes an option on computer
programs. It is a simple iterative
method that should lead to the same
solution as the ULS method. IPF is
generally not recommended because it
may need a huge number of steps. There
are similar inferior iterative methods for
GLS and MLE.

ULS, GLS and MLE estimates each attempt
to minimize a specific criterion which
measures the dlscrepancg between S (or
R) and the estimate £ = L' + V.

16
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Principal Component Factor Estimation

The PC method approximates X in terms
of the first few sample principal com-

ponents z = V'(x - X)
Summary of method

e Find the eigenvectors \7j and eigen-

values X, j = 1,...,p of the sample
covariance matrix S or (more usually)

the sample correlation matrix R.
e For a suitable choice of m (usually the
number of eigenvalues greater than a

threshold such as 1), the unrotated
estimated loading matrix is

VAN, e/ X V]
S )

Because eigenvectors are orthonormal,
L' = diag[X,,...,x ] is diagonal.

o)

e The estimated factors are f = z//X

17
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e You estimate V by V = L[L". V is the
best (least squares) rank m approx-
imation to S (or R).

e You find ¥ so that the diagonal of £ =
" + ¥ exactly matches the diagonal
of S. That is

¥ = diag[S - LL],
or explicitly

= diag[S - VI
Vo=s, -2 025 1=1..p
The estimated communalities are

Hi2 = ST gj\i - Zl<j<mQ\ij2'
When S =R, h*=1-{

Notation note:
When A = [a ], the notation diag[A] means
the diagonal matrix diagla,.....a_l.

18

November 14, 2005



Statistics 5401 Lecture 29 November 14, 2005 Statistics 5401 Lecture 29 November 14, 2005

Example: Artifical data with m = 2 Advantages of PC factor estimation

Qrd> s <- tabs(y,covar:T); s # sample variance matrix

(L e o o.enm c2oree o0l 0.71%%5 e Estimated uniqueness Y, and unrotated

3,1 -2.2794 -1. 2398 7. 7395 1. 7365 -1.8761 : ~ . .
§4, 13 -0.62891  -0.3807 1.7365 0.73894  -0.56029 loadings L are explicit functions of
(5, 1) 0. 71555 0. 29635 -1.8761  -0.56029 0. 87565 . .
Qm> eigs <- eigen(s) elgenvalues and eigenvectors of S or R.
?Bj> eigs%?lgiség eigenvagezs%f 1.1149 0. 46384 0.23323 No iteration is re qu ired.
o mez | e You can obtain loadings for any m < p
Omd> Lhat <- sgrt(eigs$values[run(m)]’) * eigs$vectors[,run(m)] R
ord> Lh d estimated loadi o . ' .
T igLat#unrftnggstlmate oacings gﬁ’l“m”s QJ doesn’t change when m changes
2,1 0.54182 0. 19703 e .
3, -2.710 0.578 X o~ .
ER JXy§  Disadvantage:
;m> o h e The PC method does not actually
> t <- Lhat %*% L' t : - )

(1) pS|0a0408|gg(S) 20 %55 )opcs)|52965 0. 29834 0.36078 estimate either V or V = LL".

These are the estimated uniquenesses V.. Even when £ =V + W and S = &, the
Crd> Vhat <- Lhat %*% Lhat'; Vhat # rank 2 piece . .
(1,1) 3.1495 0. 87894 -2.247  -0.65517 0. 72565 principal component method does not
(2,1) 0. 87894 0. 33239 -1.3547  -0.34564 0. 37653 .. :
(3, 1) -2.247 -1. 3547 7.6826 1.8276 -1. 9716 reproduce V and V. This is because in
(4,1) -0.65517  -0.34564 1. 8276 0.44059  -0.47622 : : " "
(5.1)  0.72565  0.37653  -1.9716  -0.47622  0.51488 the Principal Component "model
Qmd> h <- diag(vhat); h #c Estimated omunalities
(1) 3. 1495 0. 33239 7. 6826 0. 44059 0. 51488 X = M+ Z1<j<mfj9_j + €, € = Zm+1<j<pzjvj
Omd> sigmahat <- Vhat + dmat(psihat) : o a o
Qrd> sigmahat # Estimated variance matrix;diags exactly match S f i Zj/\/x i’ Q'j - \/)\ jvj'
GRS e o g s rot 6
gszl) - 2.247 -1.3547 7.7395 1. 8276 “iori6  But VI[E] = Zm+1<j<p>\jvjvj 1S not dlagonal-
(4,1) -0.65517  -0.34564 1. 8276 0.73894  -0.47622 ==
(5, 1) 0. 72565 0. 37653 -1.9716  -0.47622 0. 87565

19 20
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Iterated Principal Factor Estimation

The iterated principal factor (IPF)
method of factor extraction is iterative.
Each step or stage is quite similar to the
PC method.

At the i" stage you have a trial value V¥
If ¥, is close to the true ¥ then

V* = S - V¥ should be close to the true
rank m matrix V.

(i)°

Then you find a p by m I_A(M) such that
V., =L. L., isthe best rank m

) ~

approximation to V * =S - V¥ .
But this is

L., =[/se,. ../8el
where & and e, are the eigenvalues and

eigenvectors of V _*. This is like the
PC method but with V * replacing S.

21
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Because the eigenvectors e are ortho-

normal, L L., = diagls,, ..., § ] and
thus is diagonal.

You then get a new V¥ as
\T/(m) = diag[S - I:(i+1)|:(i+1)‘]
just as in the PC method.

To summarize: At the i" iteration:
o \l/m and Lm are current trial values.

* f(i)zl:(i)l:(i)' ¥ \pm - \7(1)+ \T/m is the
current approximation to S based on
\l/(i) and L(i)'

After iteration 1+1

e L., =[/se, ...\/6e] 6 ande )
elgenvalues and vectors of V *=8 - V¥

e ¥, =diagls - L, L. . 1

Substitute R for S when working with
correlations.

22
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You continue the iteration until it con-
verges (if it does), that is,

\T/(M) - \,I\/m ~ 0 or f(m) - fm ~ 0.
[n practice, 1t may converge very slowly.

Or it can abort if at some point § < O so
that /8 can't be calculated.

Note: )

e At each stage, ¥, is all you need to
go to the next stage, since the next
stage 1s computed from the eigen-
values and vectors of V* = S - ¥

e To start the iteration, you must
provide an initial value ¥ for V.

(i)*

The most usual is
¥, = diagl1/s", 1/, ..., 1/s”]
where S = [s*'].

1/s% is essentially 1 - R* in a regression
of x_on the other x's.
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