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Suppose X = [X, X,, ..., X I" is a random
vector with mean E[x] = p and variance
matrix VIx] = Z.

As usual v, ..., v are the eigenvectors
and X > X, > .. > X the eigenvalues of &
= VIx].

| start by representing x and £ in terms
of the principal components structure.

You can exactly represent x in terms of
all p principal components z , ..., z as

X = H= Z151§DZJVJ'
* 2,..2,2 = V/'(x-}) are uncorrelated

population principal components which
have y, = 0 and ¢, = \..

The zj's are random variables. and ele-
ment v, of v is coefficient of z in x,.
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Factor Analysis

Factor analysis is based on a specific
model (the factor analytic model) that

November 9, 2005

e "Explains” the covariances or
correlations between variables in
terms of their dependence on one or
more underlying unobservable or
latent variables - the factors.

e Attempts to identify and understand
the factors that influence the observed
variables.

Factor analysis has a 1ot of similarity to
principal components analysis when you
view it as a technique to approximate
random variables in terms of fewer ran-
dom variables - that is as a dimension
reduction technique.

That's where [ begin.
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For any m < p, you can split this up as
X = }‘l * Zujsmzjvj * Zmﬂsjipzjvj
- }1 + x(m) + £
e X" =% _.2ZV is the part of x "ex-
plained” by the the first m z's (PC’s).
e €= .,ZV isthe part of x not "ex-
plained” by the first m z's.

Because z,,....z, are uncorrelated,
e € is uncorrelated with x™

° Z(m) = V[x(m]] - Z15j5m>\jvjv1‘

o VI[e] = Zm+1ijip>\JVJVJ'

e ¥ = VI[x] = Zujjp}\JvJVJ‘
= ijsm)\jvJ‘vJ" ZBjsp)\JVJVJ‘
- omm £z 2T
- v[x(m)] + V[E].

=™ has rank m. V[e] has rank p - m.
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Here's some new notation to replace the
PC notation.

Define the random vector of m “factors”:
o f = [f1, fm]‘,

mx1

fo=2z/yN = v (x-p)//X

fj is standardized PC 4

and the p by m "loading” matrix

o L=0g]l=l/Av /Ny, \/>\me]
- =[2,.8, ... 2128
Then f & = (z//X)(/X\V) = 2V, and
X =+ x™+e
=R 2 W2V E
=2 L E
of matrices this is
X=Hd+L f+E€

pel px

In terms

pxm mx1 px1
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The matrix of loadings is
[ 'Q'H 'Q'12 ) Q’1mw

Loadings for X,

Loadings for x,

Loadings on f, f .. f_.

Elements &, of L characterize the
dependence of x on the common factors.

o [2..2,.....8 1(row k of L) goes with
variable x , and characterizes how X, is
affected by each factor

[ 4 ]

,; | (column of L) goes with

2 factor f, and characterizes

how fj affects each x,, 1<k<p

Lo |

P]
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For variable x, (element of x) this is
Xk = J"lk * Z1<]<m9'k]fj

Variable x, “loads on” factor fj with

loading ¢,..

This is rather like a multiple regression

of x, on the factors f , ..., f_, viewed as

predictor variables.

Vocabulary
f=1I[f,.. f]isavector of common

factors f, since potentially all elements
x, of X have them "in common”.

You can view the elements ¢ _of € as

either

e non-reproducible "errors” or

e reproducible characteristics, unique
to the individual and variable, or

e a combination or error and unique
characteristic.
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Facts concerning f and L
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Because

VI(z,, z,, ... z)'] = diag[x X,....x_],
and f = z//X
o V[f]=1

That is, c,? =1, =1,..,m.

Because the zj‘s are uncorrelated

e Cov[f,e] = 0 ("errors” and factors are
uncorrelated)

* Liaoly T NIV =X (L col SS)
When 1 <i=z j<m,
o by = VXXV =0, (L col sP)

Thus the columns Slj of L are orthogonal
and L'L = A = diag(X\ ...\ )

m
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» When the z's are correlation PC’s,
defined using the eigenvectors of p,

RN INAVE MED I N
and

Cov(x,, f) = Q4 VIfl=2,
X_is the standardized form of x..
Because VIf]=1,

2, = Corrlx,

this implies that
fland |2, ] <1.

This provides one interpretation for
thinking about the loadings.
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The factor analytic model
Factor analysis originated as an intel-
lectual effort to measure or quantify
“Intelligence”.

This is related to an empirical pheno-
menon:

When a sample of people take p cognitive
ability tests (math skills, reasoning,
reading comprehension, etc.), the follow-
ing usually happens:

e People who have a high score on one
test tend to have high scores on all,
that is, scores on different tests are
highly positively correlated.

e Those who score highly are the people
who are generally regarded as
"smarter” (more intelligent).

Caution:
There may be some circularity in the
latter statement.
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Because we got to the "model” x = 4 + Lf
+ € by way of PC’'s, the "error” is
eE=x-Lf=2 .2V,
with variance
VIel = > . pxp

which has rank p-m < p and cannot be a
diagonal matrix.

That is, the elements of € cannot be
completely uncorrelated. Common factors
cannot "explain” all the correlation.

m1<J<P ] J J

This is not true of factor analysis.

However, when 3. X/2 X is small:

e V[e] will be small compared to &
e Covariances of €, 1 = 1,...,p will be
much smaller than the covariances of

X, x ™M=y 1= Tp
=» Common factors f, ..., f_"explain”
most of covix,, x,1. j = k
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It was natural to suppose that the corre-
lation came because the test scores were
largely dependent on a real, but not
directly observed, "lurking” variable -
individuals’ intelligence level.

The supposed intelligence level was
named [ntelligence Quotient or 1Q.

If x, Is the score of person i on test j,
then the implicit model was that
=W o+ LxIQ v e, 1=1,..N kK
e 1Q, is i"
e J, is the mean and ¢, is a loading on
IQ, for test score x,. &, determines
how much effect intelligence has on x,.

11
—

person’s 1Q

- (1) (2) ; ;
e €, =€, + €, 7 1Is arandom quantity

reflecting both "measurement error”
e, ” and the unique reproducible

response €, of person i to test k.
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Usually no attempt is made to try to
separate €, and ¢ “.

So far, this model could be describing
PCA with only m = 1 PC identified as 1Q
Is retained.

The difference comes from the supposi-
tion that all the correlation among the
scores can be explained by their depen-
dence on the (unobserved) f, = IQ.

In factor analysis, unlike PCA, €, €
€, are assumed uncorrelated, that is

Vle] = V¥ = diagly .¥,...y 1. ¥, > 0.

o1 rea
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Remark following up on signs:

You might view correlations of test
scores as arising from a negative depen-
dence of scores on

SQ = "stupidity quotient” = -1Q
with loadings ¥ = -2, <O,

There is no way to distinguish an expla-
nation in terms of intelligence from one

in terms of stupidity.

The fact you could use the same model to
explain test scores both in terms of
“Intelligence” and of "stupidity” reflects
what some see as an arbitrary quality in
factor analysis.

An important part of a factor analysis is
often "identifying” factors, that is,
giving them names. Even this one factor
example shows this can be arbitrary.
And the choice of names can have a large
effect on how people interpret research
results.
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The mean and SD of 1Q are arbitrary and
could be given any convenient values such
as 100 and 15 or O and 1.

This is true in general of factors.

Also, note that aside from scaling, the
sign, too, is arbitrary in that

2x1Q, = (-2)x(-1Q)

[f you are looking for a measurement of
intelligence which has positive corre-
lation with test scores, you would
presume { > 0.

The choice of sign is the simplest
example of "rotation” of factors and
factor loadings.

14

Statistics 5401 Lecture 27 November 9, 2005

The factor analytic model is designed
to "explain” all the correlation among the
observable variables x,, ..., X by their

dependence on m < p common factors f,
..., f_. It has the same form as for PCA:
X= M+ L f + €,

px1 px1 pxm mx]1 px1

where
o f=1I[f,f,...f 1 isamby 1 vector of
random unobservable common factors
with E[f] = 0
e €=[e, ¢, .., €l is an unobservable
vector of p unique factors with
Ele] =0, Vlel=y >0
but with corr(e, €)= 0, j z k
SO
VIe] = ¥ = diagly,,...y 1, rank(¥) = p

Explaining variance is not normally part
of factor analysis.
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L = [¢,]is the p by m loading matrix or
matrix of factor loadings.

This model differs from the principal
component representation in two ways:

e Factors f are unobservable, even when
you know all parameters (g, L and V)
exactly.

In the PC representation,
f=z/yN = v/ (x-p)//X.

so when you know & and M, you can

find v, and compute z, from x and

thereby “observe” f = z/+/X..

* The elements €, of € are uncorrelated.

Therefore all correlation among the
X,'s must come from having factors in
common.

This cannot true in PCA, because

Viel = > A VV', arank p-m matrix.

mel<j<p” Tj ] 7
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Summary of terminology and notation

The factor analysis model with m
factors

November 9, 2005

Lf+e€

pxm mx1 px1

X = JJ, +
px1 px1
Vel = V¥ = diagly,.V,,....y ]
e Elements fj of f are common factors.

e Elements €, of € are unique factors.
and are uncorrelated with f ,....f .

e Elements &, of L are loadings of
variable k on factor j.

e The diagonal elements ¥, = V[e ] of ¥
are called the uniquenesses or
specific variances.

e h’=0, -V, = VX .4 0]=VIx-H-gl
are the communalities. You can show
that |p, | < (h/y/o )h/y/S ), s
when h? is small relative to o ,, x
can't be highly correlated x, j z k.
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Comment:

Factor analysis is usually described as a
dimension reduction technique since you
"boil down” p variables to m common
factors.

However, perversely, you can view it as a
dimension augmentation method, since
you still have p unique factors in addition
to the m common factors. Thus, in a
certain sense, you go from p variables to
m + p factors.

This is at least part of the reason for the
non-uniqueness of the factor analytic
model.
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In summation notation the factor analytic
model is

X = Bt 2 gamlf * €0 K= TP,

This has the appearance of p multiple
regressions of each element of x as a
dependent variable on the m factors
playing the role of independent variables.

This is deceptive. The "independent
variables” are not and cannot be
directly observed.

h? is analogous to the regression SS
in a regression of x on f, ..., f .

e h’/c,,
° \ij/okk

< 1 is analogous to multiple R?,
< 1 is analogous to 1 - R?

The larger h?/c, and the smaller y /o,

the more completely you can explain the
behavior of x, in terms of the common

factors.
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Heywood case
When h? = o ., Yy, = 0. This means that x,
Is completely predictable from the
common factors f, ..., f

m*

This situation is referred to as the
Heywood case.

The Heywood case can cause problems for
estimation algorithms since it is a
situation where a parameter (Y, ) is at
the edge of its permissible region (y, >
0).

One way out is to take x_itself as a
factor and then analyze partial
correlations p,,, assuming m - 1

additional factors.

21

Statistics 5401 Lecture 27 November 9, 2005

Q. What can you say about the expec-
tation vector W = E[f] and the m by m

matrix T = V[f]?

A. Nothing, except by convention or
subject matter theory.

e Without losing any generality, you can
assume that E[f]=0and VIf]= 1.
Once you have identified factors, you
can rescale and re-center them if you

want.

e Often, factors are assumed to be
uncorrelated so that T = V[f] = 1 .
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