Displays for Statistics 5401/8401

Lecture 28

November 11, 2005

Christopher Bingham, Instructor

612-625-1024, kb@m. edu
372 Ford Hall

Class Web Page
http://wamv st at. umm. edu/ ~kb/ cl asses/ 5401

© 2005 by Christopher Bingham

Statistics 5401 Lecture 28 November 11, 2005

Except by convention or subject matter
considerations, nothing can be said about
M, = Elf] and the m by m matrix I = VIf].

However, since factors are unobservable,
you lose no generality by assuming M, =
0,and &, = VIf]=

Often factors are assumed to be
uncorrelated so that T = V[f] =
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Review

The factor analysis model with m
factorsisx=p+ Lf+€

px1 px1 pxm mx1 px1
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Vel = ¥ = diag[x,(g, \}/2, ey \}/p]
e Elements fj of f are common factors.

e Elements € _of € are unique factors.
and are uncorrelated with f ,....f .

e Elements £ of L are loadmgs of
variable k on factor j.

e The diagonal elements Y, = V[e] of ¥
are called the uniquenesses or
specific variances.

e h?=0, -V, = V[Z1<J<mflk]f]] VIX -4 -€]
are the communalities. You can show
that |p,, | < (h/v/o )(h //c,), so
when h? is small relative to o, x

can’t be highly correlated with other
variables.
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Vocabulary
When T' = VIf] = I_, the model is an

orthogonal factor model.

For factors f, = z]./\/xj defined in terms
of PCs have I' = V[f] = I and are
therefore orthogonal factors.

This 1s because the principal compo-
nents z = v (X - J), are uncorrelated
with VIz] =

When T = V[f] = I
oblique.

, the factor model is

e Orthogonal factors are attractive
because you can unambiguously
separate the effects of different
factors.

e The attraction of oblique factor
analysis is that you may be able to
obtain a simpler L.
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When factors are uncorrelated, there is
no ambiguity in defining the effect of
factor j on variable k. It is simply ¢,.

f, Ay
! Df?@rtef@m ot m = 2 factors
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When factor f, and f, are correlated,
there is also an indirect effect of f,
because the value of f may be changed by

a change in the value of f .
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The factor analytic model x = g + Lf + €

implies the following structure for Z:
VIX] =2 =V + V¥ =LIL"+ V¥, T = V[f]

where

e V = V[Lf] = LTL has rank m < p

e ¥V - ¥ - Vis diagonal with y >0

Vocabulary

A matrix £ that can be represented as

£ =-V+V, where

e V hasrank m < p and is positive semi-
definite (m eigenvalues > 0)

e V is diagonal with y >0
s said to have factor analytic form.

You can estimate V and ¥ without ambi-
guity, but not L or I' When m > 1, there
are infinitely many L's compatible with
V. When m = 1, there are two.
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The orthogonal factor model
When T = VIf] = I , some formulas are
simpler.

e Covlx,, fl=

CoV[}'lk * z]ﬁigmg’kifi * E;k’ f]] = Q’kj
e Corrlx, fl=19//c,
e h>=VIx -gl=3% %7 sumof

squares of row k of L.
° \j/k = V[Ek] = Okk - hk2 = Okk - z15j5kaJ'2
© O, = VIX1=3% 07+ Y,

1<j<m k]

e 5,=Covix, xJl=>2 2.1

1<j<m 7kj L]

Note: These are wrong when factors are
not orthogonal. In general, when

V[f] = F = [51112]’
Okk = V[Xk] = Z15h§mz15j25m5111252'k11ij2 * \}Ik'
okQ = COV[XK, XQ] = Z1ij15mz15125mb/j11'29'k11QQj2

6

Statistics 5401 Lecture 28 November 11, 2005

So far the focus has been on explaining
the covariances ¢, ,, k = {.

In practice, the emphasis is usually in
explaining correlations.

When A = diagl1/\/c,,....1/4/c ], since
p, = 0,/{/c,/0,,} the population
correlation matrix of X is

p = ASA = AVA + AYA
=V + ¥

e V= AVA, pbyp rank m,
« ¥ = AVA, p by p diagly,....¥ ], with
g;k = \)Uk/(jkk

Thus p is also of factor analytic form.
WhenT =1,

V = AVA = ALL'A = LU
where
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Summary
e ¥ has factor analytic structure <&
p has factor analytic structure
e X follows a factor analytic model <
X = [X,, ..., x ] does, x = (x-p)/\/o, =

z-score computed from x,.

There are direct ways to go between
factor analytic representations for

e ¥ interms of L and ¥
e pinterms of [ and V.

~

E >p| L=AL
p>s| L=A'T

This differs from the Principal Com-
ponent model where there are no simple
ways to go between covariance PCs and
correlation PCs.

9

Statistics 5401

« h?is analogous to multiple R® in reg-
ression.
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In fact, because the model says that
all dependence of x, on the other x 's

comes through the f/'s, a first guess
at h.> might be R* from a regression of

X, 0N X,,....X, » X,.......X . They are not
- P
the same, however.
e« ¥ =1-h?is analogous to 1 - R? so a

first guess at ¥ might be 1 - R* from
that regression. This is often used to
get starting values for iterative
methods of factor extraction.

. % is the loading of standardized
variable x, = (x,.-,)/+/c,, on factor f
and §, = corr(x,, f) (for orthogonal
factor analysis).
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The quantities

* hk2 - ZjQ'kj2 - hk2/6kk

* wk = wk/(jkk

based on the correlation matrix p are

also called communalities and unique-
nesses.

e 2+ =1=VIx]x =(x-p)Jo,
e h?=h?/c, measures the influence of

the common factors on x, the
standardized version of x,.

Because |p, | < AR, low i implies
low p,,. & =z k because x_doesn’t share
much in common with x,.

e ¥ =V /o, measures the influence of
the unique factor € _on x,.
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Non-uniqueness of factors
and factor loadings

A real problem with the factor analytic
model is that loadings and factors are
not uniquely defined.

Suppose the orthogonal factor analytic
model

X =M+ Lf+€ withT = VIfl=1,
VIel = ¥ = diagly,.....y ]
s a correct model for X in the sense
that E[x] = g and V[x] = LL" + V.
The parameters are J, L and V.

Q: What does it mean for parameters to
not be unique?

A: There exist more than one set of para-
meter values which are consistent the
distribution of your data.

In factor analysis , there is more than
one L that is consistent with V[xI.

November 11, 2005
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e J1 and V¥ are in fact unique.
e L and f are not unique.

You can always find (in many ways) a
loading matrix L* z L and a vector f* z f
of random factors f* such that

o L*f* - Lf
o \[f*] = I .
so that

X = J+ L*f* « g, V[T*] = 1

s an orthogonal factor analytic model for
X that is just as “correct” but different
from the original one,

X =W+ Lf+e VIfI=1.

An expert in the field of application
might prefer L* to L but not on statis-
tical grounds.
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We have now
e A different factorization L*L*" of
V=X-WV=LL =L*L*
with L* = LH =z L

e A new representation of X in terms of
factors f * with loading matrix L*:

X = M+ L*f*+€, L*=zL, f*=zf

e The fj*‘s are orthonormal factors that
are linear combinations of f's with
coefficients taken from the columns
of H, that is f* = H'f.

» Conversely, the f's are linear com-
binations of the f*'s with coefficients
taken from the rows of H: f = Hf*,
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To be specific, choose any non-singular
mxm H with orthonormal columns, that
is, satisfying

HH=HH =1 (H'=H)

In other words, choose any orthogonal
matrix H. Then define L* and f* as

L*= L H and f* =H'f

pxm pxm  mxm mx1 pxm mx1

L* is a new loading matrix and f* is a
new vector of factors which are linear
combinations of the old factors in f

Then
o V* - L*¥L* = LHH'L ' =LL" =V

L*f* = LHH'f = Lf
VIf*]1 = H'LH = H'H = | = VIf]

X=H+Lf+€=p+L*>*+¢
E=V+V¥=-V*+V¥
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Fact:

det(H) = +1 for any orthogonal H.
When det(H) = +1, H and H' are rotation
matrices that correspond to rigid
rotations of m-dimensional space
Suppose f, f, ..., f are N vectors of m
factor scores. Then you can view them
as points in m-dimensional space. If H
s a rotation matrix then the trans-
formation

f,-f*=HT
amounts to rotating the m-dimensional
space of factor scores about the origin O

= [0, ..., 0] in the process of which point
f, is moved to a new point f *.
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There another set of entities that are
rotated. These are the points 1. whose m

coordinates come from the rows of

[
L= |

|

Then the change L » L* = LH rotates 1,
into 1> = H'lL,.

v L]

k2? km

Lo

12‘ |' lk‘ - [Q'm' 2
)

P

If you view 1, ..., 1 as defining p points
in m-dimensional space, then 1.*, ..., 1 *
are the same points after the space of
loadings is rotated by H.
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Here is a plot of factor scores (f .,f) (+)
and rotated factors scores (f *,f_*) ()
for n = 9 cases, with m = 2.
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Lines and curves connect corresponding f
and f* points.

All the rotation angles are 6.
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When m = 2, for every rotation matrix H
(det(H) = +1) there is an angle 8,
-TL < © < TU such that

[cos © -sin e]
cos ©
This corresponds to a rotation by angle 6.

When you combine a rotation with a
change of sign of one coordinate, you get

[COS ® sin B

H =
sin 6

H - -TL< B <TT

sin ® -cos 6
H is orthogonal, but is not a rotation

matrix since det(H) = -1. It carries out a
rotation followed by a "reflection” in one

of the coordinate axes.
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Rotation from L to L* = LH rotates the
loadings. There are p points in m-
dimensional space defined by the rows
L' =192, 2,...2, 1 of L, one for each
variable.

When H is a rotation matrix, the change
L - L* = LH describes a rigid rotation of
points in that space with each | - | * =

Hl, k = 1,..., p.

Example with m = 2 and p = S.
‘€2
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Loadings for Factor 2
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Rotation by 24°

| | 1 | 5 |
0.6 -0.4 -0.2 = 0.2 0.4 0.6 fl

Loadings for Factor 1
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Thus the factor analytic decomposition of
£ in terms of ¥ and L (or of x in terms
of L, f, and €) is not unique.

Question

If L and f are not unique,
what, if anything, is unique?

Answer

The decomposition £ = V +
rank m V and diagonal V¥

v,

You can estimate V and ¥ from data in
an unambiguous manner.

You can estimate L unambiguously only
when you introduce some further
principles or restrictions to eliminate
the non-uniqueness.

Thus, the factor extraction stage is the
process of estimating V and V. Usually
V is estimated by finding an L and set-
ting V = L', but L cannot be interpreted.
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