

Displays for Statistics 5401/8401

Lecture 28

November 11, 2005

Christopher Bingham, Instructor

612-625-1024, kb@umn.edu 372 Ford Hall

Class Web Page

http://www.stat.umn.edu/~kb/classes/5401

© 2005 by Christopher Bingham

Statistics 5401 Lecture 28 November 11, 2005

Review

The factor analysis model with m factors is $\mathbf{x} = \mathbf{\mu} + \mathbf{L} \mathbf{f} + \mathbf{\epsilon}$ $\mathbf{x} = \mathbf{\mu} + \mathbf{L} \mathbf{f} + \mathbf{\epsilon}$

$$V[\varepsilon] = \Psi = diag[\psi_1, \psi_2, \dots, \psi_D]$$

- Elements f of f are common factors.
- Elements ε_k of ε are unique factors. and are uncorrelated with $f_1, ..., f_m$.
- Elements l_{kj} of L are *loadings* of variable k on factor j.
- The diagonal elements $\psi_i = V[\epsilon_i]$ of Ψ are called the *uniquenesses* or specific variances.
- $h_k^2 \equiv \sigma_{kk} \psi_k = V[\sum_{1 \le j \le m} \ell_{kj} f_j] = V[x_k \mu_k \epsilon_k]$ are the *communalities*. You can show that $|\rho_{k\ell}| \le (h_k / \sqrt{\sigma_{kk}})(h_\ell / \sqrt{\sigma_{\ell\ell}})$, so when h_k^2 is small relative to σ_{kk} , x_k can't be highly correlated with other variables.

Except by <u>convention</u> or <u>subject matter</u> <u>considerations</u>, nothing can be said about μ_{r} = E[f] and the m by m matrix Γ \equiv V[f].

However, since factors are unobservable, you lose no generality by assuming $\mu_f = 0$, and $\sigma_{ij} = V[f_i] = 1$

Often factors are assumed to be uncorrelated so that $\Gamma = V[f] = I_m$.

Vocabulary

When $\Gamma = V[f] = I_m$, the model is an orthogonal factor model.

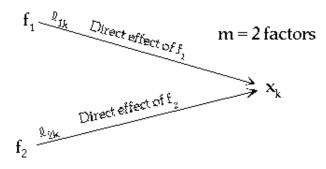
For factors $f_j = z_j/\sqrt{\lambda_j}$ defined in terms of PCs have $\Gamma = V[f] = I_m$ and are therefore orthogonal factors.

This is because the principal components $z_j = \mathbf{v}_j(\mathbf{x} - \boldsymbol{\mu})$, are uncorrelated with $V[z_i] = \lambda_i$.

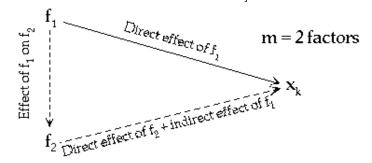
When $\Gamma = V[\mathbf{f}] \neq \mathbf{I}_m$, the factor model is oblique.

- Orthogonal factors are attractive because you can unambiguously separate the effects of different factors.
- The attraction of oblique factor analysis is that you may be able to obtain a simpler L.

When factors are uncorrelated, there is no ambiguity in defining the *effect* of factor j on variable k. It is simply ℓ_{ki} .



When factor f_j and f_k are *correlated*, there is also an *indirect* effect of f_j because the value of f_k may be changed by a change in the value of f_i .



The orthogonal factor model

Lecture 28

When Γ = V[f] = I_m , some formulas are simpler.

- $Cov[x_k, f_j] = Cov[\mu_k + \sum_{1 \le i \le m} \ell_{ki} f_i + \epsilon_k, f_j] = \ell_{kj}$
- Corr[x_k , f_j] = $\ell_{kj} / \sqrt{\sigma_{kk}}$
- $h_k^2 = V[x_k \varepsilon_k] = \sum_{1 \le j \le m} \ell_{kj}^2$, sum of squares of *row* k of L.
- $\psi_{k} = V[\epsilon_{k}] = \sigma_{kk} h_{k}^{2} = \sigma_{kk} \sum_{1 \le j \le m} \ell_{kj}^{2}$
- $\sigma_{kk} = V[x_k] = \sum_{1 \le i \le m} \ell_{ki}^2 + \psi_{ki}$
- $\sigma_{kl} = Cov[x_k, x_l] = \sum_{1 < j < m} \ell_{kj} \ell_{lj}$

Note: These are <u>wrong</u> when factors are not orthogonal. In general, when $V[\mathbf{f}] = \Gamma = [\gamma]_{i,i_2}$,

$$\sigma_{kk} = V[x_k] = \sum_{1 \le j_1 \le m} \sum_{1 \le j_2 \le m} \sigma_{j_1 j_2} \ell_{k j_1} \ell_{k j_2} + \psi_{k.}$$

$$\sigma_{k \ell} = Cov[x_k, x_{\ell}] = \sum_{1 \le j_1 \le m} \sum_{1 \le j_2 \le m} \sigma_{j_1 j_2} \ell_{k j_1} \ell_{\ell j_2}$$

Statistics 5401 Lecture 28 November 11, 2005 Statistics 5401 Lecture 28 November 11, 2005

The factor analytic model $x = \mu + Lf + \epsilon$ implies the following structure for Σ :

$$V[x] = \Sigma = V + \Psi = L\Gamma L' + \Psi, \Gamma = V[f]$$

where

- $V = V[Lf] = L\Gamma L'$ has rank m < p
- $\Psi = \Sigma V$ is diagonal with $\psi_i \ge 0$

Vocabulary

A matrix Σ that can be represented as

 $\Sigma = V + \Psi$, where

- V has <u>rank m</u> definite (m eigenvalues > 0)
- Ψ is <u>diagonal</u> with $\psi_i \ge 0$

is said to have factor analytic form.

You can estimate V and Ψ without ambiguity, but not L or Γ . When m > 1, there are infinitely many L's compatible with V. When m = 1, there are two.

So far the focus has been on explaining the <u>covariances</u> σ_{k0} , $k \neq l$.

In practice, the emphasis is usually in explaining correlations.

When $\Delta = \text{diag}[1/\sqrt{\sigma_{11}},...,1/\sqrt{\sigma_{pp}}]$, since $\rho_{kl} = \sigma_{kl}/\{\sqrt{\sigma_{kk}}/\sigma_{ll}\}$, the population correlation matrix of \mathbf{x} is

$$\rho = \Delta \Sigma \Delta = \Delta V \Delta + \Delta \psi \Delta$$
$$= \widetilde{V} + \widetilde{\Psi}$$

- $\widetilde{V} \equiv \Delta V \Delta$, p by p rank m,
- $\widetilde{\Psi} \equiv \Delta \Psi \Delta$, p by p diag[$\widetilde{\Psi}_1, ..., \widetilde{\Psi}_p$], with $\widetilde{\Psi}_k = \Psi_k / \sigma_{kk}$

Thus ρ is also of factor analytic form. When Γ = $I_{\rm m}$,

$$\widetilde{V} = \Delta V \Delta = \Delta L L' \Delta = \widetilde{L}\widetilde{L}'$$

where

$$\widetilde{L} = \Delta L = [\widetilde{\mathbf{Q}}_{1}, ..., \widetilde{\mathbf{Q}}_{m}], \widetilde{\mathbf{Q}}_{kj} = \mathbf{Q}_{kj} / \sqrt{\sigma_{kk}}$$

Summary

Lecture 28

- Σ has factor analytic structure \Leftrightarrow ρ has factor analytic structure
- \mathbf{x} follows a factor analytic model \iff $\widetilde{\mathbf{x}} = [\widetilde{x_1}, ..., \widetilde{x_p}]$ does, $\widetilde{x_k} = (x_k \mu_k) / \sqrt{\sigma_{kk}} =$ z-score computed from x_k .

There are direct ways to go between factor analytic representations for

- ullet Σ in terms of L and Ψ
- ρ in terms of \widetilde{L} and $\widetilde{\Psi}$.

$$\begin{array}{|c|c|c|c|c|} \hline \Sigma & \Rightarrow \rho & \widetilde{L} & = \Delta L & \widetilde{\Psi} & = \Delta \Psi \Delta \\ \hline \rho & \Rightarrow \Sigma & L & = \Delta^{-1}\widetilde{L} & \Psi & = \Delta^{-1}\widetilde{\Psi}\Delta^{-1} \\ \hline \end{array}$$

This differs from the Principal Component model where there are no simple ways to go between covariance PCs and correlation PCs.

The quantities

•
$$\widetilde{h}_{k}^{2} = \sum_{j} \widetilde{\ell}_{kj}^{2} = h_{k}^{2} / \sigma_{kk}$$

•
$$\widetilde{\Psi}_{k} = \Psi_{k}/\sigma_{kk}$$

based on the correlation matrix ρ are also called *communalities* and *unique-nesses*.

- $\widetilde{h}_{k}^{2} + \widetilde{\Psi}_{k} = 1 = V[\widetilde{x}_{k}], \ \widetilde{x}_{k} = (x_{k} \mu_{k}) / \sqrt{\sigma_{kk}}$
- $\widetilde{h_k}^2 = h_k^2/\sigma_{kk}$ measures the influence of the common factors on $\widetilde{X_k}$, the standardized version of X_k .

Because $|\rho_{kl}| \leq \widetilde{h_k}\widetilde{h_l}$, low $\widetilde{h_k}$ implies low ρ_{kl} , $\ell \neq k$ because x_k doesn't share much in common with x_l .

• $\widetilde{\psi}_{k} = \psi_{k}/\sigma_{kk}$ measures the influence of the unique factor ε_{k} on \widetilde{x}_{k} .

• $\widetilde{h_k}^2$ is analogous to multiple R^2 in regression.

In fact, because the model says that all dependence of x_k on the other x_k 's comes through the f_j 's, a first guess at $\widetilde{h_k}^2$ might be R^2 from a regression of x_k on $x_1, \ldots, x_{k-1}, x_{k+1}, \ldots, x_p$. They are <u>not</u> the same, however.

- $\widetilde{\psi}_k = 1 \widetilde{h}_k^2$ is analogous to $1 R^2$, so a first guess at $\widetilde{\psi}_k$ might be $1 R^2$ from that regression. This is often used to get starting values for iterative methods of factor extraction.
- $\widetilde{\mathbb{I}}_{kj}$ is the loading of standardized variable $\widetilde{\mathbf{x}}_k = (\mathbf{x}_k \mathbf{\mu}_k) / \sqrt{\sigma_{kk}}$ on factor \mathbf{f}_j and $\widetilde{\mathbb{I}}_{kj} = \operatorname{corr}(\mathbf{x}_k, \mathbf{f}_j)$ (for orthogonal factor analysis).

Non-uniqueness of factors and factor loadings

A real problem with the factor analytic model is that loadings and factors are not <u>uniquely defined</u>.

Suppose the orthogonal factor analytic model

$$\mathbf{x} = \boldsymbol{\mu} + \mathbf{L}\mathbf{f} + \boldsymbol{\varepsilon}$$
, with $\Gamma = V[\mathbf{f}] = \mathbf{I}_m$, $V[\boldsymbol{\varepsilon}] = \boldsymbol{\Psi} = \text{diag}[\psi_1, ..., \psi_p]$

is a <u>correct</u> model for \mathbf{x} in the sense that $E[\mathbf{x}] = \mu$ and $V[\mathbf{x}] = LL' + \Psi$.

The parameters are μ , L and Ψ .

Q: What does it mean for parameters to not be unique?

A: There exist more than one set of parameter values which are consistent the <u>distribution</u> of your data.

In factor analysis , there is more than one ${\bf L}$ that is consistent with ${\bf V}[{\bf x}].$

- μ and Ψ are in fact unique.
- L and f are <u>not</u> unique.

You can always find (in many ways) a loading matrix $L^* \neq L$ and a vector $f^* \neq f$ of random factors f_i^* such that

- L*f* = Lf
- $V[f*] = I_m$.

so that

$$x = \mu + L*f* + \epsilon, V[f*] = I_m$$

is an orthogonal factor analytic model for ${\bf x}$ that is just as "correct" but different from the original one,

$$x = \mu + Lf + \varepsilon$$
, $V[f] = I_m$.

An expert in the field of application might prefer L* to L but not on statistical grounds.

To be specific, choose *any* non-singular m×m **H** with *orthonormal* columns, that is, satisfying

$$H'H = HH' = I_m (H^{-1} = H')$$

In other words, choose any orthogonal matrix H. Then define L^* and f^* as

$$L^* \equiv L H$$
 and $f^* \equiv H'f$
 $p \times m p \times m m \times m$
 $m \times 1$
 $p \times m m \times m$

 L^* is a new loading matrix and f^* is a new vector of factors which are linear combinations of the old factors in f.

Then

- V* = L*L*' = LHH'L' = LL' = V
- L*f* = LHH'f = Lf
- $V[f^*] = H'I_mH = H'H = I_m = V[f]$
- $x = \mu + Lf + \epsilon = \mu + L*f* + \epsilon$ $\Sigma = V + \Psi = V* + \Psi$

We have now

- A different factorization L*L*' of
 V = Σ Ψ = LL' = L*L*'
 with L* = LH ≠ L
- A new representation of x in terms of factors f_k* with loading matrix L*:

$$x = \mu + L*f* + \epsilon, L* \neq L, f* \neq f$$

- The f_j*'s are orthonormal factors that are linear combinations of f_j's with coefficients taken from the columns of H, that is f* = H'f.
- Conversely, the f_j's are linear combinations of the f_j*'s with coefficients taken from the rows of H: f = Hf*.

Fact:

 $det(H) = \pm 1$ for any orthogonal H.

When det(H) = +1, H and H' are rotation matrices that correspond to rigid rotations of m-dimensional space

Suppose \mathbf{f}_1 , \mathbf{f}_2 , ..., \mathbf{f}_N are N vectors of m factor scores. Then you can view them as points in m-dimensional space. If H is a rotation matrix then the transformation

$$f_j \rightarrow f_j^* = H'f_j$$

amounts to rotating the m-dimensional space of factor scores about the origin $\mathbf{0}$ = [0, ..., 0]' in the process of which point \mathbf{f}_j is moved to a new point \mathbf{f}_j^* .

There another set of entities that are rotated. These are the points I, whose m coordinates come from the rows of

$$\mathbf{L} = \begin{bmatrix} \mathbf{l}_{1} \\ \mathbf{l}_{2} \\ \cdots \\ \mathbf{l}_{p} \end{bmatrix}, \ \mathbf{l}_{k}' = [\mathbf{l}_{k1}, \ \mathbf{l}_{k2}, \ \dots, \ \mathbf{l}_{km}]$$

$$\mathbf{H} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
This corresponds to a rotation by angle θ .

When you combine a rotation with a

Then the change $L \rightarrow L^* = LH$ rotates l_k into $l_{\nu}^* = H'l_{\nu}$.

If you view l_1 , ..., l_p as defining p points in m-dimensional space, then l_1^* , ..., l_m^* are the same points after the space of loadings is rotated by **H**.

When m = 2, for every rotation matrix H(det(H) = +1) there is an angle Θ , $-\pi < \theta \le \pi$ such that

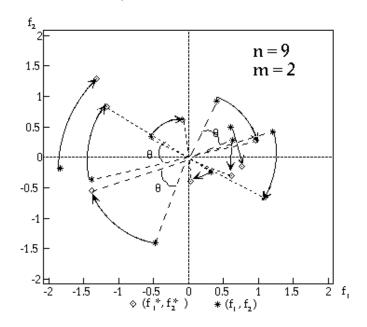
$$\mathbf{H} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \\ \sin \theta & \cos \theta \end{bmatrix}$$

When you combine a rotation with a change of sign of one coordinate, you get

$$\widetilde{\mathbf{H}} = \begin{bmatrix} \cos \theta & \sin \theta \\ & & \\ \sin \theta & -\cos \theta \end{bmatrix}, -\pi < \theta < \pi$$

 $\widetilde{\mathbf{H}}$ is orthogonal, but is not a rotation matrix since $det(\widetilde{H}) = -1$. It carries out a rotation followed by a "reflection" in one of the coordinate axes.

Here is a plot of factor scores (f_1, f_2) (*) and rotated factors scores (f_1^*, f_2^*) (*) for n = 9 cases, with m = 2.



Lines and curves connect corresponding **f** and **f*** points.

All the rotation angles are θ .

Rotation from **L** to **L*** \equiv **LH** rotates the loadings. There are p points in m-dimensional space defined by the rows $l_{k'} = [l_{k1}, l_{k2}, ..., l_{km}]'$ of **L**, one for each variable.

When **H** is a rotation matrix, the change $L \rightarrow L^* = LH$ describes a rigid rotation of points in that space with each $l_k \rightarrow l_k^* = H'l_k$, k = 1,..., p.

Example with m = 2 and p = 5.



Statistics 5401 Lecture 28 November 11, 2005

Thus the factor analytic decomposition of Σ in terms of Ψ and L (or of x in terms of L, f, and ε) is not unique.

Question

If **L** and **f** are not unique, what, if anything, *is* unique?

Answer

The decomposition $\Sigma = V + \Psi$, rank m V and diagonal Ψ

You can estimate V and Ψ from data in an unambiguous manner.

You can estimate **L** unambiguously *only* when you introduce some further principles or restrictions to eliminate the non-uniqueness.

Thus, the <u>factor extraction stage</u> is the process of estimating \mathbf{V} and $\mathbf{\Psi}$. Usually \mathbf{V} is estimated by finding an $\hat{\mathbf{L}}$ and setting $\hat{\mathbf{V}} = \hat{\mathbf{L}}\hat{\mathbf{L}}$, but $\hat{\mathbf{L}}$ cannot be interpreted.