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Statistics 5401

When
(Zmﬂsjsp}\j)/(ZBjip)\JZ - -
(Zm+15j§p>\j)/(z1ij§psjj) =0,
you can "explain” a large part of the

variability in X in terms of the principal
components.
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Put this way, the focus is on explaining
variability rather than approximating
data.

This brings us to the more usual way to
define principal components.

Statistics 5401 Lecture 26 November 7, 2005

SVD: X = LTR, L=1[L, ..LLR=1Ir ..r]
T = diaglt,,...t] t, = f.X, X and r eigen-
value and eigenvector of S.

Using the best rank m approximation to X
X™ = 3 __Zr’ youcan decompose X as

= (mean + residuals)

~ ~

* (Zmﬂsjspzjrjl)

e=leJ=X-3_.2Zr =5 .21
is the "error” when X is approximated by
X'™. The SS of all the errors e, is

2 _ 2 _ %
Z]iiSnZ15Q§PeiQ B Zm+15j5ptj B fe(zm”SiD}\J)
The value of variable 2 for case 1 is
XiQ = XQ * Z15j5mzijr!lj * ein
This looks sort of like a multiple regres-
sion on the z 's.
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This sees PCA (principal components
analysis) as a technique to understand

e the structure of a variance matrix
as estimated by S, or

e the structure of a correlation matrix
p = [p,]as estimated by R = [r 1.

This makes sense only in a context
where the rows x,' of X are a random

sample from a population.

e This does not make sense when doing
PCA of the Fisher data matrix which
consists of three random samples.

e [t might make sense when doing PCA
starting with MANOVA residuals,
provided the three varieties all had the
same Z, which is probably not the
case.
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Population Principal Components
Let v, v,, ..., v be the eigenvectors of &
with eigenvalues X, > X > ... > A, > 0.
The idea starts with finding a linear
combination v'x, with 1vii® = 3’v? =1,
which has the largest possible variance
cf = VIVX] = V'EV.
The solution is v = v, the first eigen-
vector of .

The variance of z, = v,’X is ¢, ° = \..
z, is the first population principal
component.

* 2z has mean v,'l

1 1 1°

* z has variance 6,° = V,'EV
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Except when rank(Z) < p, all the z,'s will
be "non trivial”, that is
c,°=X,>0,j=1,..p.

So the population number of prin-
cipal components is always p.

[t 1s meaningless to think of the choice
of how many principal components to use
as an estimation problem.

[t 1s equally meaningless to seek a test
of H: number of PC's = q.

Q Why does the question as to how many
PCs to use even arise?

A Because, properly used, ignoring all but
a few PCs may lose very little infor-
mation. When this is the case and p is
large and m << p, you can achieve a
very important dimension reduction
while losing little information.
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[f you measure "what is going on” in
terms of variance, then z, is the linear
combination that has the most "going on”.

Next, you seek v with nvi? = 1 so that
the linear combination z, = v’x has the
largest variance under the restriction

that z, is uncorrelated with z, (that is,
z, is "new information” not included in

z).

The solution is z, = v,'x, the 2™ popul-
ation principal component, with variance
c,° =V, BV, = X,

You get the remaining population prin-
cipal components, z, = VX, j = 3, ..., p by
seeking v with vi® = 1 so that z, is
uncorrelated with previous PC's and has
the largest variance. ¢ ° = V'EvV, = X,

]
6

Summary of Properties of PCs
e Vlz]=X,, Covlz, z]=0,]zKk
That is,if z=1[z, z,, .... I

P

VIz] = A = diaglx,, X, ..., X ]

P
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Describing and approximating &
Z=2,,)NVV canbe split as

= zmsm)‘
rank m

ViVt megsp}fjvjvj
remainder
when

Z15J5m>\j/z1sj5p>\j - stm}\j/zmsp(jji
or

Zmﬂs‘ip)\j/z&sp}\j - Zmﬂijﬁp}\j/z&jspgijz O'
the remainder

z - ZKEijV.V. - mesjsp}‘jvjvj

1]

1

R

will be small relative to Z.
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When
Zm+151'5p>\j/z1ﬁjip>\j - Zm+1515p>\j/z15j5p011
E - LMV E 2o MY
will be small relative to £ and
5V =y AV = E

i
=™ is a rank m approximation to £ and
you might say that £ "almost has rank
m.”

R

0,
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Here is a picture to illustrate what's
happening in the p = 2 case.

Contours of Bivariate Mormal and Principal Components
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The ellipses are contours of the N(u, £)
density with g =[S, 20]' when E has

eigenvalues
e X =100=107
e X =1=1%

X,/(x+X,) = 0.9901, X\ /(X,+X)) = 0.0099.
x" (the part of x with largest variance)
is the perpendicular projection of x on
the major axis.
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It turns out that both ™ and £ - =™ are
variance matrices of random vectors.

Since X\, = V[vj‘x],
(m) f
z Z15J5m>\jvjvj
= VIZ,...vz]= VIx™],

(m) _ :
where x™ = > zV, is the part of x

where things are “"going on.”

VIY, . .V, (v, '%)]

]

In this, z = v 'x is the j" population
principal component, a random variable.

x™ is a sum of multiples of the m fixed
eigenvectors v, v,, ..., V_, with random
multipliers z,, ..., Z_.

m

This means x™ lies on an m-dimensional
“plane” in p dimensional space. z, ..., Z
specify its location in that plane.

m
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How about the part of x in which nothing
important is "going on”, that is x - x™?
VIx - x™] = V[Zm+1sj5pzivj]

SIS A

- Z _ Z(m)
Thus the variances and covariances of the
part of x not determined by the first m
principal components come from the part

of ¥ not fit by the best rank m approx-
imation to Z.

When £ - £™ is small compared to Z,
X - X™ will be small confirming that x™
contains what's "going on”

12
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The sample principal components z, =
v'x computed using the eigenvectors v, =
r. of the sample variance matrix S
maximize the sample variances of linear
combinations of the variables.

When 2o\, ZWP ; Is small, the first

m principal components have captured
most of "what's going on” in the sample,

and f(m) = Z1<J<m>\]rlrl - Z1<]<m>\lvv lS a
good rank m approximation to 5 S, in
the sense that S - £™ = & arr’

mel<j<p” )]

small relative to S.

To emphasize again, the vectors Z = XV
of PC values are closely related to the
left singular vectors L of X = X - 1 X =
LTR'. Specifically

Z =1 +tL = 1.X + J{N-1)X}xL,

13
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Population correlation principal com-
ponents are based on the eigenvectors

and eigenvalues of the population cor-

relation matrix

01 po P P1pE
Eﬁz L py Popr o
= 1 il
p g)l?: p23 pSp[ pl] \;O_HO_]]
Py Py Py 1 E
with eigenvalues z, >z > .. > T and
eigen vectors e, ..., €.
ZWD'CJ = trace(p) = p
Now, when 3 . Z./2 ..T = 2.aet/P 1S
small, p™ = 3 zee isarank m

approximation to p.

p™ is not a correlation matrix since
ZQpQQ.(m) = trace(p(m)) = z1§k§mtk < p
so at least one p,,"™ < 1.
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Correlation principal components
Because PCs are highly dependent on
scale, in practice PC's are often com-
puted from standardized data. This
amounts to using eigenvectors of the
correlation matrix as PC coefficients.
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~

For example, when's, >>s ., ] z k, z, =

C(x, - x,) and almost entirely reflect the
behavior of x,. This won't happen be the
case if you the variables so their var-
lances are the same or similar, and in
particular not when you standardize all
the variables.

Comment

It is misleading to say that correlation

PC’s maximize the "variance” of linear
combinations, although this is often said.

| don’'t find the variance of linear com-
binations of standardized variables to be
very interesting.

14
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Recall that p is the variance matrix of
standardized vector:

p = VIX*], x> = [x,*, x,*, ..., x ¥

2 P

where the x,*'s are z-scores:

Xn* = (Xn_pn)/\/cu
“Unstandardizing”,
2 * \/OQQXQ*
In vector notation,
X = M+ ATX*,
A = diagl1/+/c,,.....1//c ]
The population correlation principal
components are the linear combinations
of x*

z, = e'x* =e'Alx - p) = (Ae)'(x - p).
Ae =le //o,, ...e /o, T is the
vector of coefficients in a form to
multiply x, or (x, - y), not x.*

16
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You can approximate the standardized
random vector x* by

X™* =3 .Ze, z = correlation PC

You can approximate x itself using
correlation principal components by
unstandardizing x™*:

x(m)+ =M+ A_1x(m)* ol A_1Z15j5mzjej
_ -1
= Mo+ zm'imzj(A ej)

(m)t _ -1
- X - Zm+15j5pZJ(A e')'

]

The "error” is X

[n a similar way as before, when
> ..zee' =p™ = VIX"*] = p = VIx*]

1<k<m "k "k "k

is a "good” approximation to p, you can
interpret it as "explaining” the corre-
lations among x,, X,, ..., X, by their depen-
dence on a smaller number m of “factors”
Z,,....z_they have "in common”.

17
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A potential serious problem with any
such use is that there is no guarantee
that the information you want or need is
actually in the first few PC’s.

Here's a "toy” example: Suppose you
want to predict y from x, and x, where

the true relationship is

y =50+ 3(x, - x,)+¢€
where x, and x, have high positive corre-
lation so that Varlx, - x,] << Varlx, + x .
To try to reduce the predictors from 2 to
1 (x, - x, Is the correct choice), you

might compute principal components
based on x, and x, and use the "important”

PC, as predictor, omitting PC..

But, when Varlx,] = Varlx,], z, = PC, =
(x, + x,)//2 and z, = PC, = (x, - x,)/+/2.
To discard PC, is to lose what you need.

19
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Principal components are often used in
place a larger number of variables.

They are usually viewed as derived
variables which contain most of the
“Information” in the original variables.

1. New response variables z,, z, ..., z

that might be used as the basis of a
classification algorithm.

m*

2. Variables used as input to other
procedures You might do cluster
analysis starting with z, z, ..., Z
that is attempt to find separated
groups of cases.

m?

3. New predictor variables Use z , z,,
..., Z_enable you to model other res-
ponse variables Y as Y = ZB* + €
instead of Y = XB + €.

Note: When m = p, ZB* = XB

18
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Inference for principal components

Not much is known except when the
population is MVN. In that case, the
exact distributions of eigenvalues and
vectors of a sample variance matrix S
are complicated and hard to compute.

The large sample normal results are
fairly easy to understand.

Sampling distribution of eigenvalues
Fact: In large samples, when X\, > X > ...
> X, > 0. the sample eigenvalues {XJ.} are
approximately independent N(X\,, 2X°/n)
for large n.
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This is correct only for "isolated” \'s. It
is wrong for any A, = X, k z J.

Except for large f_, this normal approx-

imation is not good because the
distribution of X is quite skewed.

20
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A widely used non-symmetric approx-
imate distribution of a random variable
T > 0 is to treat it as a multiple of X?,
specifically as T = pu xX_ */edf, where

edf - effective degrees of freedom
2E[TF/VITI.

When T is exactly pxX?/f, then edf = f.
If not, then T has the same mean and
variance as p xX_‘/edf.

edf

The large sample edf of X, is

edf = 237/(2x?/n) = n
I made plots of simulated distributions
of X, along with with the densities of
X X, /edf, edf = 2X?/s ? (solid curves)
and X\ X /n (dashed curves).

The simulations were for p = 3 and
A, =100>x, =30>Xx,=10

21
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Middle and smallest eigenvalues

larbds 2 foxr n = 10

larbda 2 for n = 30
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X* approximations for XL,
eigenvalue.

the largest
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The solid line is the distribution using
edf = 2(X))?/s;” and E[X] = X,.

1

The dashed is the distribution using edf =
nand E[X] = X\. For n = 100 they are
almost indistinguishable and appear to fit
the histogram well
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Other simulations confirmed well sep-
arated eigenvalues were almost uncor-
related.

These results could in principle allow you
test hypotheses about the variances of
the principal components and to compute
approximate confidence intervals for
them.

They do not allow you to test hypotheses
like H: X, = X, since these large sample
results are valid only when the eigen-
values are distinct and well separated.

[t is not clear to me in what circum-
stances | would be interested in testing
hypotheses about the X\'s or finding
confidence intervals for them.

24
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Samplin(g distribution of eigenvectors
not presented in class)

When you use the correct coordinates, the
asymptotic distribution of the eigen-
vectors is simpler than it appears in the
text.

The "right” coordinate system has the
true eigenvectors v, as coordinate axes.
In this coordinate system, the coordi-
nates of v, are

For large n,
e v, = V'V =1+ 0(1/n) (essentially
constant)
~ . -1
» {v .} are asymptotically N (0, n"D),
where
D, = Diagls,, 8,, ... 8, 8. ... 8]
8, = AN /(NN

When X, = >\j this can’t be valid.

25
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This implies you can find a large sample
approximate 1 - « confidence region for
v, as an ellipsoid on the sphere centered

at \7]. with principal axis pointing in the
directions of v, i z j, and lengths

VX (08, }/4/n
Since the sample eigenvectors are the

coefficients of the x.’ in the principal

components, you can also use these
results to test that one or more of the
coefficients are O.

Again, | have had little reason ever to
think this was something I wanted to do.
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Here's how you can think of this geomet-
rically.

Since v, and V. are unit vectors (Iv,il =
IV = 1), they can be considered to be
points on a "sphere” with radius 1 in p-

dimensional space and the sampling
distribution of \7}. is a distribution on the

sphere centered at V..
For large n, it is concentrated near v..

Close to v, (or any other point on the
sphere), the surface of a sphere is almost
a flat p-1 dimensional plane. The result
essentially says v, is MVN_ (v ,(1/n)E) on
the surface of the sphere treated as if it
were flat, where &, has eigenvectors
pointing in the direction of v, 1 = ], and

eigenvalues & = A\ X /(X-X\).
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