Statistics 5401 Lecture 28 November 11, 2005
Review

The factor analysis model with m
factors is x = g+ L f +€

px1 px1 pxm mx1 px1
Vel = V¥ = diag[\}@, Vo, o, \}/p]
e Elements fj of f are common factors.

e Elements €, of € are unique factors.
and are uncorrelated with f ,...,f .

e Elements § _of L are loadings of
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Except by convention or subject matter
considerations, nothing can be said about
M, = Elf] and the m by m matrix I = VI[fl.

However, since factors are unobservable,
you lose no generality by assuming U =

0,and 7, = VIf]=1

]
Often factors are assumed to be
uncorrelated so that I' = V[f] =1 .
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Vocabulary
When I' = VIf] = | , the model is an
orthogonal factor model.

For factors f = z//X defined in terms
of PCs have I = V[f] = |1 and are
therefore orthogonal factors.

This 1s because the principal compo-
nents z = v(x - M), are uncorrelated
with VIz] = X.

When I = VIf] z | , the factor model is
oblique.

e Orthogonal factors are attractive
because you can unambiguously
separate the effects of different
factors.

e The attraction of oblique factor
analysis i1s that you may be able to
obtain a simpler L.
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When factors are uncorrelated, there is
no ambiguity in defining the effect of
factor j on variable k. It is simply &, .
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When factor f and f, are correlated,
there 1s also an indirect effect of f
because the value of f may be changed by
a change in the value of f.
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The orthogonal factor model
When T' = V[f] =
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[ , some formulas are

simpler
» Covix,, f]-=
Covip, + 2 .t fire.fl=10,
e Corrlx,, fl=12 /0,
e N’ =VIx -¢el=2 .27 sumof

squares of row k of L.
e Yy, =Vlgl=0,-h"=0,-2_.%"
e 0, = VIxl=2_ .4 +VY
o X, = Z1§j§mQ'ka'QJ

Note: These are wrong when factors are
not orthogonal. In general, when

VIfl=T =[5

e o, = Covix

T +
1<jo2m ™ jqi, kJ1 kz

e
Q] - Z1§j1imz1ﬂ b/quk Q
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The factor analytic model X = J + Lf + €
implies the following structure for Z:

VIX] ==V + V¥V =LTL"+ V¥V, T = V[f]
where
e V= VI[Lf] =LTL has rank m < p
e V= ¥ -Vis diagonal with y > 0
Vocabulary

A matrix £ that can be represented as
=V + V¥, where

e V has rank m < p and is positive semi-
definite (m eigenvalues > 0)

e V¥ is diagonal with y >0
s sald to have factor analytic form.

You can estimate V and ¥V without ambi-
guity, but not L or I'. When m > 1, there
are infinitely many L's compatible with
V. When m = 1, there are two.

Statistics 5401 Lecture 28 November 11, 2005

So far the focus has been on explaining
the covariances o,,, k =z L.

[n practice, the emphasis is usually in
explaining correlations.

When A = diagl1/+/c,,.....1/4/c 1, since
- ¢,,/{v/o,,v/0,,}, the population
Correlatlon matrix of X is

p = AZA = AVA + AYA
-V + ¥
e V=AVA, pbyp rank m,
« ¥ = AVA, p by p diagly,....¥ ],

~

gjk - gjk/ckk

Thus p 1s also of factor analytic form.
When I = |,

V = AVA = ALL'A = [

where
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Summary

e ¥ has factor analytic structure <
p has factor analytic structure

e X follows a factor analytic model <
X = [X,, ... x] does, X = (x,-p)//o, =

1 ?

z-score computed from X, .

There are direct ways to go between
factor analytic representations for

e ¥ in terms of L and ¥
e pinterms of L and V.
[ = AL
L=A'C

X =>p
p =2

This differs from the Principal Com-

ponent model where there are no simple

ways to go between covariance PCs and
correlation PCs.

November 11, 2005
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The quantities

hk2 - Zijj2 - hk2/6kk
g}k - \JUk/Okk

based on the correlation matrix p are
also called communalities and unique-
nesses.

ﬁ: * \I;k =1 = V[;(l]’ )?; - (Xk_pk)/\/dkk
h? = h?/c, measures the influence of

the common factors on x_, the
standardized version of x,.

~

Because |p,,| < AR, low A implies
low p,,. & =z k because x,_ doesn’t share
much in common with X,.

~

Y =y /0, measures the influence of
the unique factor €, on x..
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« h’i{s analogous to multiple R* in reg-
ression.

[n fact, because the model says that

all dependence of x, on the other X 's

comes through the f's, a first guess

at h * might be R* from a regression of

X, ONn X.,..., Xe v XorreenX . They are not
the same, however.

e« Y =1 -h?is analogous to 1 - R’ so a
first guess at y might be 1 - R® from

that regression. This 1s often used to
get starting values for iterative
methods of factor extraction.

~

e L, 1s the loading of standardized
variable X, = (x,-1)/+/o, on factor f
and &, = corr(x,, f) (for orthogonal
factor analysis).
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Non-uniqueness of factors
and factor loadings

A real problem with the factor analytic
model 1s that loadings and factors are
not uniquely defined.

Suppose the orthogonal factor analytic
model

X = 0+ Lf+¢€, with T = V[f]

V[e] = ¥ = diagly,.....y ]

s a correct model for x in the sense
that E[x] = 4 and VI[x] = LL" + V.
The parameters are u, L and V.

Q: What does it mean for parameters to
not be unique”?

A: There exist more than one set of para-
meter values which are consistent the
distribution of your data.

[n factor analysis , there is more than
one L that is consistent with V[x].

"
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e 1 and ¥ are in fact unique.
e L and f are not unique.

You can always find (in many ways) a
loading matrix L* =z L and a vector f* z f
of random factors f* such that

o [*¥f* = Lf
o V[f*] = [ .
so that

X = J+ L*f* + ¢, VIf*] =1,

1s an orthogonal factor analytic model for
X that is just as "correct” but different
from the original one,

X =M+ Lf+¢e VIf]l=1.

An expert in the field of application
might prefer L* to L but not on statis-
tical grounds.
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To be specific, choose any non-singular
mxm H with orthonormal columns, that
1s, satisfying

HH = HH =1 (H' = H")

[n other words, choose any orthogonal
matrix H. Then define L* and f* as
L*= L H and f* = H'f

pxm pxm mxm mx1 pxm mx1
L* 1s a new loading matrix and f* is a
new vector of factors which are linear

combinations of the old factors in f

Then
o V* - L*L* - |LHH'L'=LL =V
o L*¥f* = LHH'f = Lf

e VIf*I=HIH=HH=1 = V[f]

14
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We have now Fact:

e A different factorization L*L*’ of det(H) = £1 for any orthogonal H.
V=5-W-=-LL =L*L* When det(H) = +1, H and H' are rotation
With L* = LH = L matrices that correspond to rigid

| | rotations of m-dimensional space
e A new representation of x in terms of

factors f * with loading matrix L*: Suppose T, T, ..., f are N vectors of m
X = p+Ll*f*+e L% 2L, f%2f factor scores. Then you can view them

. as points in m-dimensional space. If H
* The f;*'s are orthonormal factors that g 5 rotation matrix then the trans-

are linear combinations of f's with formation
coefficients taken from the columns
of H, that 1s f* = H'f.

» Conversely, the f.'s are linear com-
binations of the f *'s with coefficients
taken from the rows of H: f = Hf*.

f - f>*=HT
] ] ]

amounts to rotating the m-dimensional
space of factor scores about the origin O
= [0, ..., 01" in the process of which point
f. 1s moved to a new point f *.

15 16
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There another set of entities that are

rotated. These are the points 1, whose m

coordinates come from the rows of
SR

L = .|, 1 =12 ., 2,

Then the change L » L™ = LH rotates [,
into 1. = H'I,.

If you view 1, ..., 1 as defining p points
In m-dimensional space, then 1., ..., 1 *

are the same points after the space of
loadings 1s rotated by H.

17
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When m = 2, for every rotation matrix H
(det(H) = +1) there is an angle 6,
-TL < 8 < 7T such that

{cos 8 -sin e]
Cos ©
This corresponds to a rotation by angle 6.

When you combine a rotation with a
change of sign of one coordinate, you get

{cos B sin®6

H -
sin 6

H - -TL< B < TT

sin ® -cos ©
H is orthogonal, but is not a rotation

matrix since det(H) = -1. It carries out a
rotation followed by a "reflection” in one

of the coordinate axes.

18
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Here is a plot of factor scores (f ,f,)) (*)

and rotated factors scores (f *,f *) (o)
for n = 9 cases, with m = 2.

fl
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Lines and curves connect corresponding f
and f* points.

All the rotation angles are ©.
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Rotation from L to L* = LH rotates the
loadings. There are p points in m-
dimensional space defined by the rows
"=1[2, %.,...% I"of L, one for each

variable.

km

When H 1s a rotation matrix, the change
L - L* = LH describes a rigid rotation of

points in that space with each 1 - 1 * =

H1, k= 1,...,p.
Example with m = 2 and p = S.
EE
2
| Rotation by 24° ‘
—IZII.6 —IZII.4 —IZII.2 -0 l:I.I2 : D.I4 l:I.Id- ‘é;l]_
Leoadings for Factar 1
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Thus the factor analytic decomposition of
> in terms of ¥ and L (or of x in terms
of L, f, and €) Is not unique.

Question

If L and f are not unique,
what, if anything, is unique?

Answer

The decomposition & =V + V,
rank m V and diagonal V¥

You can estimate V and V¥V from data in
an unambiguous manner.

You can estimate L unambiguously only
when you introduce some further
principles or restrictions to eliminate
the non-uniqueness.

Thus, the factor extraction stage is the
process of estimating V and V. Usually
V is estimated by finding an L and set-
ting V = LL", but L cannot be interpreted.
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