$V[\mathbf{\varepsilon}] = \mathbf{\Psi} = \text{diag}[\psi_1, \psi_2, \dots, \psi_n]$ • Elements  $f_i$  of f are common factors. • Elements  $\varepsilon_{k}$  of  $\boldsymbol{\varepsilon}$  are unique factors. and are <u>uncorrelated</u> with f<sub>1</sub>,...,f<sub>m</sub>.

The factor analysis model with m

p×1 p×1 p×m m×1 p×1

ullet Elements  $oldsymbol{\mathbb{L}}_{\mathbf{k}_{\mathbf{i}}}$  of  $oldsymbol{\mathsf{L}}$  are loadings of

are called the uniquenesses or

• The diagonal elements  $\psi_i = V[\epsilon_i]$  of  $\Psi$ 

•  $h_k^2 \equiv \sigma_{kk} - \psi_k = V[\sum_{1 \le j \le m} \ell_{kj} f_j] = V[x_k - \mu_k - \epsilon_k]$ 

are the communalities. You can show

can't be highly correlated with other

that  $|\rho_{kl}| \leq (h_k/\sqrt{\sigma_{kk}})(h_l/\sqrt{\sigma_{ll}})$ , so when  $h_{\nu}^{2}$  is small relative to  $\sigma_{\nu\nu}$ ,  $x_{\nu}$ 

factors is  $x = \mu + L f + \epsilon$ 

variable k on factor j.

specific variances.



Displays for Statistics 5401/8401

Lecture 28

November 11, 2005

Christopher Bingham, Instructor

612-625-1024, kb@umn.edu 372 Ford Hall

Class Web Page

http://www.stat.umn.edu/~kb/classes/5401 © 2005 by Christopher Bingham

Except by <u>convention</u> or <u>subject matter</u>

November 11, 2005

Statistics 5401

Lecture 28

Vocabulary

variables.

When  $\Gamma = V[f] = I_m$ , the model is an orthogonal factor model.

For factors  $f_i = z_i / \sqrt{\lambda_i}$  defined in terms of PCs have  $\Gamma$  = V[f] =  $I_m$  and are therefore orthogonal factors.

This is because the principal components  $z_i = v_i(x - \mu)$ , are uncorrelated with  $V[z_i] = \lambda_i$ .

When  $\Gamma = V[f] \neq I_m$ , the factor model is oblique.

- Orthogonal factors are attractive because you can unambiguously separate the effects of different factors.
- The attraction of oblique factor analysis is that you may be able to obtain a simpler L.

Statistics 5401

November 11, 2005

considerations, nothing can be said about  $\mu_r = E[f]$  and the m by m matrix  $\Gamma \equiv V[f]$ . However, since factors are unobservable, you lose no generality by assuming  $\mu_{i}$  = **0**, and  $\mathcal{T}_{ij} = V[f_i] = 1$ 

Often factors are assumed to be uncorrelated so that  $\Gamma = V[f] = I_m$ .

When factors are uncorrelated, there is no ambiguity in defining the effect of factor j on variable k. It is simply  $\ell_{ki}$ .

Lecture 28



When factor  $f_i$  and  $f_k$  are correlated, there is also an *indirect* effect of f, because the value of  $f_{_{\mbox{\tiny K}}}$  may be changed by a change in the value of f.



Statistics 5401

November 11, 2005

The factor analytic model  $x = \mu + Lf + \epsilon$ implies the following structure for  $\Sigma$ :

 $V[x] = \Sigma = V + \Psi = L\Gamma L' + \Psi, \Gamma = V[f]$ where

- $V = V[Lf] = L\Gamma L'$  has rank m < p
- $\Psi = \Sigma V$  is diagonal with  $\psi_i \ge 0$

## Vocabulary

A matrix  $\Sigma$  that can be represented as

 $\Sigma = V + \Psi$ , where

- V has <u>rank m</u> < p and is positive semidefinite (m eigenvalues > 0)
- $\Psi$  is <u>diagonal</u> with  $\psi_{i} \geq 0$

is said to have factor analytic form.

You can estimate  ${\sf V}$  and  ${\sf \Psi}$  without ambiguity, but not L or  $\Gamma$ . When m > 1, there are infinitely many L's compatible with V. When m = 1, there are two.

## The orthogonal factor model

When  $\Gamma = V[f] = I_m$ , some formulas are simpler.

- $Cov[x_{\nu}, f_{\nu}] =$  $Cov[\mu_k + \sum_{1 \le i \le m} \ell_{ki} f_i + \epsilon_k, f_i] = \ell_{ki}$
- Corr[ $x_{k}$ ,  $f_{i}$ ] =  $l_{ki}/\sqrt{\sigma_{kk}}$
- $h_{\nu}^2 = V[x_k \epsilon_k] = \sum_{1 < j \le m} \ell_{kj}^2$ , sum of squares of row k of L.
- $\Psi_k = V[\epsilon_k] = \sigma_{kk} h_k^2 = \sigma_{kk} \sum_{1 \le i \le m} \ell_{ki}^2$
- $\sigma_{kk} = V[x_k] = \sum_{1 \le i \le m} \ell_{ki}^2 + \psi_{ki}$
- $\sigma_{kl} = Cov[x_k, x_l] = \sum_{1 \le j \le m} \ell_{kj} \ell_{lj}$

Note: These are <u>wrong</u> when factors are not orthogonal. In general, when  $V[\mathbf{f}] = \mathbf{\Gamma} = [\mathcal{Y}_{i_1 i_2}],$ 

$$\begin{split} \sigma_{kk} &= V[x_k] = \sum_{1 \leq j_1 \leq m} \sum_{1 \leq j_2 \leq m} \mathcal{S}_{j_1 j_2} \ell_{k j_1} \ell_{k j_2} + \psi_{k, j_1} \\ \sigma_{k\ell} &= Cov[x_k, x_\ell] = \sum_{1 \leq j_1 \leq m} \sum_{1 \leq j_2 \leq m} \mathcal{S}_{j_1 j_2} \ell_{k j_1} \ell_{\ell j_2} \end{split}$$

November 11, 2005

So far the focus has been on explaining the <u>covariances</u>  $\sigma_{k}$ ,  $k \neq l$ .

In practice, the emphasis is usually in explaining correlations.

When  $\Delta \equiv \text{diag}[1/\sqrt{\sigma_{11},...,1}/\sqrt{\sigma_{pp}}]$ , since  $\rho_{k} = \sigma_{k} / {\sqrt{\sigma_{kk}} / \sigma_{k}}, \text{ the population}$ correlation matrix of x is

$$\rho = \Delta \Sigma \Delta = \Delta V \Delta + \Delta \psi \Delta$$
$$= \widetilde{V} + \widetilde{\Psi}$$

- $\widetilde{V} \equiv \Delta V \Delta$ , p by p rank m,
- $\widetilde{\Psi} \equiv \Delta \Psi \Delta$ , p by p diag $[\widetilde{\psi}_{1},...,\widetilde{\psi}_{n}]$ , with  $\widetilde{\Psi}_{k} = \Psi_{k}/\sigma_{kk}$

Thus  $\rho$  is also of factor analytic form. When  $\Gamma = I_m$ ,

$$\widetilde{V} = \Delta V \Delta = \Delta L L' \Delta = \widetilde{L}\widetilde{L}'$$

where

Statistics 5401

$$\widetilde{L} = \Delta L = [\widetilde{\mathbf{Q}}_{1}, ..., \widetilde{\mathbf{Q}}_{m}], \widetilde{\mathbf{Q}}_{kj} = \mathbf{Q}_{kj} / \sqrt{\sigma_{kk}}$$

### Summary

- $\Sigma$  has factor analytic structure  $\Leftrightarrow$   $\rho$  has factor analytic structure
- **x** follows a factor analytic model  $\iff$   $\widetilde{\mathbf{x}} = [\widetilde{\mathbf{x}_1}, ..., \widetilde{\mathbf{x}_p}]$  does,  $\widetilde{\mathbf{x}_k} = (\mathbf{x_k} \mu_k) / \sqrt{\sigma_{kk}} =$  z-score computed from  $\mathbf{x_k}$ .

There are direct ways to go between factor analytic representations for

- $\Sigma$  in terms of L and  $\Psi$
- ho in terms of  $\widetilde{\mathsf{L}}$  and  $\widetilde{\mathsf{\Psi}}$ .

| $\Sigma \Rightarrow \rho$ | Γ̃ = ΔL                        | $\widetilde{\Psi} = \Delta \Psi \Delta$         |
|---------------------------|--------------------------------|-------------------------------------------------|
| $\rho \Rightarrow \Sigma$ | $L = \Delta^{-1}\widetilde{L}$ | $\Psi = \Delta^{-1}\widetilde{\Psi}\Delta^{-1}$ |

This differs from the Principal Component model where there are no simple ways to go between covariance PCs and correlation PCs. The quantities

- $\widetilde{h}_k^2 = \sum_j \widetilde{\ell}_{kj}^2 = h_k^2 / \sigma_{kk}$
- $\widetilde{\Psi}_{k} = \Psi_{k}/\sigma_{kk}$

based on the correlation matrix  $\boldsymbol{\rho}$  are also called *communalities* and *unique-nesses*.

- $\widetilde{h_k}^2 + \widetilde{\psi}_k = 1 = V[\widetilde{x_k}], \ \widetilde{x_k} = (x_k \mu_k) / \sqrt{\sigma_{kk}}$
- $\widetilde{h_k}^2 = h_k^2/\sigma_{kk}$  measures the influence of the common factors on  $\widetilde{x_k}$ , the standardized version of  $x_k$ .

Because  $|\rho_{kl}| \leq \widetilde{h_k}\widetilde{h_l}$ , low  $\widetilde{h_k}$  implies low  $\rho_{kl}$ ,  $l \neq k$  because  $x_k$  doesn't share much in common with  $x_l$ .

•  $\widetilde{\psi}_{k} = \psi_{k}/\sigma_{kk}$  measures the influence of the unique factor  $\varepsilon_{k}$  on  $\widetilde{x}_{k}$ .

Statistics 5401

Lecture 28

November 11, 2005

Statistics 5401

Lecture 28

November 11, 2005

•  $\widetilde{h_k}^2$  is analogous to multiple  $R^2$  in regression.

In fact, because the model says that all dependence of  $x_k$  on the other  $x_{\alpha}$ 's comes through the  $f_j$ 's, a first guess at  $\widetilde{h_k}^2$  might be  $R^2$  from a regression of  $x_k$  on  $x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_p$ . They are not the same, however.

- $\widetilde{\psi}_{k}$  = 1  $\widetilde{h_{k}}^{2}$  is analogous to 1  $R^{2}$ , so a first guess at  $\widetilde{\psi}_{k}$  might be 1  $R^{2}$  from that regression. This is often used to get starting values for iterative methods of factor extraction.
- $\widetilde{\ell}_{kj}$  is the loading of standardized variable  $\widetilde{x}_k = (x_k \mu_k) / \sqrt{\sigma_{kk}}$  on factor  $f_j$  and  $\widetilde{\ell}_{kj} = \text{corr}(x_k, f_j)$  (for orthogonal factor analysis).

# Non-uniqueness of factors and factor loadings

A real problem with the factor analytic model is that loadings and factors are not <u>uniquely defined</u>.

Suppose the orthogonal factor analytic model

$$\mathbf{x} = \boldsymbol{\mu} + \mathbf{L}\mathbf{f} + \boldsymbol{\varepsilon}$$
, with  $\boldsymbol{\Gamma} = \mathbf{V}[\mathbf{f}] = \mathbf{I}_{m}$ ,  $\mathbf{V}[\boldsymbol{\varepsilon}] = \boldsymbol{\Psi} = \mathrm{diag}[\psi_{1},...,\psi_{p}]$ 

is a <u>correct</u> model for x in the sense that  $E[x] = \mu$  and  $V[x] = LL' + \Psi$ .

The parameters are  $\mu$ , L and  $\Psi$ .

Q: What does it mean for parameters to not be unique?

A: There exist more than one set of parameter values which are consistent the <u>distribution</u> of your data.

In factor analysis, there is more than one  ${\bf L}$  that is consistent with  ${\bf V}[{\bf x}].$ 

- $\mu$  and  $\Psi$  are in fact unique.
- L and f are not unique.

You can always find (in many ways) a loading matrix  $L^* \neq L$  and a vector  $f^* \neq f$ of random factors f,\* such that

Lecture 28

- L\*f\* = Lf
- $V[f^*] = I_m$ .

so that

$$\mathbf{x} = \boldsymbol{\mu} + \mathbf{L}^* \mathbf{f}^* + \boldsymbol{\epsilon}, \ \forall [\mathbf{f}^*] = \mathbf{I}_m$$

is an orthogonal factor analytic model for **x** that is just as "correct" but different from the original one,

$$x = \mu + Lf + \epsilon, V[f] = I_m$$

An expert in the field of application might prefer L\* to L but not on statistical grounds.

13

Statistics 5401

Lecture 28

November 11, 2005

Statistics 5401

Lecture 28

November 11, 2005

We have now

A different factorization L\*L\*' of

$$V = \Sigma - \Psi = LL' = L*L*'$$

with L\* = LH ≠ L

• A new representation of **x** in terms of factors f \* with loading matrix L\*:

$$x = \mu + L^*f^* + \epsilon, L^* \neq L, f^* \neq f$$

- The f<sub>i</sub>\*'s are orthonormal factors that are linear combinations of  $f_i$ 's with coefficients taken from the columns of H, that is  $f^* = H'f$ .
- Conversely, the f<sub>i</sub>'s are linear combinations of the  $f_i^*$ 's with coefficients taken from the rows of  $H: f = Hf^*$ .

To be specific, choose *any* non-singular m×m H with orthonormal columns, that is, satisfying

$$H'H = HH' = I_m (H^{-1} = H')$$

In other words, choose any orthogonal matrix H. Then define  $L^*$  and  $f^*$  as

$$L^* \equiv L + A$$
 and  $f^* \equiv H'f$ 

 $\mathsf{L}^{m{*}}$  is a new loading matrix and  $\mathbf{f}^{m{*}}$  is a new vector of factors which are linear combinations of the old factors in  $\mathbf{f}$  .

Then

Statistics 5401

- V\* = L\*L\*' = LHH'L' = LL' = V
- L\*f\* = LHH'f = Lf
- $V[f^*] = H'I_mH = H'H = I_m = V[f]$
- $X = \mu + Lf + \epsilon = \mu + L*f* + \epsilon$  $\Sigma = V + \Psi = V^* + \Psi$

14

Fact:

 $det(H) = \pm 1$  for any orthogonal H.

When  $det(\mathbf{H}) = +1$ ,  $\mathbf{H}$  and  $\mathbf{H}'$  are rotation matrices that correspond to rigid rotations of m-dimensional space

Suppose  $\mathbf{f}_1$ ,  $\mathbf{f}_2$ , ...,  $\mathbf{f}_N$  are N vectors of m factor scores. Then you can view them as points in m-dimensional space. If H is a rotation matrix then the transformation

$$f_i \rightarrow f_i^* = H'f_i$$

amounts to rotating the m-dimensional space of factor scores about the origin O = [0, ..., 0]' in the process of which point  $\mathbf{f}_{,}$  is moved to a new point  $\mathbf{f}_{,}^{*}$ .

Statistics 5401

There another set of entities that are rotated. These are the points I, whose m coordinates come from the rows of

Lecture 28

$$L = \begin{bmatrix} l_1' \\ l_2' \\ \dots \\ l_n' \end{bmatrix}, l_k' = [l_{k1}, l_{k2}, \dots, l_{km}]$$

Then the change  $L \rightarrow L^* = LH$  rotates linto  $l_k^* = H'l_k$ .

If you view  $\boldsymbol{l}_{\scriptscriptstyle 1},\;...,\;\boldsymbol{l}_{\scriptscriptstyle p}$  as defining p points in m-dimensional space, then  $l_1^*$ , ...,  $l_m^*$ are the same points after the space of loadings is rotated by H.

When m = 2, for every rotation matrix H(det(H) = +1) there is an angle  $\theta$ ,  $-\pi < \theta < \pi$  such that

Lecture 28

$$\mathbf{H} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \\ \sin \theta & \cos \theta \end{bmatrix}$$

This corresponds to a rotation by angle  $\theta$ . When you combine a rotation with a change of sign of one coordinate, you get

$$\widetilde{\mathbf{H}} = \begin{bmatrix} \cos \theta & \sin \theta \\ & & \\ \sin \theta & -\cos \theta \end{bmatrix}, -\pi < \theta < \pi$$

 $\widetilde{\mathbf{H}}$  is orthogonal, but is not a rotation matrix since  $det(\widetilde{H}) = -1$ . It carries out a rotation followed by a "reflection" in one of the coordinate axes.

Statistics 5401

November 11, 2005

Statistics 5401 Lecture 28 November 11, 2005

Here is a plot of factor scores (f<sub>1</sub>,f<sub>2</sub>) (\*) and rotated factors scores  $(f_1^*, f_2^*)$  (\*) for n = 9 cases, with m = 2.

17



Lines and curves connect corresponding f and  $f^*$  points.

All the rotation angles are  $\theta$ .

Rotation from L to  $L^* \equiv LH$  rotates the loadings. There are p points in mdimensional space defined by the rows  $l_{k'} = [l_{k1}, l_{k2}, ..., l_{km}]'$  of L, one for each variable.

When H is a rotation matrix, the change L → L\* = LH describes a rigid rotation of points in that space with each  $l_k \rightarrow l_k^*$  =  $\mathbf{H}'\mathbf{l}_{k}$ , k = 1,..., p.

Example with m = 2 and p = 5.



Thus the factor analytic decomposition of  $\Sigma$  in terms of  $\Psi$  and L (or of x in terms of L, f, and  $\varepsilon$ ) is not unique.

### Question

If **L** and **f** are not unique, what, if anything, *is* unique?

#### Answer

The decomposition  $\Sigma = V + \Psi$ , rank m V and diagonal  $\Psi$ 

You can estimate  $\boldsymbol{V}$  and  $\boldsymbol{\Psi}$  from data in an unambiguous manner.

You can estimate **L** unambiguously *only* when you introduce some further principles or restrictions to eliminate the non-uniqueness.

Thus, the <u>factor extraction stage</u> is the process of estimating V and  $\Psi$ . Usually V is estimated by finding an  $\hat{L}$  and setting  $\hat{V} = \hat{L}\hat{L}$ , but  $\hat{L}$  cannot be interpreted.